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Abstract

We present Woodin’s proof that if there exists a measurable Woodin
cardinal δ, then there is a forcing extension satisfying all Σ2

2 sentences φ
such that CH+φ holds in a forcing extension of V by a partial order in Vδ.
We also use some of the techniques from this proof to show that if there
exists a stationary limit of stationary limits of Woodin cardinals, then
in a homogeneous forcing extension there is an elementary embedding
j : V → M with critical point ωV

1 such that M is countably closed in the
forcing extension.

1 Introduction

Woodin’s Σ2
1 absoluteness theorem (see [6]) says that if δ is a measurable Woodin

cardinal and φ is a Σ2
1 sentence which can be forced by a partial order in Vδ,

then φ holds in every forcing extension by a partial order in Vδ which satisfies
the Continuum Hypothesis. A longstanding open question (due to Steel) is
whether this result extends to Σ2

2 sentences and Jensen’s principle 3, that is, is
there a large cardinal concept such that whenever δ is such a cardinal and φ is
a Σ2

2 sentence such that φ + CH can be forced by a partial order in Vδ, then φ
holds in every forcing extension by a partial order in Vδ which satisfies 3? This
paper presents a theorem of Woodin in this area, saying that if δ is a measurable
Woodin cardinal, then there is a forcing extension satisfying all Σ2

2 sentences φ
such that CH +φ holds in a forcing extension of V by a partial order in Vδ. We
present this result in a slightly extended form, adding predicates for universally
Baire sets of reals.

Before presenting Woodin’s proof, we use some of the techniques from the
proof to show that if there exists a stationary limit of stationary limits of Woodin
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cardinals, then there is a homogeneous partial order which forces that there is
an elementary embedding j : V → M with critical point ωV

1 such that M is
countably closed in the forcing extension. The existence of such a partial order
has applications in the study of Woodin’s core model induction (see [8]). For
instance, Steel has shown that CH plus the existence of such a partial order
implies that the Axiom of Determinacy holds in L(R) and stronger models such
as L(R#), L(R##), etc. The previous consistency strength upper bound for
the existence of such a partial order was a superstrong cardinal (see [4] for
definitions of the large cardinals used in this paper, and [6] for background on
the stationary tower). This work came after we learned Woodin’s proof, but
since it is simpler we present it first.

1.1 Terminology and background

We say that two partial orders are forcing-equivalent if the regular open algebras
they generate are isomorphic, and that a partial order P is homogeneous if for
every pair of conditions p, q in P there are conditions p′ ≤ p and q′ ≤ q such
that the restrictions of P below p′ and q′ are forcing-equivalent. If P is a
homogeneous partial order, then the theory (with parameters from the ground
model) of every P -extension is the same, and thus computable in the ground
model. We make key use of a standard forcing fact due to McAloon (Lemma
26.7 of [3] and Theorem A.0.7 of [6]), where for any cardinal γ and any set X,
Coll(γ, X) is the partial order consisting of partial functions from γ to X of
cardinality less than γ, ordered by inclusion.

Theorem 1.1. Any separative partial order P such that forcing with P makes
P countable is forcing-equivalent to Coll(ω, P ).

A regular embedding of a Boolean algebra A into a Boolean algebra B is a
map π : A → B which preserves order and which maps maximal antichains of
A to maximal antichains of B. Given partial order P and Q, we say that P
regularly embeds into Q if the regular open algebra of P regularly embeds into
the regular open algebra of Q. We make use of the following classical fact.

Theorem 1.2. If A and B are complete Boolean algebras and there is a B-
name τ for a V -generic filter G ⊂ A such that [[ǎ ∈ τ ]]B is nonzero for every
element of A, then A regularly embeds into B.

Proof. For each a ∈ A, let π(a) = [[ǎ ∈ τ ]]B .

The following facts appear in the appendix of [6].

Theorem 1.3. If P regularly embeds into Q, then there is a P -name τ for a
partial order such that Q and P ∗ τ are forcing-isomorphic.

Theorem 1.4. If M is a model of ZFC, δ is a limit ordinal of M and x, y are
sets such that {x, y} exists in a generic extension of M by a partial order in
V M

δ , then x exists in a generic extension of M [y] by a partial order in V
M [y]
δ .
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We refer the reader to [6] for the definition of the stationary tower Q<δ, as
well as its basic properties. We will use the following standard facts. For the
first of these, see Fact 2.7.3 of [6] and the paragraph which follows it. For the
second, see Theorem 2.7.7 of [6]. For the third, see Lemma 2.7.14 of [6] and the
paragraph which precedes it.

Theorem 1.5. If δ is a strongly inaccessible cardinal, then forcing with Q<δ

makes every ordinal less than δ countable.

Theorem 1.6. If δ is a Woodin cardinal, G ⊂ Q<δ is a V -generic filter and
j : V → M is the associated elementary embedding, then M is closed under
ω-sequences in V [G].

Theorem 1.7. If γ is a Woodin cardinal then there is a stationary set aγ

consisting of countable subsets of Vγ+1 such that for every strongly inaccessible
cardinal η > γ, the inclusion map regularly embeds Q<γ into the restriction of
Q<η to conditions b ≤ aγ .

We will use the notation aγ for the condition referred to in the statement of
Theorem 1.7. Theorem 1.7 has a converse: for η and γ as in the statement of
the theorem, aγ is in the generic filter for Q<η if and only if the restriction of
the generic filter to Q<γ is generic (see Lemma 2.7.16 of [6]).

2 Slow clubs

Suppose that M is a model of ZF, and let δ be an ordinal in M . An M -slow
club through δ is a club D ⊂ δ with the property that for each limit element β
of D, D intersects every club subset of β in M . When β has cofinality ω in the
model containing D, the intersection requirement in the notion of slow club is
nontrivial. Given a set (or class) of ordinals S, we say that a limit ordinal γ is
1-S-Mahlo if S ∩ γ is a stationary subset of γ, and, for any positive n ∈ ω, γ is
(n + 1)-S-Mahlo if the set of n-S-Mahlo ordinals in S below γ is stationary. If
D is an M -slow club contained in a set S in M , then every limit point of D is
1-S-Mahlo in M . For any stationary set S consisting of limit ordinals, the set of
γ ∈ S which are not 1-S-Mahlo is also stationary, since for any club C ⊂ sup(S)
consisting of limit ordinals, the first limit point of C in S is such a γ. This puts
some limitations on methods for adding slow clubs.

