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Small-sum pairs in abelian groups

par Reza Akhtar et Paul Larson

Résumé. Soit G un groupe abélien fini et A, B sous-ensembles de
G tels que |A| = |B| = k et |A+A| = |A+B| = 2k−1. Pour sous-
ensembles X, Y de G et c ∈ G, signifions par νc(X,Y ) le nombre
de couples (x, y) ∈ X × Y tels que c = x+ y. Nous résolvons une
question de Bihani et Jin en montrant qu’il existe g ∈ G tel que
A = g + B si A + B et apériodique ou s’il existe a ∈ A et b ∈ B
tels que νa+b(A,B) = νa+a(A,A) = 1. Nous caractérisons aussi
les contre-exemples qui se présentent si ni l’une ni l’autre des ces
hypothèses est satisfaite.

Abstract. Let G be an abelian group and A,B two subsets of equal size k
such that A+ B and A + A both have size 2k − 1. Answering a question of
Bihani and Jin, we prove that if A+B is aperiodic or if there exist elements
a ∈ A and b ∈ B such that a + b has a unique expression as an element

of A + B and a + a has a unique expression as an element of A + A, then
A is a translate of B. We also give an explicit description of the various
counterexamples which arise when neither condition holds.

1. Introduction

Let G be an abelian group, written additively. If A and B are subsets
of G, we write A + B to mean {a + b : a ∈ A, b ∈ B}, and similarly for
A−B. We use A \B to denote set difference. In their study [1] of sets of
natural numbers with small upper Banach density, Bihani and Jin asked
the following in the context of cyclic groups:

Question 1. Let G be an abelian group. Given a pair (A,B) of subsets
of G such that |A| = |B| = k and |A+A| = |A+B| = 2k− 1, are A and B
always a translates of each other; that is, does there exist h ∈ G such that
B = A+ h?

It is easily seen that this question cannot always be answered in the
affirmative. To see this, let G be any abelian group of odd order 2k−1 ≥ 5
and A, B any two subsets of G of order k. Since |A| + |B| > |G|, a
rudimentary combinatorial result (cf. [7, Lemma 2.1] or Lemma 2.6 below)
implies that A+B = G, regardless of whether or not A and B are translates
of each other. It is far less obvious that all counterexamples are, in a suitable
sense, based on this example.
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The goal of this paper is to answer Question 1 in the affirmative under
appropriate hypotheses and to provide explicit descriptions of counterex-
amples. We note that all our work is valid for arbitrary abelian groups
G.

The key tool we use is the theory of critical pairs. A critical pair in an
abelian group H is a pair (A,B) of subsets such that |A+B| = |A|+|B|−1;
an essentially complete description of all such pairs was given by Vosper
[6] for groups of prime order and by Kemperman [5] (see also [2], [3], [4])
for general abelian groups. We show how to use Kemperman’s results
and Kneser’s Theorem to give an essentially complete answer to Question
1. We will refer to the exposition of Kemperman’s work in the paper of
Grynkiewicz [2], as the constructions used there suit our purposes better
than that of the original work [5]. For a detailed discussion of Kneser’s
Theorem, we refer the reader to Chapter 4 of [7].

2. Preliminaries

Let H be an abelian group. A small-sum pair, or SS-pair for short, is
a pair (X,Y ) of subsets of H such that |X| = |Y | = k and |X + X| =
|X + Y | = 2k − 1 for some k.

Given an abelian group H, subsets A,B ⊆ H, and c ∈ H, we define

νc(A,B) = |{(a, b) : a ∈ A, b ∈ B : a+ b = c}|.
We say that the pair (A,B) has the unique expression property (UEP) if
there exist a ∈ A and b ∈ B such that νa+b(A,B) = 1 and that (A,B)
has the strong unique expression property (SUEP) if there exist a ∈ A and
b ∈ B such that νa+b(A,B) = νa+a(A,A) = 1.

If P ⊆ H is a subgroup, we denote by ϕP : H → H/P the canonical
quotient map.

The stabilizer of a subset A ⊆ H is the subgroup of H defined by:

Stab(A) = {h ∈ H : h+A = A}

A subset A ⊆ H is called periodic if Stab(A) ̸= {0}. For a nontrivial
subgroup P , we say that A is P -periodic if A is a union of P -cosets; this
is equivalent to the condition P ⊆ Stab(A). We say that A ⊆ H is P -
subperiodic if there exists h ∈ H −A such that A ∪ {h} is P -periodic.

