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Abstract

The Scott process of a relational structure M is the transfinite se-
quence of sets of formulas given by the Scott analysis of M , as introduced
in [18]. We present axioms for the class of Scott processes of infinite
structures in a relational vocabulary τ , and use them to give a proof of
an unpublished theorem of Leo Harrington from the 1970’s, showing that
a counterexample to Vaught’s Conjecture has models of cofinally many
Scott ranks below ω2. Our approach also gives a theorem of Harnik and
Makkai, showing that if there exists a counterexample to Vaught’s Con-
jecture, then there is a counterexample whose uncountable models all
have the same Lℵ1,ℵ0(τ)-theory, and which has a model of Scott rank
ω1. Moreover, we show that if φ is a sentence of Lℵ1,ℵ0(τ) giving rise to
a counterexample to Vaught’s Conjecture, then for every limit ordinal α
greater than the quantifier depth of φ and below ω2, φ has a model of
Scott rank α, and that for club many ordinals α below each of ω1 and
ω2, φ has at least two nonisomorphic models of Scott rank α, generalizing
a result of Sacks. We give a new proof using Scott processes of the fact
that if there is a counterexample to Vaught’s Conjecture in Lℵ1,ℵ0 then
there is one of quantifier depth ω. We show that Scott processes give rise
to a class of structures with the property if there is a counterexample to
Vaught’s Conjecture then there is one corresponding to a subclass of this
class. We show that if countable structures M and N have the same Scott
process though level δ, for δ a countable ordinal, and N has Scott rank δ,
then M is isomorphic to a quantifier-depth-δ-elementary submodel of N .
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1 Introduction

The Scott analysis of a structure (introduced in [18]) is a procedure which assigns
a transfinite sequence of infinitary formulas to the finite tuples of the structure.
In the case of countable structures, this process culminates in a sentence in
Lℵ1,ℵ0 which characterizes the structure up to isomorphism. This approach was
used by Morley [15] to show that if a sentence in Lℵ1,ℵ0 has more than ℵ1 many
countable models, then it has continuum many. Vaught’s Conjecture [20], which
remains open, is the corresponding statement with ℵ1 replaced by ℵ0.

In this paper we give axioms for the class of sequences of sets of formu-
las which arise in the Scott analysis of infinite structures in a given relational
vocabulary. For the case of countable structures, our axioms characterize this
class exactly (see Section 6). For uncountable cardinals, while the sequences
of formulas given by the Scott analysis satisfy our axioms, it can happen that
a sequence satisfying our axioms does not have a model. Remark 10.8 shows
this for a sequence of length ω2; we do not know in general if this can happen
for a sequence of cardinality ℵ1 (the material in Section 7 shows that it can-
not if we impose additional conditions on the sequence). We use this approach
to give new proofs of several classical results on counterexamples to Vaught’s
Conjecture, including an unpublished theorem of Leo Harrington saying that
the Scott ranks of the models of any counterexample to Vaught’s Conjecture in-
clude a cofinal subset of ω2 (in fact they include every limit ordinal of cardinality
ℵ1). Although our analysis concentrates on the scattered (Vaught’s Conjecture
counterexample) case, we expect that our approach will have applications to
the general study of infinitary model theory.
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We fix for this paper a relational vocabulary τ , and distinct variable symbols
{xn : n < ω}. For notational convenience, we assume that τ contains a 0-ary
relation symbol, as well as the binary symbol =, which is always interpreted
as equality. We refer the reader to [9, 8, 13] for the definition of the language
L∞,ℵ0(τ) and the languages Lκ,ℵ0(τ), for κ an infinite cardinal. In this paper,
all formulas will have only finitely many free variables. Formally, we consider
conjunctions and disjunctions of formulas as unordered, even when we write
them as indexed by an ordered set (in this way, for instance, a formula in
Lℵ2,ℵ0

(τ) becomes a member of Lℵ1,ℵ0
(τ) in a forcing extension in which the ω1

of the ground model is countable). We begin by recalling the standard definition
of the Scott process corresponding to an infinite τ -structure M , as introduced
in [18] (see also [8, 13]), slightly modified to require the sequences ā to consist
of distinct elements.

{Scottformdef}
1.1 Definition. Given an infinite τ -structure M over a relational vocabulary τ ,
we define for each finite ordered tuple ā = 〈a0, . . . , a|ā|−1〉 of distinct elements
of M and each ordinal α the |ā|-ary L∞,ℵ0

(τ)-formula φMā,α, recursively on α, as
follows.{Sdefone}

1. Each formula φMā,0 is the conjunction of all expressions of the two following
forms:

• R(xf(0), . . . , xf(k−1)), for R a k-ary relation symbol from τ and f a
function from k to |a|, such that M |= R(af(0), . . . , af(k−1)),

• ¬R(xf(0), . . . , xf(k−1)), for R a k-ary relation symbol from τ and f
a function from k to |a|, such that M |= ¬R(af(0), . . . , af(k−1)).

2. Each formula φMā,α+1 is the conjunction of the following three formulas:

• φMā,α,

•
∧
c∈M\{a0,...,a|ā|−1} ∃x|ā|φ

M
āa〈c〉,α,

• ∀x|ā| 6∈ {x0, . . . , x|a|−1}
∨
c∈M\{a0,...,a|ā|−1} φ

M
āa〈c〉,α.

3. For limit ordinals β, φMā,β =
∧
α<β φ

M
ā,α.

We call φMā,α the Scott formula of ā in M at level α.