2.1 Definition. Suppose that δ is a limit ordinal and S is a subset of δ. We let
SC(δ, S) be the partial order consisting of triples (c, e, f) such that

• c is a finite subset of S;

• e is a finite set of closed, bounded intervals of δ disjoint from c;

• f is a regressive function whose domain is the set of α ∈ c which are not
1-S-Mahlo;

• (f(α), α) ∩ c = ∅ for each α ∈ dom(f).
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Given (c, e, f), (b, d, g) in SC(δ, S), (c, e, f) ≤ (b, d, g) if b ⊂ c, d ⊂ e and g ⊂ f .

The partial order SC(δ, S) has cardinality δ. Fact 2.2 below shows that if S
is cofinal in δ and G ⊂ SC(δ, S) is a V -generic filter, then

CG =
⋃
{c | (c, e, f) ∈ G}

is an unbounded subset of δ (we call CG the generic club added by SC(δ, S)).
Fact 2.3 shows that CG is closed. Together they show that CG is a V -slow
club subset of δ when S is cofinal in δ; moreover, they show that for each limit
element β of CG, CG ∩ β intersects every cofinal subset of β ∩ S in the ground
model. By Fact 2.2 and the definition of SC(δ, S), for each γ ∈ CG, γ is a limit
point of CG if and only if γ is 1-S-Mahlo in V .

2.2 Fact. Let (c, e, f) be a condition in SC(δ, S) and let γ be any element of

S \ (
⋃

e ∪
⋃
{(f(α), α) : α ∈ dom(f)}).

If γ is 1-S-Mahlo, then (c ∪ {γ}, e, f) ∈ SC(δ, S) and (c ∪ {γ}, e, f) ≤ (c, e, f).
If γ is not 1-S-Mahlo, then (c ∪ {γ}, e, f ∪ {(γ, max(c ∩ γ))}) ∈ SC(δ, S) and

(c ∪ {γ}, e, f ∪ {(γ, max(c ∩ γ))}) ≤ (c, e, f).

2.3 Fact. If (c, e, f) is a condition in SC(δ, S) and γ ∈ δ \ c is a limit ordinal,
then

(c, e ∪ {[max(c ∩ γ) + 1, γ]}, f) ≤ (c, e, f).

Fact 2.4 below shows that the forcing SC(δ, S) factors at each 1-S-Mahlo
ordinal in S below δ. We will use this fact to demonstrate the homogeneity of
various forcings considered in this paper. It also shows that if δ is a regular
cardinal and 2-S-Mahlo, then SC(δ, S) preserves the regularity of δ, since, in
this case, for every dense D ⊂ SC(δ, S) there will be club many γ < δ such that
D ∩ SC(γ, S ∩ γ) is dense in SC(γ, S ∩ γ).

2.4 Fact. For any condition (c, e, f) ∈ SC(δ, S), and any 1-S-Mahlo α ∈ c, the
partial order SC(δ, S) below (c, e, f) is isomorphic to the partial order

SC(α, S ∩ α)× SC(δ, S \ (α + 1))

below the condition

((c ∩ α, {I ∈ e | I ⊂ α}, f ∩ αα), (c \ (α + 1), {I ∈ e | I ∩ α = ∅}, f \ αα)).

Lemma 2.5 below shows that when δ is a regular cardinal and 2-S-Mahlo,
every set of ordinals of cardinality less than δ in the SC(δ, S)-extension is added
by an initial segment of the partial order. It follows that forcing with SC(δ, S)
makes CH hold when δ is strongly inaccessible and 2-S-Mahlo, since Lemma 2.6
implies that δ is the ω1 of such an extension.

4



Lemma 2.5. Suppose that δ is a regular cardinal, S ⊂ δ and δ is 2-S-Mahlo.
Let G ⊂ SC(δ, S) be V -generic. Then for every element x of [Ord]<δ in V [G],
there exists a limit member γ of CG such that G∩SC(γ, S ∩γ) is V -generic for
SC(γ, S ∩ γ), and x ∈ V [G ∩ SC(γ, S ∩ γ)].

Proof. Fix ξ < δ and let τα (α < ξ) be SC(δ, S)-names for ordinals. For each
α < ξ, let Tα be the set of pairs (p, β) such that p ∈ SC(δ, S) and p°τα = β̌.
Let q = (c, e, f) be a condition in SC(δ, S). Let θ be a regular cardinal greater
than 2δ and let Z be an elementary submodel of H(θ) such that

{δ, S, q, 〈Tα : α < ξ〉} ∈ Z,

Z ∩δ ∈ S and Z ∩ δ is 1-S-Mahlo. Let γ = Z ∩ δ. Then (c∪{γ}, e, f) ≤ (c, e, f),
and, by Lemma 2.4, (c∪{γ}, e, f) forces that the restriction of the generic filter
to SC(γ, S ∩ γ) will be generic. Furthermore, for each α < ξ,

{p ∈ SC(γ, S ∩ γ) | ∃β (β̌, p) ∈ Tα}

is predense in SC(γ, S ∩ γ) below (c, e, f). The lemma then follows by Fact
2.4.

It follows from Lemma 2.5 that if δ is a regular cardinal and 2-S-Mahlo, then
δ has uncountable cofinality in the SC(δ, S) extension. The following lemma
is a sort of converse. Applying Theorem 1.1, it also shows that in many cases
SC(γ, S) is forcing-equivalent to Coll(ω, γ). It follows that SC(δ, S) makes δ
countable if S consists of regular cardinals and δ is a limit of 1-S-Mahlo ordinals,
but not 2-S-Mahlo.

Lemma 2.6. Let γ be an ordinal, let S be a cofinal subset of γ, and suppose
that γ is not a limit of 1-S-Mahlo members of S. Then forcing with SC(γ, S)
makes cof(γ)V countable.

Proof. Let β be the supremum of the 1-S-Mahlo members of S below δ (let
β = 0 if this set is empty), and let {Tα : α < cof(γ)} be a partition of S into
cofinal sets. The generic club given by SC(γ, S) will have ordertype ω in the
interval (β, γ), and will intersect each Tα, inducing a surjection from ω onto
cof(γ)V .

The following lemma gives a homogeneity property of SC(δ, S) for suitable
δ and S.

Lemma 2.7. Suppose that δ is a cardinal, and that S is a set of regular cardinals
below δ such that δ is a limit of 1-S-Mahlo members of S. Let p and q be
conditions in SC(δ, S). Then there exist conditions p′ ≤ p and q′ ≤ q such that
the restrictions of SC(δ, S) below p′ and q′ are forcing-equivalent.