Definition 2.1. Let H be an abelian group and P ⊆ H a nontrivial sub-
group. A subset A ⊆ H is said to have a quasi-periodic decomposition
with respect to the quasi-period P if there exists a partition of A into two
disjoint subsets A1 ∪A0 such that A1 is either empty or P -periodic and A0

is a subset of a P -coset.



Small-sum pairs in abelian groups 3

We refer to A1 as the periodic part of A and to A0 as the aperiodic part
of A. We also say that A is quasi-periodic if A1 is nonempty. This notation
(with the above meaning) will be used for quasi-periodic decompositions for
the remainder of this article.

Lemma 2.2. Suppose H is finite, P is a subgroup of H and A ⊆ H is any
nonempty subset. If A = A1 ∪ A0 is a quasi-periodic decomposition with
respect to P and |A0| < |P |, such a decomposition is unique.

Proof. With notation as above, suppose A has quasi-periodic decomposi-
tions A = A1∪A0 and A = A′

1∪A′
0 with respect to a common quasi-period

P . Then A1,A
′
1 are unions of P -cosets, and each of A0, A

′
0 is a proper

subset of a single P -coset. It follows that A0 = A′
0 and hence A1 = A′

1. �

Lemma 2.3. Suppose H is finite and A, B are subsets of H, and A =
A1 ∪ A0 and B = B1 ∪ B0 are quasi-periodic decompositions with respect
to a common quasi-period P . Suppose further that neither A nor B is
P -periodic. If A = h+B, then A0 = h+B0 and A1 = h+B1.

Proof. If A = h + B, then (h + B1) ∪ (h + B0) is also a quasi-periodic
decomposition for A. By Lemma 2.2, it follows that A1 = h + B1 and
A0 = h+B0. �

The following results are elementary:

Lemma 2.4. Suppose H is an abelian group and A ⊆ H is a nonempty
subset such that |A+A| = 2|A| − 1. Then A is not periodic.

Proof. Let k = |A|. If A is periodic, then there is a nontrivial subgroup
P ⊆ H such that A is a disjoint union of P -cosets; in particular, |P | divides
k. However, A + A is also a union of P -cosets, so |P | must divide 2k − 1,
which forces P to be the trivial subgroup. �

Lemma 2.5. Let H be an abelian group. If A ⊆ H is P -periodic, then so
is A+B for any B ⊆ H.

Finally, we mention a rudimentary but well-known result:

Lemma 2.6. [7, Lemma 2.1] Let H be a finite abelian group and A,B
subsets of H such that |A|+ |B| > |H|. Then A+B = H.

3. Kemperman pairs

In this section, we review the theory of critical pairs in abelian groups,
following the exposition of Kemperman’s work in [2], and prove various
results that will help in the solution of our problem.
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Definition 3.1. Let H be an abelian group. A Kemperman pair in H is a
pair (A,B) of subsets of H such that A + B is not periodic or (A,B) has
UEP.

We now state Kemperman’s Theorem [5, Theorem 5.1 and p. 82] in the
form given by Grynkiewicz [2].

Theorem 3.2. ([2], p. 563) Let G be an abelian group and (A,B) a Kem-
perman pair in G. Then |A + B| = |A| + |B| − 1 if and only if there
exist quasi-periodic decompositions A = A1 ∪ A0 and B = B1 ∪ B0 with
nonempty aperiodic parts and common quasi-period P such that (A0, B0)
is a Kemperman pair and:
(1) νc(ϕP (A), ϕP (B)) = 1, where c = ϕP (A0) + ϕP (B0);
(2) |ϕP (A) + ϕP (B)| = |ϕP (A)|+ |ϕP (B)| − 1, and
(3) |A0 + B0| = |A0| + |B0| − 1 and the pair (A0, B0) is of one of the

following (distinct) types:
(a) |A0| = 1 or |B0| = 1.
(b) |A0| ≥ 2, |B0| ≥ 2, and A0, B0 are arithmetic progressions

with common difference d ∈ H such that d has order at least
|A0| + |B0| − 1. In this case, νc(A0, B0) = 1 for exactly two
values c ∈ A0 +B0.