For each infinite τ -structure M , each finite injective tuple ā from M and
each ordinal α, φMā,α ∈ L|M∪τ∪α|+,ℵ0

(τ) and M |= φMā,α(ā). The following well-
known fact can be proved by induction on α (see Theorem 3.5.2 of [8]). Again,
we refer the reader to [9, 8, 13] for the definition of the quantifier depth of a
formula, and note that each formula φMā,α as defined above has quantifier depth
exactly α.

{wkh}
Theorem 1.2. Given infinite τ -structures M and N , n ∈ ω, an ordinal α and
injective n-tuples ā from M and b̄ from N , φMā,α = φN

b̄,α
if and only if, for each

n-ary L∞,ω(τ) formula ψ of quantifier depth at most α, ā satisfies ψ in M if
and only if b̄ satisfies ψ in N .
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1.3 Definition. Given an infinite τ -structureM and an ordinal β, we let Φβ(M)
denote the set of all formulas of the form φMā,β , for ā a finite tuple of distinct
elements of M . We call the class-length sequence 〈Φα(M) : α ∈ Ord〉 the Scott
process of M .

This paper studies a proposed axiomatization of the class set-length initial
segments of Scott processes of infinite τ -structures. Section 2 introduces an
array of sets of formulas (properly) containing all the formulas appearing in the
Scott process of any infinite τ -structure, and vertical and horizontal projection
functions acting on this array. Section 3 introduces our general notion of a
Scott process (i.e., without regard to a fixed τ -structure). Section 4 develops
some of the basic consequences of this definition, showing the equivalence of
our definition with a natural variation, and Section 5 defines the rank of a
Scott process. The material in these two sections checks that Scott process in
general, as defined here, satisfy various basic properties of Scott processes of τ -
structures as defined by Scott. Section 6 shows that a Scott process of countable
length whose last level is countable is an initial segment of the Scott process
of some τ -structure. Theorem 6.11 shows that if countable structures M and
N have the same Scott process though level δ, for δ a countable ordinal, and
N has Scott rank δ, then M is isomorphic to a quantifier-depth-δ-elementary
substructure of N . Section 7 shows (following Harrington) how to build models
of cardinality ℵ1 for certain Scott processes (roughly, those corresponding to
Scott sentences). Section 8 develops more basic material on Scott processes,
studying the way they reflect finite blocks of existential quantifiers. Section 9
looks at extending Scott processes of limit length. Section 10 is largely disjoint
from the rest of the paper, and presents an argument showing that in some
cases (for instance, counterexamples to Vaught’s Conjecture in Lω1,ω(τ)) a Scott
process which exists in a forcing extension can be shown to exist in the ground
model. Put together, the material in Sections 7, 9 and 10 gives Harrington’s
theorem that a counterexample to Vaught’s Conjecture has models of cofinally
many Scott ranks below ω2. Section 11 produces a second class of models of
a counterexample to Vaught’s Conjecture, among other things. In Section 12
we analyze the isomorphism relation on Scott subprocesses, and use it to give a
new proof using Scott processes of the fact that if there is a counterexample to
Vaught’s Conjecture in Lℵ1,ℵ0 then there is one of quantifier depth ω. In Section
13 we define a class of structures corresponding to Scott processes (where the
infinitary formulas become points) and observe that if there is a counterexample
to Vaught’s Conjecture then there is one given by a subclass of this class.

The material in this paper was inspired by the slides of a talk given by David
Marker on Harrington’s theorem [14]. Our proof is different in some respects
from the proof outlined there. Marker’s talk outlines a recursion-theoretic ar-
gument, assuming the existence of a counterexample φ to Vaught’s Conjecture,
for finding a sentence in Lω2,ω which will be the Scott sentence of a model of
φ (of suitably high Scott rank) in a forcing extension collapsing ω1. This part
of the proof is replaced here by a forcing-absoluteness argument in Section 10
(essentially equivalent versions of these arguments appear in Section 1 of [6]).
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The remainder of Harrington’s proof builds a model of this Scott sentence. This
we do in Section 7, guided by the argument in Marker’s slides.

Other, different, proofs of Harrington’s theorem appear in [1] and [10].

2 Formulas and projections
{fpsec}

For each n ∈ ω, we let Xn denote the set {xm : m < n} and in denote the
identity function on Xn. For all m ≤ n in ω, we let Im,n denote the set of
injections from Xm into Xn.

We start by defining a class of formulas which contains every formula ap-
pearing in the Scott process of any infinite τ -structure (see Remark 2.5). The
sets Ψα defined below also contain formulas that do not appear in the Scott
process of any τ -structure (i.e., which are not satisfiable). This extra degree
of freedom is sometimes useful (for instance, in Definition 5.14); in any case
strengthening the definition to rule out such formulas would raise issues that we
would rather defer (see Remark 2.16, however). For the moment, the important
point is that the sets Ψβ (β ∈ Ord) are small enough to carry the projection
functions Vα,β and Hn

α defined below.
{psidef}

2.1 Definition. We define, for each ordinal α and each n ∈ ω, the sets Ψα and
Ψn
α, by recursion on α, as follows.

1. For each n ∈ ω, Ψn
0 is the set of all n-ary formulas which are conjunctions

consisting of, for each atomic τ -formula using variables from Xn, exactly
one of the formula and its negation, including an instance of the formula
xi = xi for each xi ∈ Xn, and an instance of xi 6= xj for each pair of
distinct xi, xj from Xn.

{nextstep}
2. For each ordinal α and each n ∈ ω, Ψn

α+1 is the set of formulas φ for which
there exist a formula φ′ ∈ Ψn

α and a nonempty E ⊆ Ψn+1
α such that φ is

the conjunction of φ′ with the following two formulas.