Proof. Let p = (b, d, g) and q = (c, e, f). Let γ ∈ S be 1-S-Mahlo but not a limit
of 1-S-Mahlo ordinals, such that γ is larger than every member of b∪c∪⋃

d∪⋃
e.
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Let p′ = (b ∪ {γ}, d, g) and let q′ = (c ∪ {γ}, e, f). Then SC(δ, S) below the
condition p′ is isomorphic to

SC(γ, S ∩ γ)× SC(δ, S \ (γ + 1))

below the condition
((b, d, g), (∅, ∅, ∅))

and SC(δ, S) below the condition q′ is isomorphic to

SC(γ, S ∩ γ)× SC(δ, S \ (γ + 1))

below the condition
((c, e, f), (∅, ∅, ∅)).

By Lemma 2.6, SC(γ, S ∩ γ) below (b, d, g) and SC(γ, S ∩ γ) below (c, e, f) are
both forcing-equivalent to Coll(ω, γ).

3 Slow clubs and the stationary tower

Given n ∈ ω and a cardinal δ, we say that δ is n-Mahlo-Woodin if it is n-W -
Mahlo, where W denotes the class of Woodin cardinals. Recall that a stationary
limit of regular cardinals is regular, so a stationary limit of Woodin cardinals
is Woodin. The hypotheses of Theorem 3.1 below imply that ωV

1 is a 2-Mahlo-
Woodin cardinal in M .

Our main application of slow clubs is the construction of QM
<δ-generic filters

for suitable inner models M .

Theorem 3.1. Suppose that M is a model of ZFC and D ⊂ ωV
1 is an M -slow

club contained in the Woodin cardinals of M . Then there exists an M -generic
filter for QM

<ωV
1

containing any given condition.

Proof of Theorem 3.1. Let p be a condition in QM
<ωV

1
. Removing an initial seg-

ment of D if necessary, we may assume that p ∈ QM
<γ0

, where γ0 is the least
element of D. For each γ ∈ D, let Gγ be the set of g such that

• g is an M -generic filter for QM
<γ containing p;

• for all η ∈ D ∩ γ, g ∩ V M
η is M -generic for QM

<η.

Since ωV
1 is a strongly inaccessible cardinal in M , Gγ0 is nonempty.

Let T be the tree on
⋃

γ∈D Gγ ordered by: g ≥ h whenever g ∈ Gγ and
h ∈ Gη, for some γ, η in D, and g ∩ V M

η = h. Theorems 1.3 and 1.7 (and the
facts that ωV

1 is strongly inaccessible in M and D consists of Woodin cardinals
of M) implies that every member of G has proper extensions in T . The theorem
follows from the fact that T is countably closed, and the fact that the union of
each uncountable branch through T is an M -generic filter for QM

<ωV
1

.
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To see that T is countably closed, note that if γ is a limit point of D, then
each predense subset of QM

<γ in M has predense intersection with QM
<η for club

many η < γ, relative to the set of strongly inaccessible cardinals below γ, and
thus with QM

<η for some η ∈ γ ∩D. It follows that if g is a subset of QM
<γ such

that g∩QM
<η is an M -generic filter for all η ∈ γ∩D, then g is also an M -generic

filter. Similarly, each predense subset of QM
<ωV

1
in M has predense intersection

with QM
<η for (relative) club many η < ωV

1 , and thus with QM
<η for some η ∈ D.

It follows that if G is a subset of QM
<ωV

1
such that G∩QM

<η is an M -generic filter
for all η ∈ D, then G is also an M -generic filter.

It follows from Theorem 3.1 that Q<δ regularly embeds into any forcing
which collapses δ to be ω1 and adds a V -slow club through the Woodin cardinals
below δ. The results of the previous section show that that SC(δ,W ) is such a
forcing when W is the set of Woodin cardinals below a 2-Mahlo-Woodin cardinal
δ.

The proof of Theorem 3.2 below is a modification of the proof of Theorem
3.1. The new element of the proof is the use of Theorem 1.4 to make sure
that the reals of V [G] are all in V [H]. As in the proof of Theorem 3.2, the
construction follows the generic club G exactly in order to use the fact that G
is V -slow. So for each real of V [G] the construction has to wait until it reaches
a sufficiently large element of W . We work with a tail of the Woodin cardinals
below δ in order to apply the theorem in the proof of Theorem 3.4. We use the
notion of nice names from [5] (see page 208), simply to restrict to a sufficiently
large set-sized collection of names.

Theorem 3.2. Let δ be a 2-Mahlo-Woodin cardinal, let χ be an element of δ, let
W denote the Woodin cardinals of V in the interval (χ, δ), and let G ⊂ SC(δ,W )
be a V -generic filter. Then there exists in V [G] a V -generic filter H ⊂ QV

<δ,
containing any given condition, such that V [H] contains the reals of V [G].

Proof. Let p be a condition in QV
<δ and let γ0 be the least γ ∈ W with p ∈ Q<γ .

Let W 0
1 be the set of 1-Mahlo-Woodin cardinals in (γ0, δ) which are not limits

of 1-Mahlo-Woodin cardinals. Let 〈τξ : ξ < δ〉 be a listing in V of all nice
SC(γ,W ∩ γ)-names for reals, for all 1-Mahlo-Woodin γ < δ.

For each α < β in W 0
1 , let Nα,β be the set of nice SC(β,W ∩ β)-names σ

for which it is forced that if α and β are in CG, then the realization of σ is a
V -generic filter h ⊂ Q<α such that

• h ∩Q<γ0 is a V -generic filter containing p.

• h ∩Q<γ is V -generic for all γ ∈ (CG ∩ α) \ γ0.

Fix (suppressed) wellorders of the sets Nα,β .
Let C∗ be the set of limit points of CG. Working in V [G], recursively define

a sequence 〈hα : α ∈ C∗ \ (γ0 + 1)〉 such that

• hmin(C∗\(γ0+1)) = ∅;
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• if γ is a limit element of C∗ \ (γ0 +1), α is the least element of C∗ greater
than γ and β is the least element of C∗ greater than α, then hα is the
realization by G of the least element of Nα,β whose realization h extends
hγ and has the realization of τξ in V [h], where ξ < δ is least such that

– τξ is an SC(η, W ∩ η)-name for a real, for some η ∈ C∗ ∩ (γ +1), and

– the realization of τξ by hγ is not in V [hγ ],

if such an ξ exists, otherwise hα is the realization of the least element of
Nα,β whose realization h extends hγ ;

• if γ is not a limit element of C∗ \ (γ0 + 1), α is the least element of C∗

greater than γ and β is the least element of C∗ greater than α, then hα is
the realization of the least element of Nα,β which extends hγ ;

• if α is a limit element of C∗ \ (γ0 + 1), then hα =
⋃

β∈α∩C∗ hβ .