(c) |A0| + |B0| = |P | + 1, and there is exactly one element g ∈ G
such that νg(A0, B0) = 1.

(d) A0 is aperiodic, B0 is of the form B0 = g− [(G \A0)∩ (g′ +P )]
for some g, g′ ∈ A0, and νc(A0, B0) ̸= 1 for all c.

Remark.

We note (cf. [2], c.13 on p. 564) that if we select a different quasi-periodic
decomposition for A or B, the type of the resulting pair of aperiodic parts
does not change; hence we may speak of the type of (A,B) without reference
to any choice of quasi-periodic decompositions.

If A = A1 ∪ A0 and B = B1 ∪ B0 are quasi-periodic decompositions of
sets with respect to a common quasi-period P , we denote by (A+B)P the
P -periodic set (A1+B)∪ (A+B1). Clearly A+B = (A+B)P ∪ (A0+B0).

Lemma 3.3. Suppose (A,B) is a Kemperman SS-pair. With notation as
in Theorem 3.2:
(1) A+ B is the disjoint union of A0 + B0 and (A+ B)P . In particular,

A+B is P -periodic if and only if A0 +B0 is P -periodic.
(2) If (A,B) has type (a) or (d), then A+B is not P -periodic. If (A,B)

has type (c), then A+B is P -periodic.

Proof. For the first item, suppose A0 ⊆ g1 + P and B0 ⊆ g2 + P and let
h1 = ϕP (g1), h2 = ϕP (g2). By Theorem 3.2, νh1+h2(ϕP (A), ϕP (B)) = 1.
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Now if x ∈ (A + B)P ∩ (A0 + B0), then x = a + b, where a ∈ A, b ∈ B
and a ∈ A1 or b ∈ B1. Thus, ϕ(x) = h1 + h2 = ϕ(a) + ϕ(b), contradicting
νh1+h2(ϕP (A), ϕP (B)) = 1. The second assertion now follows immediately.
If (A,B) has type (a), then |A0| = |B0| = 1, so |A0 + B0| = 1. Since P
is nontrivial, A0 + B0 is a strict subset of a P -coset and so A0 + B0 (and
hence also A+B) is not P -periodic. If (A,B) has type (d), then, as noted
in [2, p. 563], A0 +B0 is P -subperiodic, so again A+B is not P -periodic.
Finally, if (A,B) has type (c), then |A0 + B0| = |A0| + |B0| − 1 = |P |, so
A0 +B0 is a (full) P -coset; thus, A+B is P -periodic. �

The proof of the following is immediate:

Lemma 3.4. Suppose A,B are subsets of an abelian group H and that
A = A1 ∪ A0, B = B1 ∪ B0 are quasi-periodic decompositions with respect
to some common quasi-period P . If A + B is P -periodic, then |A + B| =
|ϕP (A+B)||P |; otherwise, |A+B| = (|ϕP (A+B)| − 1)|P |+ |A0 +B0|.
Lemma 3.5. Suppose (A,B) is a Kemperman SS-pair of subsets of an
abelian group H with corresponding quasi-periodic decompositions A = A0∪
A1 and B = B0 ∪ B1 with respect to some common quasi-period P . Then
|A0| = |B0|, |ϕP (A)| = |ϕP (B)|, |A0+B0| = |A0|+ |B0|−1, |ϕP (A+B)| =
|ϕP (A)|+|ϕP (B)|−1, |A0+A0| = 2|A0|−1, and |ϕP (A+A)| = 2|ϕP (A)|−1.

Proof. Let p = |P |, and define x and y by |A1| = xp and |B1| = yp. We
have |A| = xp + |A0|, |B| = yp + |B0|; since A0 and B0 are nonempty,
we have 1 ≤ |A0| ≤ p, 1 ≤ |B0| ≤ p. By properties of integer division,
|A0| = |B0| = k and x = y, so |ϕP (A)| = |ϕP (A1)| + 1 = x + 1 = y + 1 =
|ϕP (B1) + 1| = |ϕP (B)|; this establishes the first two formulas. The next
two formulas follow from Theorem 3.2. If A + B is not P -periodic, then
|A + A| = |A + B| ̸≡ 0(mod |P |) so A + A is not P -periodic, either. It
follows that A0 + A0 is a strict subset of a single P -coset, and also that
|A0+A0| = |A0+B0| = |A0|+ |B0|− 1 = 2|A0|− 1. If A+B is P -periodic,
then |A + A| = |A + B| ≡ 0(mod |P |), so A + A is likewise P -periodic.
Letting c = |A + A|/p = |ϕP (A + A)|, we have cp = |A + A| = 2|A| − 1 =
2(xp + k) − 1. Thus, p(c − 2x) = 2k − 1. Since 1 ≤ k ≤ p, it follows
that 2k − 1 = p, so c = 2x + 1; that is, |ϕP (A + A)| = 2|A1|/p + 1 =
2(|ϕP (A)| − 1) + 1 = 2|ϕP (A)| − 1, as desired. �

Proposition 3.6. Suppose (A,B) is a Kemperman SS-pair with quasi-
periodic decompositions A = A1 ∪ A0 and B = B1 ∪ B0 with respect to a
common quasi-period P .

• If (A,B) has type (a) or (b), or (d) then A0 is a translate of B0.
• If (A,B) has type (c), then A + B is P -periodic, |P | ≥ 3 is odd, and
|A0| = |B0| ≥ 2. Furthermore, if (A,B) has SUEP, then there exist
h1, h2 ∈ H and a set S ⊆ P such that A0 = h1 + S, B0 = h2 + S, and
h1+h2 ̸∈ (A1+B1)∪ (A1+A1); in particular, A0 is a translate of B0.
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Proof. Since all properties mentioned in the proposition remain invariant
when either A or B is replaced by a translate, we assume throughout this
proof that A0 and B0 are subsets of P .

If (A,B) is of type (a) or (b), then clearly A0 is a translate of B0.
If (A,B) has type (c), A + B is P -periodic by Lemma 3.3. Moreover,
because |A0| = |B0|, it follows that |P | = 2|A0| − 1 is odd. In particular,
since P is nontrivial, |P | ≥ 3, and so |A0| = |B0| ≥ 2. Now suppose
(A,B) has SUEP. By translating each appropriately, we may assume that
ν0(A,B) = ν0(A,A) = 1. Then B0 ∩ −A0 = A0 ∩ −A0 = {0}; hence
A0 = B0 ⊆ P .

Finally, suppose (A,B) has type (d). As remarked in [2, p. 563], a
pair of type (d) satisfies A0 + B0 = (h0 + P ) − {h0} for some h0 ∈ H, so
|A + B| ≡ −1(mod |P |). In particular, letting k = |A0|, we have |P | =
|A0 + B0| + 1 = |A0| + |B0| = 2k. Since (A,B) is an SS-pair, A0 + A0

is a subset of P of order 2k − 1. Hence there exist x, y ∈ P such that
A0 + A0 = P \ {x} and A0 + B0 = P \ {y}; setting B′

0 = B0 + x − y, we
have A0+B′

0 = P \{x}. Thus, A0 and B′
0 are subsets of P of order k, each

disjoint from −A0+x. This forces A0 = B′
0, and hence A0 is a translate of

B0. �

Lemma 3.7. Suppose (A,B) is a Kemperman SS-pair in H together with
quasi-periodic decompositions A = A1 ∪ A0 and B = B1 ∪ B0 with respect
to a common quasi-period P . If A + B is aperiodic or (A,B) has SUEP,
then (ϕP (A), ϕP (B)) has SUEP.

Proof. For convenience, let C = ϕP (A) and D = ϕP (B). By translating
A and B appropriately, we may assume that A0 ⊆ P , B0 ⊆ P , and hence
that ϕP (A0) = ϕP (B0) = 0 ∈ C ∩ D. Suppose (C,D) does not have
SUEP. Since ν0(C,D) = 1 by statement 1 of Theorem 3.2, it follows that
ν0(C,C) > 1; thus, we may select 0 ̸= c ∈ C such that −c ∈ C. Writing
c = ϕP (a) for some a ∈ A1, observe that since ϕ(−a) = −c ̸= 0 ∈ C,
−a + P ⊆ A1, so −a ∈ A1 also. Next, choose p ∈ P , p ̸= 0. Since A1 is
P -periodic, a−p,−a+p ∈ A1, and so (a−p)+(−a+p) = 0 witnesses that
ν0(A,A) ≥ 2; hence (A,B) does not have SUEP. Moreover, A + A is the
union of a P -periodic set with A0 + A0. Since the latter is a subset of P
and (a+ P ) + (−a+ P ) = P ⊆ A+A, it follows that A+A is P -periodic.
Since |A+A| = |A+B| and A, B both have quasi-periodic decompositions
with respect to P , A+B is also P -periodic. �

Finally, we need the following “reconstruction lemma”:

Lemma 3.8. Suppose (A,B) is a critical Kemperman pair in an abelian
group H with |A| = |B| and that A = A0 ∪ A1, B = B0 ∪ B1 are quasi-
periodic decompositions with respect to a common quasi-period P . If A0 is
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a translate of B0 and ϕP (A) is a translate of ϕP (B) then A is a translate
of B.

Proof. Note that the conclusion of Lemma 3.8 remains valid if we translate
either A or B by any h ∈ H. Moreover, the assertion is automatically true
if A1 and B1 are empty, so we assume henceforth that these are nonempty.
Similarly, if A0 (and hence also B0) is a full P -coset, the assertion is clear,
so we assume otherwise. If ϕP (B) = ϕP (A) + h̄ for some h̄ ∈ H/P , then
picking h ∈ G such that ϕP (h) = h̄, we may replace B by B−h and assume
henceforth that ϕP (B) = ϕP (A). In particular, this means that there exist
distinct cosets h1+P, . . . , hs+P of P in G and decompositions A = ∪s

i=1Ci

and B = ∪s
i=1Di where for every i = 1, . . . , s, Ci ⊆ hi+P and Di ⊆ hi+P

with Ci = hi+P if and only if i ̸= i0 and Dj = hj +P if and only if j ̸= j0.
With this notation, Ci0 = A0 and Dj0 = B0. We claim that i0 = j0.

Note that A+B is the union of a P -periodic set, together with A0+B0 ⊆
(hi0 + hj0) + P . If i0 ̸= j0, then A1 +B1 ⊇ Cj0 +Di0 = (hi0 + hj0) + P ⊇
A0 + B0, contradicting Lemma 3.3. Thus i0 = j0, and so A1 = B1. Since
A0 = p+B0 for some p ∈ P , we have that A = p+B, as desired. �

4. Results

4.1. The Kemperman case. In this section, we answer our question in
the case that our original SS-pair (A,B) is a Kemperman pair.

Theorem 4.1. Let G be an abelian group and (A,B) an SS-pair in G. If
A+B is aperiodic or (A,B) has SUEP, then A = x+B for some x ∈ G.

Proof. We prove the theorem by induction on |A|+ |B|, the theorem being
trivially true when |A| = |B| = 1. Since the hypothesis clearly implies that
(A,B) is a Kemperman pair, fix quasi-periodic decompositions A = A1∪A0

and B = B1 ∪ B0 as in Theorem 3.2 with respect to some common quasi-
period P . By Proposition 3.6, A0 is a translate of B0. If either of A1, B1 is
empty, the other is, too, so A = A0, B = B0 and the claim is proven. Now
suppose A1 and B1 are nonempty. Then (ϕP (A), ϕP (B)) is an SS-pair by
Lemma 3.5, so Lemma 3.7 implies that the hypotheses of the theorem are
satisfied by (ϕP (A), ϕP (B)). By induction, ϕP (A) is a translate of ϕP (B).
Finally, Lemma 3.8 implies that A is a translate of B.

�

Corollary 4.2. Suppose G is a 2-group and (A,B) is an SS-pair of subsets
of G. Then A is a translate of B.

Proof. Let k = |A| = |B|. First, note that A + B cannot be periodic,
because |A+B| = 2k− 1, which is odd, so it cannot be the union of cosets
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of a nontrivial subgroup of G. Hence (A,B) is a Kemperman pair, and so
A is translate of B by Theorem 4.1. �

4.2. The periodic case. In this section, we study the case in which
(A,B) is an SS-pair with A + B periodic. If (A,B) is not a Kemperman
pair, we cannot use Kemperman’s Theorem, so we use Kneser’s Theorem
instead. We note that the results of this section also apply to the situation
in which (A,B) has SUEP.

Theorem 4.3. (Kneser, [7, Theorem 4.2])
Let G be an abelian group and A,B finite nonempty subsets of G; set

H = Stab(A+B). If |A+B| < |A|+ |B|, then
|A+B| = |A+H|+ |B +H| − |H|

In particular, if |A+B| < |A|+ |B| − 1, then H is nontrivial and so A+B
is periodic.