(a)
∧
ψ∈E ∃xnψ;

(b) ∀xn(xn 6∈ {x0, . . . , xn−1} →
∨
ψ∈E ψ).

{pathstage}
3. For each limit ordinal α and each n ∈ ω, Ψn

α is the set of conjunctions
which consist of exactly one formula ψβ from each Ψn

β , for β < α, satisfying
the following conditions.

(a) For each β < α, ψβ is the formula φ′ with respect to ψβ+1, as in
condition (2) (i.e., the unique conjunct of quantifier depth β).

(b) For each limit ordinal β < α, ψβ =
∧
{ψγ : γ < β}.

4. For each ordinal α, Ψα =
⋃
n∈ω Ψn

α.

We can think of the sets Ψn
α as forming an array, with the rows indexed by α

and the columns indexed by n. In the rest of this section we define the functions
Vα,β , which map between rows while preserving column rank, and the functions
Hn
α which map between columns while preserving row rank.
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{exactfree}
2.2 Remark. Each Ψα is a set of L∞,ω(τ) formulas of quantifier depth α, so
the sets Ψα are disjoint for distinct α. Similarly, for each n ∈ ω and each ordinal
α, Xn is the set of free variables for each formula in each Ψn

α.

2.3 Remark. As we require our vocabulary to contain a 0-ary relation as well
as the binary relation =, Ψn

α is nonempty for each ordinal α and each n ∈ ω.
{pdef}

2.4 Definition. For each ordinal α, and each formula φ in Ψα+1, we let E(φ)
denote the set E from condition (2) of Definition 2.1.

{mcont}
2.5 Remark. If M is a τ -structure, α is an ordinal and ā is a finite tuple of
distinct elements of M , then the Scott formula of ā in M at level α as defined

in Definition 1.1 (i.e., φMā,α) is an element of Ψ
|ā|
α . It follows that Φα(M) ⊆ Ψα.

The functions Vα,β , as defined below, are the vertical projection functions.
{vdef}

2.6 Definition. The functions Vα,β : Ψβ → Ψα, for all pairs of ordinals α ≤ β
are defined as follows.

1. Each function Vα,α is the identity function on Ψα.
{vstep}

2. For each ordinal α, and each φ ∈ Ψα+1, Vα,α+1(φ) is the first conjunct of
φ, i.e., the formula φ′ in condition (2) of Definition 2.1.

{pathcond}
3. For each limit ordinal β, each formula φ ∈ Ψβ , and each α < β, Vα,β(φ)

is the unique conjunct of φ in Ψα.{vdir0}
4. For all ordinals α < β, Vα,β+1 = Vα,β ◦ Vβ,β+1.

{leqvdef}
2.7 Definition. For formulas φ, ψ in

⋃
α∈Ord Ψα, we write φ ≤V ψ to mean

that Vα,β(ψ) = φ, where φ ∈ Ψα and ψ ∈ Ψβ .
{vdir}

2.8 Remark. Conditions (2) and (3) of Definition 2.1 imply the following
stronger version of condition (4) of Definition 2.6 : for all ordinals α ≤ β ≤ γ,
Vα,γ = Vα,β ◦ Vβ,γ .

{vone}
2.9 Remark. For all ordinals α ≤ β, each n ∈ ω, and each φ ∈ Ψn

β , Vα,β(φ) is
in Ψn

α, so φ and Vα,β(φ) have the same free variables.

2.10 Remark. Since the domains of the functions Vα,β are disjoint for distinct
β, one could drop β and simply write Vα (which would then be a definable
class-sized function from

⋃
β∈(Ord\α) Ψβ to Ψα). We retain both subscripts for

clarity.

We define the horizontal projection functions as follows.
{hdef}

2.11 Definition. The functions Hn
α , for each ordinal α and each n ∈ ω, are

defined recursively on α, as follows.

1. The domain of each Hn
α consists of all pairs (φ, j), where φ ∈ Ψn

α and, for
some m ≤ n, j ∈ Im,n.
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2. For all m ≤ n in ω, all formulas φ ∈ Ψn
0 , and all j ∈ Im,n, Hn

0 (φ, j) is the
conjunction of all conjuncts from φ whose variables are all in the range of
j, with these variables replaced by their j-preimages.{projfact}

3. For each ordinal α, all m ≤ n in ω, each φ ∈ Ψn
α+1, and each j ∈ Im,n,

Hn
α+1(φ, j) is the formula ψ ∈ Ψm

α+1 such that

Vα,α+1(ψ) = Hn
α(Vα,α+1(φ), j)

and E(ψ) = Hn+1
α [E(φ)× {j ∪ {(xm, y)} | y ∈ (Xn+1 \ range(j))}].

{hsix}
4. For each limit ordinal α, each m ≤ n in ω, each j ∈ Im,n and each φ ∈ Ψn

α,

Hn
α(φ, j) =

∧
{Hn

β (Vβ,α(φ), j) : β < α}.

2.12 Remark. Since the domains of the functions Hn
α are disjoint for distinct

pairs (α, n), one could drop α and n and simply write H. We retain them for
clarity. One could further streamline the notation used here by writing φ(j) for
Hn
β (φ, j) and φ(α) for Vα,β(φ), for appropriate α, β, j and n. Again, we will

stick to the more explicit notation in this paper.
{hidrem}

2.13 Remark. For all ordinals α, all m ≤ n in ω, all j ∈ Im,n and all φ ∈ Ψn
α,

Hn
α(φ, j) is an element of Ψm

α , and Hn
α(φ, in) = φ.