It follows from this construction that whenever γ is a limit element of the set
C∗\(γ0+1), hγ ∈ V [G∩SC(γ,W ∩γ)]. Let H =

⋃{hα : α ∈ C∗\(γ0+1)}. Let
E be the set of ξ < δ such that τξ is an SC(η, W ∩ η)-name, for some ξ ∈ C∗.
By Lemma 2.5, every real in V [G] is the realization of τξ for some ξ ∈ E. If
ξ were the least ζ ∈ E such that the realization of τζ were not in V [H], then,
since ξ is countable in V [H] and δ is uncountable, there would be some limit
element γ of C∗ \ (γ0 + 1) such that ξ is the least ζ < δ such that

• τζ is an SC(η,W ∩ η)-name for a real, for some η ∈ C∗ ∩ (γ + 1), and

• the realization of τζ by hγ is not in V [hγ ].

Then the realization of τξ is in V [hα] by the construction above (and Theorem
1.4), where α is the least element of C∗ above γ.

Theorem 3.3 below is the main original result of this paper.

Theorem 3.3. Suppose that δ is a 2-Mahlo-Woodin cardinal, and let W de-
note the set of Woodin cardinals below δ. Then the partial order SC(δ,W ) is
homogeneous, and in the extension by this partial order there is an elementary
embedding from V into a model M which is closed under ω-sequences in the
forcing extension.

Proof. The partial order SC(δ,W ) is homogeneous by Lemma 2.7. By Lemma
2.5, every countable set of ordinals in any forcing extension of V by SC(δ,W ) is
in a model of the form V [x] for some real in the extension. By Lemma 3.2, in any
SC(δ,W ) extension there is a V -generic filter H ⊂ QV

<δ such that V [H] contains
all the reals of the SC(δ,W )-extension, and therefore all initial segments of the
SC(δ,W )-generic filter. By Theorem 1.6, the image model M of the embedding
induced by H is ω-closed in V [H], which is ω-closed in the SC(δ,W )-extension,
which means that M is ω-closed in this extension.

Theorem 3.2 has the following additional corollary.
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Theorem 3.4. Let δ be a 2-Mahlo-Woodin cardinal, let W denote the Woodin
cardinals of V below δ, and let G ⊂ SC(δ,W ) be a V -generic filter. Then every
Σ2

1 sentence which can be forced by a partial order in Vδ holds in V [G].

Proof. Let P be a partial order in Vδ forcing a Σ2
1 sentence ∃X ⊂ Rφ(X), where

all quantifiers in φ range over the reals. Let κ ∈ CG be 1-Mahlo-Woodin and
not a limit of 1-Mahlo-Woodin cardinals. Then by Lemma 2.6 and Fact 2.4
there is a V -generic filter h ⊂ P in V [G∩SC(κ, W ∩κ)]. Let X be a set of reals
satisfying φ in V [h]. By [2], the set of Woodin cardinals in the interval (κ, δ) is
the same in V [h], V and V [G ∩ SC(κ,W ∩ κ)]. By Fact 2.4, CG \ (κ + 1) is a
V [h]-generic club for SC(δ,W \ (κ + 1)). By Theorem 3.2 there exists in V [G]
a V [h]-generic filter H ⊂ QV [h]

<δ such that V [h][H] contains the reals of V [G].
Letting j : V [h] → M be the embedding induced by H, it follows from Theorem
1.6 that j(X) satisfies φ in V [G].

4 Σ2
2 maximality

In this final section we give a proof of Woodin’s Σ2
2 maximality theorem. The

theorem is presented in various forms in Corollaries 4.11, 4.12 and 4.14. Most of
the work goes into the proof of Theorem 4.10, which is a variant of the proof of
Woodin’s Σ2

1 absoluteness theorem. The proof of Theorem 4.10 in turn requires
setting up some machinery. We start by discussing symmetric extensions.

Given a strong limit cardinal δ of a ZFC model M , we take a δ-symmetric
extension of M to be the least model M(R∗) of ZF containing M and a set of
reals R∗ with the properties that

• M(R∗) ∩ R = R∗;

• every member of R∗ is generic over M by a forcing in V M
δ ;

• the supremum of {ωL[x]
1 : x ∈ R∗} is δ.

We refer the reader to [3, 6] for more general definitions of symmetric extension.
We typically denote a symmetric extension of a model M by M(R∗), where R∗
is understood to be the reals of the extension. We note the following facts about
δ-symmetric extensions, for a strong limit cardinal δ: (1) any two δ-symmetric
extensions of M are elementarily equivalent (even with parameters from M);
(2) if M(R∗) is a δ-symmetric extension of M and P is a partial order in V M

δ

then M(R∗) is a δ-symmetric extension of an extension of M by P .
The following is Theorem 3.1.6 in [6].

Theorem 4.1. If δ is a Woodin limit of Woodin cardinals and G ⊂ Q<δ is a
V -generic filter, then V (RV [G]) is a δ-symmetric extension of V .

Whenever δ is a strongly inaccessible cardinal and G is V -generic for the
partial order Coll(ω, <δ), V (RV [G]) is a δ-symmetric extension of V . Fact 2.4
and Lemmas 2.5 and 2.6 show that the same is true for SC(δ, S), when δ is a
strongly inaccessible and 2-S-Mahlo, and S is a set of regular cardinals.
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Given a model M of ZF, an ordinal δ ∈ M and S ⊂ δ in M , let SL(M, δ, S)
be the partial order consisting of all M -generic filters for partial orders of the
form SC(γ, S∩γ)M , where γ ∈ S is 1-S-Mahlo in M , ordered by end-extension.
When g ∈ SL(M, δ, S) is an M -generic filter for SC(γ, S ∩ γ)M , we say that
the length of g is γ. Since filters for SC(δ, S) are uniquely determined by their
corresponding club sets, we sometimes identify a condition g in SL(M, δ, S) with
the set Cg ∪ {sup(Cg)}; so each condition in SL(M, δ, S) can be identified with
a closed, bounded subset of S.

The partial order SL(M, δ, S) is not ω-closed. However, it is a tree order-
ing, so if the set of 1-S-Mahlo γ ∈ S is cofinal in δ and δ is the ω1 of some
SL(M, δ, S)-extension, then there are no new countable sequences of ordinals in
this extension.

We let Add(1, δ) denote the forcing which adds a subset of δ by initial seg-
ments. The following lemma follows from Theorem 1.1, Fact 2.4, Lemmas 2.6
and 2.5, and genericity.

Lemma 4.2. Suppose that

• δ is a regular uncountable cardinal;

• S is a set of regular cardinals below δ and δ is 2-S-Mahlo;

• V (R∗) is a δ-symmetric extension of V ;

Then

• if D is a V (R∗)-generic club for SL(V, δ, S), then

– D is V -generic for SC(δ, S),

– R∗ ⊂ V [D],

– V (R∗)[D] = V [D];

• if (D, B) is V (R∗)-generic for SL(V, δ, S)×Add(1, δ), then

– B is V [D]-generic for Add(1, δ),

– V (R∗)[D][B] = V [D][B],

– V [D][B] is a generic extension of V by the partial order

SC(δ, S) ∗Add(1, δ).