One easily constructs examples of SS-pairs (A,B) such that νc(A,B) > 1
for all c ∈ A + B. We describe how, starting with one such pair, one may
construct SS-pairs (A,B′) where B′ is not a translate of A.

Lemma 4.4. Let G be an abelian group, (A,B) an SS-pair in G, and
P = Stab(A+B). Let c1 + P, . . . , ck + P be distinct cosets whose union is
A+ P and d1 + P, . . . , dl + P distinct cosets whose union is B + P . Then:

• |P | is odd.

• |A+ P | − |A| = |B + P | − |B| = |P | − 1

2
. In particular,

|(ci + P ) ∩A| ≥ |P |+ 1

2
and |(dj + P ) ∩B| ≥ |P |+ 1

2

for all i = 1, . . . , k and j = 1, . . . , l.
• Let (A′, B′) be any pair such that A′ ⊆ ∪k

i=1(c
′
i+P ), B′ ⊆ ∪l

j=1(d
′
j+P ),

where the c′i and d′j are elements of G such that |(c′i+P )∩A′| ≥ |P |+ 1

2

and |(d′j+P )∩B′| ≥ |P |+ 1

2
for all i = 1, . . . , k and j = 1, . . . , l. Then

A′ +B′ = ∪k
i=1 ∪l

j=1 ((c
′
i + d′j) + P ).

Proof. For convenience of notation, let Ci = ci + P , Dj = dj + P for

i = 1, . . . , k, j = 1, . . . , l; hence A + B = ∪k
i=1 ∪l

j=1 Ci + Dj . Because

|A| = |B| and (A,B) is critical, |A + B| = |A| + |B| − 1 = 2|A| − 1 is
odd. Since A + B is a disjoint union of P -cosets, |P | must be odd. Now
Kneser’s Theorem gives |A|+ |B|−1 = |A+B| = |A+P |+ |B+P |−|P |, or
(|A+P |−|A|)+(|B+P |−|B|) = |P |−1. Hence |A+P | (respectively, |B+P |)
is the smallest multiple of |P | greater than or equal to |A| (respectively
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|B|). However, since |A| = |B|, we must have |A + P | = |B + P |, so
2(|A+P |− |A|) = |P |− 1. Reduction modulo |P | gives 2|A| ≡ 1(mod |P |),

so since |P | is odd, |A| = |B| ≡ |P |+ 1

2
(mod |P |). Thus,

|A+ P | − |A| = |B + P | − |B| = |P | − 1

2

and

|Ci ∩A| = |Ci| − |Ci \A| ≥ |Ci| − |(A+ P ) \A| = |P | − |P | − 1

2
=

|P |+ 1

2
.

A similar argument shows that |Dj ∩ B| ≥ |P |+ 1

2
, establishing the first

statement. For the second statement, note that for every i and j,

((c′i + P ) ∩A′) + ((d′j + P ) ∩B′) ⊆ (c′i + d′j) + P.

Moreover,

|(c′i + P ) ∩A′|+ |(d′j + P ) ∩B′| ≥ |P |+ 1 > |P |

so by Lemma 2.6, ((c′i + P ) ∩A′) + ((d′j + P ) ∩B′) = (c′i + d′j) + P . Thus,

A′ +B′ = ∪k
i=1 ∪l

j=1 (c
′
i + d′j) + P . �

Proposition 4.5. If G is an abelian group and (A,B) a critical pair in G
with P = Stab(A + B), then ϕP (A + B) is aperiodic and (ϕP (A), ϕP (B))
is a critical Kemperman pair of subsets of G/P . In particular, if (A,B) is
an SS-pair in G, then (ϕP (A), ϕP (B)) is a Kemperman SS-pair in G/P
and ϕP (A) is a translate of ϕP (B).

Proof. Aperiodicity is clear in view of the definition of stabilizer. Let A′ =
A + P and B′ = B + P ; then ϕP (A) = ϕP (A

′), ϕP (B) = ϕP (B
′) and

A′ + B′ = (A + B) + P = A + B. By Kneser’s Theorem, |A + B| =
|A′+B′| = |A′|+|B′|−|P |. Dividing all terms by |P |, we have |ϕP (A+B)| =
|ϕP (A)|+ |ϕP (B)|−1, and so (ϕP (A), ϕP (B)) is a critical Kemperman pair.
This proves the first part of the Proposition.