We leave it to the reader to verify (by induction on α) that if

• M is a τ -structure,

• α is an ordinal,

• m ≤ n are elements of ω,

• b̄ = 〈b0, . . . , bn−1〉 is a sequence of distinct elements of M ,

• j∗ : m→ n is an injection,

• ā is the sequence 〈bj∗(0), . . . , bj∗(m−1)〉 and

• j ∈ Im,n is such that j(xp) = xj∗(p) for each p < m,

then Hn
α(φM

b̄,α
, j) = φMā,α.

{tworems}
2.14 Remark. The following facts can be easily verified by induction on α.{permutevar}

1. For each ordinal α, each n ∈ ω, each φ ∈ Ψn
α and each j ∈ In,n, Hn

α(φ, j)
is the result of replacing each free variable in φ (i.e., each member of Xn)
with its j-preimage.{hcompose}

2. For each ordinal α, all m ≤ n ≤ p in ω, all φ ∈ Ψp
α, all j ∈ In,p and all

k ∈ Im,n, Hn
α(Hp

α(φ, j), k) = Hp
α(φ, j ◦ k).
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The following proposition shows that the vertical and horizontal projection
functions commute appropriately.

{proppartone}
Proposition 2.15. For all ordinal α ≤ β, all m ≤ n ∈ ω, all j ∈ Im,n, and all
φ ∈ Ψn

β,
Vα,β(Hn

β (φ, j)) = Hn
α(Vα,β(φ), j).

Proof. When α = β, both sides are equal to Hn
α(φ, j). When β = α + 1, the

proposition is part of condition (3) of Definition 2.11. When β is a limit ordinal,
it follows from condition (3) of Definition 2.6 and condition (4) of Definition
2.11. The remaining cases can be proved by induction on β, fixing α, using the
induction hypotheses for the pairs α, β and β, β + 1 at successor stages of the
form β + 1.

{nocut}
2.16 Remark. For all ordinals α, all n ∈ ω, all φ ∈ Ψn

α+1 appearing in the Scott
process of a τ -structure, and all ψ ∈ E(φ), Hn+1

α (ψ, in) = Vα,α+1(φ). Having
defined the horizontal and vertical projection functions, we could now thin the
sets Ψn

α by adding this as an additional requirement, but choose not to.

2.17 Example. Suppose that τ contains a single binary relation symbol R,
along with = and the 0-ary relation symbol S. The set Ψ0

0 then consists of the
sentences S and ¬S. The set Ψ1

0 contains four formulas, S∧R(x0, x0)∧x0 = x0,
S∧¬R(x0, x0)∧x0 = x0, ¬S∧R(x0, x0)∧x0 = x0 and ¬S∧¬R(x0, x0)∧x0 = x0.
Call the first two of these formulas ψ1

0 and φ1
0, respectively. Then

H1
0 (ψ1

0) = H1
0 (φ1

0) = S.

The set Ψ2
0 then contains 32 formulas, for instance,

S∧¬R(x0, x1)∧¬R(x1, x0)∧R(x0, x0)∧R(x1, x1)∧x0 6= x1∧x0 = x0∧x1 = x1

and

S∧¬R(x0, x1)∧¬R(x1, x0)∧R(x0, x0)∧¬R(x1, x1)∧x0 6= x1∧x0 = x0∧x1 = x1.

Call these formulas ψ2
0 and φ2

0, respectively. Then

H2
0 (ψ2

0 , i1) = ψ1
0

and
H2

0 (φ2
0, {(x0, x1)}) = φ1

0,

as defined in Definition 2.11. The set Ψ3
0 then contains 210 formulas, including

the conjunction of S with every instance of R(y, z) for y, z ∈ X3 (and the

requisite forumulas involving =). In general, Ψn
0 contains 2(n2+1) formulas.

The set Ψ0
1 contains the sentence

S ∧ (∃x0S ∧R(x0, x0) ∧ x0 = x0) ∧ (∀x0S ∧R(x0, x0) ∧ x0 = x0)

(omitting one instance each of ∧ and ∨, corresponding to a conjunction and
a disjunction of of size 1, and a subformula asserting that x0 is not in the
emptyset) and the conjunction of the three following formulas
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• S

• (∃x0S ∧R(x0, x0) ∧ x0 = x0) ∧ (∃x0S ∧ ¬R(x0, x0) ∧ x0 = x0)

• ∀x0(x0 6∈ ∅ → ((S ∧R(x0, x0) ∧ x0 = x0) ∨ (S ∧ ¬R(x0, x0) ∧ x0 = x0))).

Call these sentences ψ0
1 and φ0

1, respectively. Then E(ψ0
1) = {ψ1

0} and E(φ0
1) =

{ψ1
0 , φ

1
0}, as defined in Definition 2.4. The set Ψ1

1 contains the formulas

ψ1
0 ∧ (∃x1ψ

2
0) ∧ (∀x1 x1 6= x0 → ψ2

0)

and
ψ1

0 ∧ (∃x1φ
2
0) ∧ (∀x1 x1 6= x0 → φ2

0),

with the same omissions as ψ0
1 . Call these formulas ψ1

1 and φ1
1. Then E(ψ1

1) =
{ψ2

0}, E(φ1
1) = {φ2

0},
V0,1(ψ1

1) = V0,1(φ1
1) = ψ1

0 ,

H1
1 (ψ1

1 , i0) = ψ0
1 and H1

1 (φ1
1, i0) = φ0

1. Note that the function H1
1 changes the

bound variables (as well as the free variables).

3 Scott processes
{spsec}

This section introduces the central topic of the paper, the class of Scott processes
(for a relational vocabulary τ).