• forcing with SL(V, δ, S) over V (R∗) does not collapse δ.

Proof. To see that D is V -generic for SC(δ, S), let E be a dense subset of
SC(δ, S) in V and let g be a condition in SL(V, δ, S). Let γ be the length of g.
By Fact 2.4, SC(δ, S) below ({γ}, ∅, ∅) is isomorphic to

SC(γ, S ∩ γ)× SC(δ, S \ (γ + 1)),

and we can let E′ be the image of E (below ({γ}, ∅, ∅)) in this product. Since g
is a generic filter for SC(γ, S∩γ), there is a condition (p, q) in E′ with p ∈ g. Let
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η > γ be 1-S-Mahlo in V with q ∈ SC(η, S ∩ (γ, η)), and let h be a V [g]-generic
filter for SC(η, S ∩ (γ, η)) with q ∈ h. Then the preimage of (g, h) in SC(δ, S)
is a condition in SL(V, δ, S) extending g meeting E. By genericity, then, D is
V -generic for SC(V, δ, S).

To see that R∗ ⊂ V [D], fix x ∈ R∗ and let g be a condition in SL(V, δ, S).
Let γ be the length of g. By Fact 2.4, SC(δ, S) below ({γ}, ∅, ∅) is isomorphic
to SC(γ, S ∩ γ)× SC(δ, S \ (γ + 1)). Let η < δ be the least 1-S-Mahlo cardinal
in S such that the pair {g, x} is V -generic for a partial order of cardinality η.
Let h be a V [g]-generic filter for SC(η, S ∩ (γ, η)) with x ∈ V [g][h]. Then the
preimage of (g, h) in SC(δ, S) is a condition g′ in SL(V, δ, S) extending g with
x ∈ V [g′]. By genericity, then, R∗ ⊂ V [D].

To see that B is V [D]-generic for Add(1, δ), let (g, a) be a condition in
SL(V, δ, S) × Add(1, δ), and let τ be an SC(δ, S)-name for a dense subset of
Add(1, δ). By the V -genericity of D, and Lemma 2.5, whenever D∗ is V (R∗)-
generic for SL(V, δ, S), every real in V [D∗] is in V [D∗ ∩ η] for some η < δ.
Therefore, there is a condition g′ below g in SL(V, δ, S) such that a ∈ V [g′] and
such that some extension b of a in V [g′] is forced by some condition in g′ to be
in the realization of τ . Then (g′, b) is below (g, a), and the V [D]-genericity of
B follows by the V (R∗)-genericity of (D,B).

By Lemma 2.5 and the V -genericity of D for SC(δ, S), forcing with SL(V, δ, S)
over V (R∗) does not collapse δ. This in turn implies that V (R∗)[D] = V [D],
and that forcing with SL(V, δ, S)×Add(1, δ) over V (R∗) does not collapse δ.

Lemmas 4.3 and 4.4 give homogeneity properties for partial orders of the
form SL(V, δ, S). We will use these facts in different contexts. In some sense,
the proof of Lemma 4.3 is more important that the statement of the lemma
itself. Lemma 4.3 uses Corollary 26.10 of [3], which (for our purposes) says that
if γ is a regular cardinal, G ⊂ Coll(ω, γ) is a V -generic filter, and x ∈ V [G] is
subset of V such that γ is uncountable in V [x], then there exists a V [x]-generic
filter H ⊂ Coll(ω, γ) such that V [G] = V [x][H]. (This is very similar to our
Theorems 1.1 and 1.3, but not quite the same.)

Lemma 4.3. Suppose that

• M is a model of ZFC;

• δ ≤ ωV
1 is an ordinal;

• P(α)M is countable for each α < δ;

• S ⊂ δ is a set of regular cardinals in M ;

• δ is a limit of 1-S-Mahlo ordinals in M .

Then SL(M, δ, S) is homogeneous.
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Proof. Let p, q be conditions in SL(M, δ, S) of length γp and γq, respectively.
Let γ be the least 1-S-Mahlo cardinal of M above both γp and γq such that the
pair {p, q} is M -generic for a partial order in V M

γ . Since SC(γ, S \ (γp + 1))
and SC(γ, S \ (γq + 1)) are both forcing-equivalent to Coll(ω, γ), there exist by
Corollary 26.10 of [3] and Lemma 2.4 conditions p′ ≤ p and q′ ≤ q of length γ
such that M [p′] = M [q′]. Then the restrictions of the partial order SL(M, δ, S)
below the conditions p′ and q′ are isomorphic.

Since SL(V, δ,W ) × Add(1, δ) is homogeneous (in the context of Lemma
4.3), Lemma 4.4 shows that the SL(V, δ,W ) × Add(1, δ)-extension of V (R∗) is
elementarily equivalent to the same extension defined over any forcing extension
of V by a partial order in Vδ. An analogous version of the lemma for the partial
order SC(δ,W ) ∗ Add(1, δ) follows from the existence of a 2-Mahlo-Woodin
cardinal. We will apply the lemma in an even stronger context.

Lemma 4.4. Suppose that

• δ is a strongly inaccessible limit of 1-Mahlo-Woodin cardinals;

• V (R∗) is a δ-symmetric extension of V ;

• P , Q are partial orders in Vδ;

• g ⊂ P and h ⊂ Q are V -generic filters in V (R∗);

• Wg is the set of Woodin cardinals of V [g] below δ;

• Wh is the set of Woodin cardinals of V [h] below δ;

• p is a condition in SL(V [g], δ,Wg);

• q is a condition in SL(V [h], δ,Wh).

Then there exist conditions p′ ≤ p and q′ ≤ q such that SL(V [g], δ,Wg) below
p′ and SL(V [h], δ,Wh) below q′ are isomorphic.

Proof. Let γp and γq be the respective lengths of p and q. Let γ be the least
1-S-Mahlo cardinal of V above both γp and γq such that the set {p, q, g, h}
is V -generic for a partial order in Vγ . Since SC(γ,Wg \ (γp + 1))V [g] and
SC(γ,W [h] \ (γq + 1))V [h] are both forcing-equivalent to Coll(ω, γ) in their
respective models, there exist by Corollary 26.10 of [3] and Lemma 2.4 condi-
tions p′ ≤ p in SL(V [g], δ,Wg) and q′ ≤ q in SL(V [h], δ,Wh) of length γ such
that V [g][p′] = V [h][q′]. Then since Wg\γ = Wh\γ, p′ and q′ are as desired.