Now assume that (A,B) is an SS-pair. We will prove that (ϕP (A), ϕP (B))
is an SS-pair. Write A′ = ∪k

i=1ci + P and B′ = ∪l
i=1dj + P (as disjoint

unions). By the second statement of Lemma 4.4, |A ∩ (ci + P )| ≥ |P |+ 1

2
,

|B ∩ (dj + P )| ≥ |P |+ 1

2
for each i and j, so by the third statement,

A + A is P -periodic; that is, P ⊆ Stab(A + A). Furthermore, A′ + A′ =
(A+P )+ (A+P ) = (A+A)+P = A+A. Now Kneser’s Theorem implies

2|A|−1 = |A+A| = 2|A′|−|Stab(A+A)|, or |A′|−|A| = |Stab(A+A)| − 1

2
.
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Because |A′|−|A| = |P | − 1

2
by Lemma 4.4, it follows that P = Stab(A+A).

Finally, from |A′ + A′| = |A+ A| = 2|A′| − |P | we get |ϕP (A) + ϕP (A)| =
|ϕP (A + A)| = 2|ϕP (A)| − 1. This establishes that (ϕP (A), ϕP (B)) is an
SS-pair; hence ϕP (A) is a translate of ϕP (B) by Theorem 4.1. �

Since Question 1 obviously has an affirmative answer if A and B have
size 1 or 2, we assume henceforth without further mention that |A| ≥ 3,
|B| ≥ 3. The next result shows that in general there are“many” SS-
pairs (A,B) such that A + B is periodic but A is not a translate of B.
Since Proposition 4.5 implies that ϕP (A) is always a translate of ϕP (B),
we assume ϕP (A) = ϕP (B) in the following to simplify the discussion.

Theorem 4.6. Suppose G is an abelian group and A ⊆ G is a subset such
that |A + A| = 2|A| − 1 and P = Stab(A + A) ̸= {0}. Write A = ∪l

i=1Si,
where each Si is a subset of (the P -coset) ci + P . Consider the collection
B of all subsets B ⊆ G such that |A| = |B| = k, ϕP (A) = ϕP (B), and

|B ∩ (ci + P )| ≥ |P |+ 1

2
for all i = 1, . . . , l. Then each (A,B) is an SS-

pair in G. Moreover, at most |P | elements of B are translates of A, and
|B| > |P |, so there is at least one B ∈ B which is not a translate of A.

Proof. Since ϕP (A) = ϕP (B), any B ∈ B must satisfy B ⊆ A+P . Observe
that by Lemma 2.4, A must be a strict subset of A + P . Clearly P ⊆
Stab(A+ P ) = P ′. Moreover, we have A+ A+ P ′ = (A+ A) + P + P ′ =
(A + P ) + (A + P ) + P ′ = (A + P ) + (A + P ) = (A + A) + P = A + A,
so P ′ ⊆ Stab(A + A) = P and hence Stab(A + P ) = P . For any B ∈ B,
Lemma 4.4 shows that A+B = A+A, so (A,B) is an SS-pair. If B = g+A
for some g ∈ G, then (by definition) A + P = B + P = g + (A + P ), so
g ∈ Stab(A + P ) = P . Now |P | is odd by Lemma 4.4, so |P | ≥ 3. Since
A is a strict subset of A + P , there exists i0, 1 ≤ i0 ≤ l such that Si0 is a
strict subset of ci0 +P . If l ≥ 2, pick a nonzero element p ∈ P and consider
B = ∪1≤i≤l:i̸=i0Si ∪ (Si0 + p). Then B ∈ B, so (A,B) is an SS-pair, but B
is not a translate of A. If l = 1, then A ⊆ c1+P is a set of size n = |A| ≥ 3,
and A+ A = 2c1 + P has size 2n− 1, so |P | = 2n− 1. There are at most

|P | = 2n−1 translates of A within A+P = c1+P and

(
|P |
|A|

)
=

(
2n− 1

n

)
subsets of A+P of size n. Since n ≥ 3,

(
2n− 1

n

)
> 2n−1, we may choose

B to be a subset of A+ P of size n which is not a translate of A. �
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