{prodef}
3.1 Definition. A Scott process is a sequence 〈Φα : α < δ〉, for some nonzero
ordinal δ (the length of the process), satisfying the following conditions, where
for each ordinal α and each n ∈ ω, Φnα denotes the set Φα ∩Ψn

α.

1. The Formula Conditions{formone}
(a) Each Φα is a nonempty subset of the corresponding set Ψα.{econtain}
(b) For each ordinal of the form α + 1 < δ, and each φ ∈ Φα+1, E(φ) is

a subset of Φα.{vfive}
(c) For all α < β < δ, Φα = Vα,β [Φβ ].{htwozero}
(d) For all α < δ, all n ∈ ω, all j ∈ In,n and all φ ∈ Φnα, Hn

α(φ, j) ∈ Φnα.{htwo}
(e) For all α < δ, and all m < n in ω, Φmα = Hn

α [Φnα × {im}].

2. The Coherence Conditions{hfour}
(a) For each ordinal of the form α + 1 below δ, each n ∈ ω and each

φ ∈ Φnα+1,

E(φ) = Vα,α+1[{ψ ∈ Φn+1
α+1 | H

n+1
α+1(ψ, in) = φ}].

{ppath}
(b) For all α < β < δ, all n ∈ ω and all φ ∈ Φnβ ,

E(Vα+1,β(φ)) ⊆ Vα,β [{ψ ∈ Φn+1
β | Hn+1

β (ψ, in) = φ}].
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{combine}
(c) For all α < δ, n,m in ω, φ ∈ Φnα and ψ ∈ Φmα , there exist θ ∈ Φn+m

α

and j ∈ Im,n+m such that φ = Hn+m
α (θ, in) and ψ = Hn+m

α (θ, j).

The sets Φα are called the levels of the Scott process.

3.2 Remark. Condition (2b) of Definition 3.1 includes the left to right inclusion
in condition (2a). We prefer the given formulation of condition (2a), as it gives
a better sense of the meaning of E(φ).

{succrem}
3.3 Remark. Proposition 4.4 shows that equality holds in condition (2b) of
Definition 3.1, for any Scott process, so that conditions (2a) and (2b) could
equivalently be replaced by condition (2b) alone with = in place of ⊆.

{jandi}
3.4 Remark. Conditions (1d) and (1e) of Definition 3.1 combine to give the
following: for all α < δ, all m ≤ n in ω and all j ∈ Im,n, Φmα = Hn

α [Φnα × {j}].

Proposition 3.5 shows that each level of a Scott process contains a unique
sentence.

{usent}
Proposition 3.5. Whenever 〈Φα : α < δ〉 is a Scott process, Φ0

α has a unique
element, for each α < δ.

Proof. That each Φ0
α is nonempty follows from conditions (1a) and (1e) of Def-

inition 3.1. Now, suppose that φ and ψ are elements of Φ0
α. By condition (2c)

of Definition 3.1, there exist θ ∈ Φ0
α and j ∈ I0,0 such that φ = H0

α(θ, i0) and
ψ = H0

α(θ, j). However, i0 is the unique element of I0,0, so φ = ψ.

It follows from Proposition 3.5 and conditions (1c), (1e) and (2a) of Defini-
tion 3.1 that whenever 〈Φα : α < δ〉 is a Scott process and α is an ordinal with
α+ 1 < δ, if φ is the unique element of Φ0

α+1, then E(φ) = Φ1
α.

4 Consequences of coherence
{ccsec}

In this section we prove some basic facts about Scott processes, primarily about
sets of the form E(φ) and the projection functions. The main result of the
section is Proposition 4.4, which was referred to in Remark 3.3. We fix for this
section a Scott process 〈Φα : α < δ〉.

Proposition 4.1 follows from Proposition 2.15 (i.e., the commutativity of
the horizontal and vertical projections). The failure of the reverse inclusion is
witnessed whenever a set of the form V −1

α,β [{ρ}] has distinct members φ1, φ2.
{propparttwo}

Proposition 4.1. For all α ≤ β < δ, all m ≤ n ∈ ω, all j ∈ Im,n, and all
φ ∈ Φmβ ,

Vα,β [{ψ ∈ Φnβ | Hn
β (ψ, j) = φ}] ⊆ {θ ∈ Φnα | Hn

α(θ, j) = Vα,β(φ)}.

The right-to-left inclusion in Proposition 4.2 says that every one-point ex-
tension of a formula φ at level α is a member of E(ψ), for some ψ ∈ V −1

α,α+1[φ].
This proposition is used in Remark 5.15.
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{proppartfour}
Proposition 4.2. For each ordinal of the form α+ 1 below δ, each n ∈ ω and
each φ ∈ Φnα,⋃

{E(ψ) | ψ ∈ V −1
α,α+1[{φ}]} = {θ ∈ Φn+1

α | Hn+1
α (θ, in) = φ}.

Proof. The left-to-right inclusion follows from Proposition 4.1 and condition
(2a) of Definition 3.1. The reverse inclusion follows from conditions (1c) and
(2a) of Definition 3.1, and Proposition 2.15.

Proposition 4.3 is the successor case of Proposition 4.4, modulo condition
(2a) of Definition 3.1.

{proppartthree}
Proposition 4.3. For all α ≤ β such that β + 1 < δ, and all φ ∈ Φβ+1,

E(Vα+1,β+1(φ)) = Vα,β [E(φ)].