Very roughly (i.e., suppressing a few issues for a moment), the last remaining
tool we need to develop for the proof of Theorem 4.10 is the ability to use a
V -slow club to construct a V (R∗)-generic filter for a partial order of the form
SL(V, δ, S) × Add(1, δ) such that the corresponding extension contains a given
V -generic filter for Q<δ. To do this there needs to be a name in V (R∗) which
gives rise to the desired filter. The filters g(d,b) defined below are initial segments
of the realization of this name.
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If V (R∗) is a δ-symmetric extension of V and B is V (R∗)-generic for Add(1, δ),
then, considering consecutive ω-sequences from δ and membership (or not) in
B, B lists all the members of R∗. We fix a recursive coding of elements of
H(ω1) by subsets of ω, and consider elements of H(ω1) coded by consecutive
ω-sequences from B in this fashion.

Suppose that δ is a limit of Woodin cardinals, and let W denote the set of
Woodin cardinals below δ. Given a condition (d, b) in SL(V, δ,W )×Add(1, δ), we
define a set g(d,b) and an ordinal η(d,b) such that either g(d,b) = ∅ and η(d,b) = 0
or g(d,b) is a V -generic filter g(d,b) in QV

<η(d,b)
and η(d,b) ∈ d. If d is empty, so

is g(d,b) (so η(d,b) = 0). Otherwise, η(d,b) and g(d,b) are defined as follows. Let
g0 = 0 and β0 = 0, and, for each limit element γ of d, if gη and βη are defined
for each η ∈ d ∩ γ, then let

gγ =
⋃
{gη : η ∈ d ∩ γ}

and βγ = sup{βη : η < γ}. If gγ is defined for each γ ∈ d, then g(d,b) = gmax(d)

and η(d,b) = max(d). For each γ ∈ (d ∪ {0}) \max(d), if gγ and βγ are defined,
let γ+ denote the least member of d above γ. Then we choose gγ+ and βγ+ (or
g(d,b)) in the following way.

• If some consecutive ω-sequence from b above γ∪βγ codes a V -generic filter
g ⊂ QV

<γ+ such that g ∩ QV
<γ = gγ , then let gγ+ be the first filter of this

type coded by a consecutive ω-sequence from b above γ ∪ βγ , and let βγ+

be supremum of the indices of this ω-sequence.

• If there is no such consecutive ω-sequence from b above γ ∪ βγ , then let
g(d,b) = gγ and η(d,b) = γ, and gγ+ and βγ+ are undefined.

If (d′, b′) ≤ (d, b) are conditions in SL(V, δ,W )×Add(1, δ), then g(d,b) ⊂ g(d′,b′)
(and indeed the construction just given for (d, b) is an initial segment of the
construction for (d′, b′)). The argument given in the proof of Theorem 3.1,
using the fact that d is an V -slow club, shows that g(d,b) is either ∅ or an V -
generic filter for QV

<η(d,b)
. We say that (d, b) is complete if either (d, b) is the

empty condition or
η(d,b) = sup(b) = max(d)

and every real coded by a consecutive ω-sequence from b is in V [g(d,b)].
The following lemma shows how to extend (d, b) in order to extend g(d,b).

Lemma 4.5. Suppose that

• M is a model of ZFC;

• δ is a 2-Mahlo-Woodin cardinal in M ;

• R∗ is the set of reals of V ;

• M(R∗) is a δ-symmetric extension of M ;

• W is the set of Woodin cardinals of M below δ;
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• (d, b) is a condition in SL(M, δ,W )×Add(1, δ);

• g is an M -generic filter for QM
< max(d) extending g(d,b) such that aγ ∈ g for

every γ ∈ d \ η(d,b).

Then there exists a b′ extending b such that g(d,b′) = g.

Proof. Clearly, if g(d,b) = g, we can let b′ = b. Otherwise, η(d,b) ∈ d \ {max(d)}
and there is no consecutive ω-sequence from b above η(d,b) ∪ {β(d,b)} coding an
M -generic filter g ⊂ QM

<γ0
such that g ∩QM

<η(d,b)
= gη(d,b) , where γ0 is the least

element of d above η(d,b). Let the first ω-sequence of b′ extending b above η(d,b)

be a real in M [g ∩ QM
<γ1

] coding g ∩ QM
<γ0

, where γ1 is the least element of d
above γ0. Then βγ0 = sup(b′).

For each γ ≥ γ0 in d, let the first ω-sequence of b′ above γ ∪ βγ be a real in
M [g ∩QM

<γ2
] coding g ∩QM

<γ1
, where γ1 is the least member of d above γ, and

γ2 is the least member of d above γ1. Then βγ1 = (γ ∪ βγ) + ω.
For limit members γ of d above γ0, βγ is the supremum of {βη : η < γ}.
Let these be the only elements of b′ \ b.

In the context we will be working in, the complete conditions are dense.

Lemma 4.6. Suppose that δ is a 2-Mahlo-Woodin cardinal in a model M of
ZFC, and M(R∗) is a δ-symmetric extension of M , where R∗ is the set of reals
in V . Let (d, b) be a condition in SL(M, δ,W )× Add(1, δ), where W is the set
of Woodin cardinals of M below δ. Then there is complete condition (d′, b′) in
SL(M, δ,W )×Add(1, δ) below (d, b).

Proof. By Theorem 3.1 and Lemma 4.5, we may assume that η(d,b) = max(d).
The set of reals coded by an ω-sequence from b is countable, so there is a real x
constructing all such reals. Let 〈γi : i ≤ ω〉 be a continuous, increasing sequence
of Woodin cardinals of M above max(d) ∪ sup(b) such that

1. γ0 is the least Woodin cardinal γ > max(d) ∪ sup(b) such that

• a ∈ QM
<γ ;

• the pair {g(d,b), x} exists in a generic extension of M by a partial
order of cardinality less than γ;

2. γω is the least 1-Mahlo-Woodin cardinal of M greater than γ0;

3. d ∪ {γi : i < ω} is M -generic for SC(γω,W ∩ γω);

Then let d′ = d ∪ {γi : i < ω} and let b′ be a subset of γω with the property
that

• b′ end-extends b;

• the first ω-sequence of b′ above max(d)∪ sup(b) is a real y0 coding an M -
generic filter g0 ⊂ Q<γ0 such that g0 ∩ V M

η(d,b)
= g(d,b), a ∈ g0, x ∈ M [g0],

and y0 exists in a generic extension of M by a partial order in V M
γ1

;
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• for all i ∈ ω, the first ω-sequence of b′ above γi is a real yi+1 coding an
M -generic filter gi+1 ⊂ Q<γi+1 such that gi+1 ∩ V M

γi
= gi, yi ∈ M [gi+1],

and yi+1 exists in a generic extension of M by a partial order in V M
γi+2

;

• all elements of b′ \ b are of the the form (max(d) ∪ sup(b)) + n or γi + n,
for some i, n in ω.