Proof. Fix n ∈ ω such that φ ∈ Φnβ+1. For the forward direction, condition (2b)
of Definition 3.1 gives that

E(Vα+1,β+1(φ)) ⊆ Vα,β+1[{ψ ∈ Φn+1
β+1 | H

n+1
β+1 (ψ, in) = φ}],

which by condition (4) of Definition 2.6 is equal to

Vα,β [Vβ,β+1[{ψ ∈ Φn+1
β+1 | H

n+1
β+1 (ψ, in) = φ}]],

which by condition (2a) of Definition 3.1 is equal to Vα,β [E(φ)].
For the reverse direction we have from condition (2a) of Definition 3.1 that

Vα,β [E(φ)] is equal to

Vα,β [Vβ,β+1[{ψ ∈ Φn+1
β+1 | H

n+1
β+1 (ψ, in) = φ}]],

which by Remark 2.8 is equal to

Vα,α+1[Vα+1,β+1[{ψ ∈ Φn+1
β+1 | H

n+1
β+1 (ψ, in) = φ}]],

which by Proposition 4.1 is contained in

Vα,α+1[{θ ∈ Φn+1
α+1 | H

n+1
α+1(θ, in) = Vα+1,β+1(φ)}]],

which by condition (2a) of Definition 3.1 is equal to E(Vα+1,β+1(φ)).

We now show that the reverse inclusion of condition (2b) of Definition 3.1
holds for any Scott process.

{succcase}
Proposition 4.4. For all α < β < δ, for all n ∈ ω and all φ ∈ Φnβ,

E(Vα+1,β(φ)) = Vα,β [{ψ ∈ Φn+1
β | Hn+1

β (ψ, in) = φ}].

11



Proof. When β is a successor ordinal, this is Proposition 4.3, using condition
(2a) of Definition 3.1. For any β, the left-to-right inclusion is condition (2b) of
Definition 3.1. For the reverse inclusion,

Vα,β [{ψ ∈ Φn+1
β | Hn+1

β (ψ, in) = φ}]

is equal to
Vα,α+1[Vα+1,β [{ψ ∈ Φn+1

β | Hn+1
β (ψ, in) = φ}]]

by Remark 2.8, and this is contained in

Vα,α+1[{ψ ∈ Φn+1
α+1 | H

n+1
α+1(ψ, in) = Vα+1,β(φ)}],

by Proposition 4.1. Finally, this last term is equal to E(Vα+1,β(φ)) by condition
(2a) of Definition 3.1.

5 Ranks and Scott sentences
{rssec}

The Scott rank of a τ -structure M (see [8, 13], for instance) is the least ordinal α
such that Vα,α+1 is injective on Φα+1(M) (which we defined in the introduction).
If α is the Scott rank of M , then Vβ,β+1 injective on Φβ+1(M) for all β ≥ α as
well. Proposition 5.5 below verifies that Scott processes have the same property.
We isolate the successor step of the proof as a separate proposition. The second
part of the proposition is used in Remark 9.11.

{leastfixedalt}
Proposition 5.1. Let β be an ordinal, and let 〈Φα : α ≤ β + 2〉 be a Scott
process. If φ is an element of Φβ+1, then each of the following conditions implies
that V −1

β+1,β+2[{φ}] ∩ Φβ+2 is a singleton.
{lf1}

1. V −1
β,β+1[{ψ}] ∩ Φβ+1 is a singleton for each ψ ∈ E(φ).

{lf2}
2. There exists a ψ ∈ E(φ) such that V −1

β,β+2[{ψ}] ∩ Φβ+2 is a singleton.

Proof. Condition (1c) of Definition 3.1 implies that V −1
β+1,β+2[{φ}] ∩ Φβ+2 is

nonempty. Suppose that φ′ ∈ Φβ+2 is such that Vβ+1,β+2(φ′) = φ.
If (1) holds then, by Proposition 4.3, Vβ,β+1[E(φ′)] = E(φ). Since V −1

β,β+1[{ψ}]∩
Φβ+1 is a singleton for each ψ ∈ E(φ), this implies that E(φ′) = V −1

β,β+1[E(φ)]∩
Φβ+1, which uniquely determines φ′.

If (2) holds, let ψ′ be the unique member of V −1
β,β+2[{ψ}] ∩ Φβ+2. Since

ψ ∈ E(φ), Vβ+1,β+2(ψ′) is a member of E(φ′), by Proposition 4.3. Let n ∈ ω be
such that φ ∈ Φnβ+1. Then φ′ = Hn+1

β+2 (ψ′, in), by part (2a) of Definition 3.1.

Corollary 5.2 is a consequence of part (1) of Proposition 5.1, and Corollary
5.3 is a consequence of part (2) (using Proposition 4.3).

{fixeddown}
Corollary 5.2. Let β be an ordinal, and let 〈Φα : α ≤ β+2〉 be a Scott process.
Suppose that n ∈ ω is such that Vβ,β+1 is injective on Φn+1

β+1. Then Vβ+1,β+2 is
injective on Φnβ+2.
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{fixedup}
Corollary 5.3. Let β and δ be an ordinals, with δ ≥ β + 2, and let

〈Φα : α ≤ δ〉

be a Scott process. Suppose that φ ∈ Φβ+1 and ψ ∈ E(φ) are such that
V −1
β,δ [{ψ}] ∩ Vδ is a singleton. Then V −1

β+1,δ[{φ}] ∩ Φδ is a singleton.

5.4 Remark. It is natural to ask whether part (1) of Proposition 5.1 has a
converse, in the sense that if 〈Φα : α ≤ β + 1〉 is a Scott process and φ ∈ Φβ+1

and ψ ∈ E(φ) are such that V −1
β,β+1[{ψ}] has at least two members then there

must exist a set Φβ+2 such that 〈Φα : α ≤ β + 2〉 is a Scott process and
V −1
β+1,β+2[{φ}] is not a singleton. This is not the case in general, however, as by

Proposition 3.5, each function of the form Vα,α+1�Φ0
α+1 is always injective.

{leastfixed}
Proposition 5.5. If 〈Φα : α < δ〉 is a Scott process, β < γ are ordinals with
γ + 1 < δ, and Vβ,β+1�Φβ+1 is injective, then Vγ,γ+1�Φγ+1 is injective.

Proof. Letting η be such that γ = β+ η, we prove the proposition by induction
on η, for all β and δ simultaneously. Applying the induction hypotheses, the
limit case follows from Remark 2.8, and the successor case follows from part (1)
of Proposition 5.1 (and also from Corollary 5.2).

5.6 Definition. The rank of a Scott process 〈Φα : α < δ〉 is the least β such
that Vβ,β+1�Φβ+1 is injective, if such a β exists, and undefined otherwise. We
say that a Scott processes is terminating (or terminates) if its rank is defined,
and nonterminating otherwise.

The rank of (any sufficiently long set-sized initial segment of) the Scott
process of a τ -structure M is the same then as the Scott rank of M .

5.7 Remark. Suppose that β and γ are ordinals, and n ∈ ω is such that
γ > β + n+ 1. Suppose that 〈Φα : α < γ〉 is a Scott process, and that Vβ,β+1 is
injective on Φmβ+1, for all m > n in ω. By Corollary 5.2, the rank of 〈Φα : α < γ〉
is at most β + n (since each Φ0

α is a singleton, Vα,α+1�Φ0
α+1 is injective for all

α).

In the following definition, j can equivalently be replaced with in, by condi-
tion (1d) of Definition 3.1.

{beyonddef}
5.8 Definition. Let β and γ be ordinals such that γ > β + 1, and let

〈Φα : α < γ〉

be a Scott process. Let n be an element of ω, and let φ be an element of Φnβ . We
say that the Scott process 〈Φα : α < γ〉 is injective beyond φ if for all m ∈ ω \n,
all j ∈ In,m and all ψ ∈ Φmβ such that φ = Hm

β (ψ, j), V −1
β,β+1[{ψ}] ∩ Φβ+1 is a

singleton.
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{preoneextension}
5.9 Remark. Let β < γ be ordinals, and let 〈Φα : α ≤ γ〉 be a Scott process.
Let n be an element of ω, and let φ ∈ Φnβ be such that 〈Φα : α < γ〉 is injective
beyond φ. Applying part (1) of Proposition 5.1, one can show by induction that
for all δ ∈ [β, γ],

• V −1
β,δ [{φ}] ∩ Φδ is a singleton;

• if δ < γ then 〈Φα : α ≤ δ〉 is injective beyond the unique member of
V −1
β,δ [{φ}];

• for all m ∈ ω \ n, all j ∈ In,m and all ψ ∈ Φmβ such that

φ = Hm
β (ψ, j),

V −1
β,δ [{ψ}] ∩ Φδ is a singleton.

{oneextension}
5.10 Remark. Let β be an ordinal, and n an element of ω. Suppose that

〈Φα : α ≤ β + 1〉

is a Scott process, and that φ ∈ Φnβ is such that 〈Φα : α ≤ β + 1〉 is injective
beyond φ. The proof of Scott’s Isomorphism Theorem (Theorem 2.4.15 of [13];
using ā in place of ∅ at stage 0) shows that for any two countable τ -structures
M and N whose Scott processes agree with 〈Φα : α ≤ β+ 1〉 though level β+ 1,
if ā is an n-tuple from M and b̄ is an n-tuple from N , each satisfying φ in their
respective models, then there is an isomorphism of M and N sending ā to b̄.
Alternately, one can show that for each ordinal γ > β + 1, there is a unique
Scott process of length γ extending β, using either Remark 5.9 or Proposition
9.3.

{oneextension2}
5.11 Remark. In the situation of Definition 5.8, 〈Φα : α ≤ β+1〉 need not have
rank β. To see this, consider the Scott process of a countably infinite undirected
graph G consisting of an infinite set of nodes which are not connected to any-
thing, and another infinite set of nodes which are all connected to each other,
but not to themselves. The formula in Φ2

0(G) corresponding to a connected pair
has the property of φ in Remark 5.10, but the Scott rank of G is 1, not 0, since
the unique member of Φ1

0(G) has two successors in Φ1
1(G).

The following definition is inspired by Remarks 5.10 and 5.11. There may
be some connection between the notion of pre-rank and the subject of [12].

{prerankdef}
5.12 Definition. The pre-rank of a Scott process 〈Φα : α < β〉 is the least
γ ≤ β such that for all ordinals η > γ, there exists a unique Scott process
of length η extending 〈Φα : α < γ〉 (if such a γ exists). The Scott pre-rank
of a τ -structure is the pre-rank of any terminating initial segment of its Scott
process.
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By Proposition 5.5, the pre-rank of a terminating Scott process is at most one
more than its rank; Remark 5.11 shows that it can be smaller. By Proposition
9.24, if a Scott process has countable length, and all of its levels are countable,
then its rank is at most ω more than its pre-rank. Proposition 5.13 gives a
tighter bound in the situation of Definition 5.8.

{prerankbound}
Proposition 5.13. Let β be an ordinal, and n an element of ω. Suppose
that 〈Φα : α ≤ β + n + 1〉 is a Scott process, and that φ ∈ Φnβ is such that
〈Φα : α ≤ β + n+ 1〉 is injective beyond φ. Then 〈Φα : α ≤ β + n+ 1〉 has rank
at most β + n.