Then (d′, b′) is the desired condition.

If (D,B) is a filter contained in SL(V, δ,W )×Add(1, δ), we let

g(D,B) =
⋃
{g(d,b) | (d, b) ∈ (D,B)}.

Lemma 4.7 follows from Lemmas 4.2, 4.5 and 4.6.

Lemma 4.7. Suppose that δ is (in V ) a 2-Mahlo-Woodin cardinal. Let V (R∗)
be a δ-symmetric extension of V and let (D, B) be V (R∗)-generic for

SL(V, δ,W )×Add(1, δ).

Then δ = ω
V [D][B]
1 , g(D,B) is a V -generic filter for QV

<δ and RV [g(D,B)] = R∗.

Lemma 4.9 below is the main technical lemma for the proof of Theorem
4.10, showing that the genericity requirements for (D, B) don’t interfere with
the desired result for g(D,B). Lemma 4.9 in turn requires the following technical
lemma.

Lemma 4.8. Suppose that

• M is a model of ZFC;

• δ is a 2-Mahlo-Woodin cardinal in M ;

• R∗ is the set of reals in V ;

• M(R∗) is a δ-symmetric extension of M ;

• W is the set of Woodin cardinals of M below δ;

• (d, b) is a complete condition in SL(M, δ,W )×Add(1, δ),

• a is a condition in QM
<δ below aη(d,b) .

• ḋ and ḃ are ((Q<δ¹a)/Q<η(d,b))
M [g(d,b)]-names such that (ḋ, ḃ) is forced to

be a complete condition in SL(M, δ,W )×Add(1, δ) such that g(ḋ,ḃ) = g(d,b);

Then there exist continuous, increasing sequences

d∗ = 〈γi : i ≤ ω〉
and

d′ = 〈γ′i : i ≤ ω〉,
and sets b∗, b′ and g such that
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• γ0 = γ′0 is a Woodin cardinal of M greater than η(d,b) with a ∈ QM
<γ0

;

• γω = γ′ω is the least 1-Mahlo-Woodin cardinal of M above γ1;

• g is an M -generic filter contained in Q<γ0 extending g(d,b) with a in g;

• g decides all of ḋ and ḃ;

• d ∪ d∗ is M -generic for SC(γω,W ∩ γω);

• ḋg ∪ d′ is M -generic for SC(γω,W ∩ γω);

• M [d ∪ d∗] = M [ḋg ∪ d∗];

• (d∪d∗, b∗) is a complete condition in SL(M, δ,W )×Add(1, δ) below (d, b);

• (ḋg ∪ d′, b′) is a complete condition in SL(M, δ,W ) × Add(1, δ) below
(ḋg, ḃg);

• g(d∪d∗,b∗) = g(ḋg∪d′,b′) extends g.

Proof. Let γ0 be the least Woodin cardinal γ of M such that

• γ > η(d,b);

• a ∈ QM
<γ ;

• the antichains deciding ḋ and ḃ are all predense in QM
<γ

Let g be an M -generic filter for QM
<γ0

such that

• a ∈ g;

• g ∩QM
<η(d,b)

= g(d,b);

Let γ1 be the least γ > γ0 which is a Woodin cardinal in M such that the pair
{d, ḋg} is M -generic for a partial order in V M

γ . Let γω be the least 1-Mahlo-
Woodin cardinal of M above γ1. As in the proof of Lemma 4.3, there exist
sequences d∗ = 〈γi : i < ω〉 and d′ = 〈γ′i : i < ω〉 with supremum γω such that

• d ∪ d∗ is M -generic for SC(γω,W ∩ γω);

• ḋg ∪ d′ is M -generic for SC(γω,W ∩ γω);

• M [d ∪ d∗] = M [ḋg ∪ d′].

Let g∗ be a generic filter for QM
<γω

extending g such that aγ ∈ g∗ for every
γ ∈ d∗ ∪ d′. Then by Lemma 4.5, there exist b∗ and b′ such that

g(d∪d∗,b∗) = g(ḋg∪d′,b′) = g∗,

as desired.
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Lemma 4.9. Suppose that

• δ is a 2-Mahlo-Woodin cardinal in V ;

• G ⊂ Q<δ is a V -generic filter;

• (d, b) is a complete condition in SL(V, δ,W )×Add(1, δ);

• G ∩ Vη(d,b) = g(d,b);

• D is a dense open subset of SL(V, δ,W )×Add(1, δ) in V (RV [G]).

Then there exist a complete condition (d′, b′) in (SL(V, δ,W ) × Add(1, δ)) ∩ D
extending (d, b) such that η(d′,b′) > η(d,b) and G ∩ Vη(d′,b′) = g(d′,b′).

Proof. Let η denote η(d,b). If the lemma fails, there exist a condition a in

((Q<δ¹aη)/Q<η)V [G∩Vη]

(call this forcing Q) and Q-names ḃ, ḋ and Ḋ such that a forces over the extension
V [G ∩ Vη] that Ḋ is a dense open subset of the partial order

SL(V, δ,W )×Add(1, δ)

of V (RV [Ġ]) and (ḋ, ḃ) is a complete element of this partial order such that
G ∩ Vη = g(ḋG,ḃG) and such that for no complete condition (d+, b+) in

(SL(V, δ,W )×Add(1, δ)) ∩ Ḋ

are (d+, b+) ≤ (ḋ, ḃ) and G ∩ Vη(d+,b+)
= g(d+,b+).

Let d∗ = 〈γi : i ≤ ω〉, d′ = 〈γ′i : i ≤ ω〉, b∗, b′ and g be as in Lemma 4.8,
with respect to a. Let (D, B) be a V (RV [G])-generic filter for

SL(V, δ,W )×Add(1, δ)

extending (d∪d∗, b∗), and let H = g(D,B). Then by Lemma 4.7, RV [G] = RV [H].
By the choice of a, ḋ and ḃ, there is a dense open subset D′ of the partial
order SL(V, δ,W )×Add(1, δ) of V (RV [G]) such that for no complete condition
(d+, b+) in

(SL(V, δ,W )×Add(1, δ)) ∩ D′

are (d+, b+) ≤ (ḋg, ḃg) and H ∩ Vη(d+,b+)
= g(d+,b+).

Let (D′, B′) be the filter in SL(V, δ,W ) × Add(1, δ) of V (R∗) formed by
replacing (d∪d∗, b∗) with (ḋg∪d′, b′) (since M [d∪d∗] = M [ḋg∪d′], this replace-
ment sends conditions to conditions). Then (D′, B′) is V (R∗)-generic, and, by
the final three conclusions of Lemma 4.8, g(D′,B′) = H. By the genericity of
(D′, B′), there exists an η′ > η such that the restriction of D′ and B′ to η′ is a
complete pair (d+, b+) in D′, giving a contradiction.
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Given a model M of ZF and an ordinal δ of M , an M -fast club through δ
is a club C ⊂ δ with the property that for all limit elements β of C, C ∩ β is
eventually contained in every club subset of β in M .

The proof of Theorem 4.10 uses the full stationary tower P<κ (see [6], though
we give specific references below for the facts we need).

Theorem 4.10. Suppose that CH holds, δ is a measurable Woodin cardinal in
V , and κ > δ is a Woodin cardinal. Suppose that V (R∗) is a δ-symmetric
extension of V and (D, B) is V (R∗)-generic for SL(V, δ,W ) × Add(1, δ) as
defined in V (R∗). Then every Σ2

2 sentence which holds in V holds in V [D][B].

Proof. Let ∃X⊂R∀Y⊂Rφ(X,Y ) be a Σ2
2 sentence which holds in V . Any two

models of the form V [D][B] are elementarily equivalent, so it suffices to show
that ∃X⊂R ∀Y⊂Rφ(X,Y ) holds in some such model.

Let a be a condition in P<κ such that

• a forces that H ∩ Vδ will be V -generic for Q<δ, where H ⊂ P<κ is the
generic filter;

• a forces that j(ω1) = δ, where j is the embedding induced by H;

• a forces that P(δ)V has cardinality ℵ1 in V [H];

• a forces that there exists a V -fast club contained in the 1-Mahlo-Woodin
cardinals of V below δ.

The existence of such an a from a measurable Woodin cardinal is shown in [1]
and the proof of Theorem 3.2.1 in [6], modulo the fact that any normal measure
on δ concentrates on the 1-Mahlo-Woodin cardinals of V below δ (1-Mahlo-
Woodin cardinals themselves are not mentioned in [1, 6]). Let H ⊂ P<κ be a
V -generic filter with a ∈ H. Let j : V → M be the induced embedding. Then
G = H∩Vδ is V -generic for Q<δ. Let j′ : V → M ′ be the embedding induced by
G. Let C be the V -fast club added by H. Let ζ be the least strongly inaccessible
cardinal of V above δ. Let R∗ be the reals of M . Since CH holds in V and
j(ω1) = δ, R∗ = j(R) = j′(R), so R∗ is also the set of reals in M ′. Then Vζ [G]
is in M , and Vζ(R∗) is a symmetric extension of Vζ .

Since C ∈ M (see Theorem 2.5.8 of [6]) and C is a V -slow club through the 1-
Mahlo-Woodin cardinals of V below δ, M can construct filters in SL(V, δ,W )×
Add(1, δ) below any condition and meeting any ℵ1 many dense sets in V (R∗).
Working in M , construct a Vζ(R∗)-generic filter (D, B) for SL(Vζ , δ,W ) ×
Add(1, δ) such that g(D,B) = G. Since measurable Woodin cardinals are 2-
Mahlo-Woodin, this can be done by Lemma 4.9, using C to guarantee genericity
at limit states, and using the fact that P(δ)V has cardinality ℵ1 in M to ensure
genericity of the final filter.

Now let X0 be a set of reals in V such that V |= ∀Y⊂Rφ(X0, Y ). Then
j′(X0) = j(X0), so j(X0) ∈ V [G] ⊂ V [D][B], and M |= ∀Y ⊂ Rφ(j(X0), Y ).
Since P(δ)V [D][B] ⊂ M , V [D][B] |= ∀Y⊂Rφ(j(X0), Y ), and thus the sentence
∃X⊂R∀Y⊂Rφ(X,Y ) holds in V [D][B].
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It suffices in the statement of Theorem 4.10 (and the corollaries below) to
let δ be a full Woodin cardinal (in the terminology of [1]) and let κ be a Woodin
cardinal. The full Woodin cardinals constitute a measure one set for any normal
measure on a measurable Woodin cardinal.

By Lemma 4.4, we get that all Σ2
2 sentences holding in any extension by a

partial ordering in Vδ satisfying CH hold in V [D][B].

Corollary 4.11. Suppose that δ is a measurable Woodin cardinal in V , and
κ > δ is a Woodin cardinal. Suppose that V (R∗) is a δ-symmetric extension of
V and (D, B) is V (R∗)-generic for SL(V, δ,W )×Add(1, δ) as defined in V (R∗),
where W is the set of Woodin cardinals of V below δ. Then if φ is a Σ2

2 sentence
and CH + φ holds in a forcing extension of V by a partial order in Vδ, then φ
holds in V [D][B].

By Lemma 4.2, we get the following.

Corollary 4.12. Suppose that δ is a measurable Woodin cardinal in V , and
κ > δ is a Woodin cardinal. Let (D, B) be V -generic for SC(δ,W ) ∗Add(1, δ),
where W is the set of Woodin cardinals of V below δ. Then if φ is a Σ2

2 sentence
and CH + φ holds in a forcing extension of V by a partial order in Vδ, then φ
holds in V [D][B].

Theorem 4.10 and Corollary 4.11 continue to hold when a predicate for a
universally Baire set of reals is added to the language. Showing this requires
only that, in the proof of Theorem 4.10, if A is universally Baire set of reals
in V , then j(A) is equal to the reinterpretation of A in V [D][B]. This in turn
follows from the following theorem of Steel (proofs appear in [1, 6]).

Theorem 4.13. Let λ be a strongly inaccessible cardinal and let T be a a λ+-
weakly homogeneous tree. If S is the Martin-Solovay tree for the complement of
the projection of T and k is an elementary embedding derived from forcing with
Q<λ then the corresponding generic embedding k : V → M satisfies k(S) = S.

Corollary 4.14. Suppose that δ is a measurable Woodin cardinal, A is set of
reals such that A and R \A are δ+-weakly homogeneously Suslin and κ > δ is a
Woodin cardinal. Suppose that (D,B) is V -generic for SL(V, δ,W ) ∗Add(1, δ),
where W is the set of Woodin cardinals of V below δ. Then every Σ2

2-sentence
with an additional predicate for A which can be forced to hold by a partial order
in Vδ holds in V [D][B].

It is not possible to add a predicate for NSω1 to the language in Theorem
4.10. One way to see this is given in [7].

A natural question is whether the forcing Add(1, δ) is necessary to achieve
Σ2

2-maximality.
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