Proof. For each p ≤ n, let Υp be the set of ψ ∈ Φβ+p for which

V −1
β+p,β+n+1[{ψ}] ∩ Φβ+n+1

is a singleton. We want to see that Υn = Φβ+n.
By Remark 5.9, we have the following, for each p ≤ n:

• V −1
β,β+p[{φ}] has a single element (which we call φp);

• for each m ∈ ω \ n, Υp contains each ψ ∈ Φmβ+p for which φp = Hm
β (ψ, j)

for some j ∈ In,m.

We prove the following statement by induction on p ≤ n : if k ∈ ω is such
that k + p ≥ n and θ ∈ Φkβ+p is such that θ = Hk+p

β+p(ρ, ik) for some ρ ∈ Φk+p
β+p

such that Vβ,β+p(ρ) ∈ Υ0, then θ is in Υp. For p = 0 this is immediate.
For the induction step from p to p+ 1, fix

• k ∈ ω such that k + p+ 1 ≥ n,

• θ ∈ Φkβ+p+1 and

• ρ ∈ Φk+p+1
β+p+1

such that Vβ,β+p+1(ρ) is in Υ0 and θ = Hk+p+1
β+p+1(ρ, ik). The induction hypothesis

gives that
Vβ+p,β+p+1(Hk+p+1

β+p+1(ρ, ik+1)),

is in Υp, which (as this formula is in E(θ)) by Corollary 5.3 shows that θ is in
Υp+1 as desired.

Finally, the statement for n = p implies the proposition, applying condition
(2c) of Definition 3.1 to an arbitrary θ ∈ Φβ+n and φn to obtain the desired
formula ρ.

{maxdef}
5.14 Definition. Given an ordinal δ and a set Φ ⊆ Ψδ, the maximal completion
of Φ is the set of φ ∈ Ψδ+1 such that for some n ∈ ω and some φ′ ∈ Φ ∩ Ψn

δ ,
Vδ,δ+1(φ) = φ′, and

E(φ) = {ψ ∈ Φ ∩Ψn+1
δ | Hn+1

δ (ψ, in) = φ′}.
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The extension of a Scott process of successor length by the maximal com-
pletion of its last level may not be a Scott process (see Proposition 5.19 below).

{fivepointsix}
5.15 Remark. By Proposition 4.2, if 〈Φα : α < δ〉 is a Scott process, and β
is an ordinal such that β + 1 < δ, then Vβ,β+1�Φβ+1 is injective if and only if
Φβ+1 is the maximal completion of Φβ .

The following definition describes the situation in which no formula φ has
incompatible horizontal extensions.

{unidef}
5.16 Definition. Given an ordinal δ, a set Φ ⊆ Ψδ satisfies the amalgamation
property (or amalgamates) if for all m < n ∈ ω, φ ∈ Φ ∩ Ψm+1

δ , and ψ ∈
Φ ∩ Ψn

δ such that Hm+1
δ (φ, im) = Hn

δ (ψ, im), there exist θ ∈ Φ ∩ Ψn+1
δ and

y ∈ Xn+1 \Xm such that Hn+1
δ (θ, im ∪ {(xm, y)}) = φ and Hn+1

δ (θ, in) = ψ.
{unidef2}

5.17 Remark. Given an ordinal δ and a set Φ ⊆ Φδ satisfying condition (1d) of
Definition 3.1 (i.e., closure under the functions Hn

δ (n ∈ ω)), the amalgamation
property for a set Φ ⊆ Ψδ is equivalent to the statement that for all m ≤ n ∈ ω,
φ ∈ Φ ∩Ψm

δ , j ∈ Fm,n and ψ ∈ Φ ∩Ψn
δ such that φ = Hn

δ (ψ, j),

{θ ∈ Φ ∩Ψm+1
δ | Hm+1

δ (θ, im) = φ}

is the same as

Hn+1
δ [{ρ ∈ Φ∩Ψn+1

δ | Hn+1
δ (ρ, in) = ψ}×{j∪{(xm, y)} | y ∈ (Xn+1\range(j))}].

This follows immediately from the definitions (using part (3) of Definition 2.11).

5.18 Remark. The set in the second displayed formula in Remark 5.17 is always
contained in the set in the first, by part (2) of Remark 2.14.

{canmax}
Proposition 5.19. The extension of a nonempty Scott process of nonlimit
length by the maximal completion of its last level induces a Scott process if
and only if its last level amalgamates.

Proof. Let 〈Φα : α ≤ δ〉 be a Scott process. Conditions (1a)-(1c) of Definition
3.1 are always satisfied by the extension by the maximal completion. The other
conditions depend on whether the functions Hn

δ+1 (n ∈ ω) lift the actions of
the functions Hn

δ (n ∈ ω), i.e., whether whenever n ∈ ω, j ∈
⋃
m≤n Im, ψ ∈

Φnδ and ψ′ is the unique member of V −1
δ,δ+1[{ψ}] in the maximal completion

of Φδ, H
n
δ+1(ψ′, j) is the unique member of V −1

δ,δ+1[{Hn
δ (ψ, j)}] in the maximal

completion of Φδ. Comparing the condition (3) of Definition 2.11 with Definition
5.14 shows that is exactly the statement that Φδ amalgamates as expressed in
Remark 5.17.

We conclude this section by giving a restatement of the amalgamation prop-
erty which will be useful in Section 7. A failure of amalgamation gives a coun-
terexample to Proposition 5.20 with n = m+ 1.
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{amalgamation}
Proposition 5.20. Suppose that 〈Φα : α ≤ δ〉 is Scott process whose last level
amalgamates, and that m,n, p ∈ ω are such that m ≤ min{n, p}. Suppose now
that j ∈ Im,n, k ∈ Im,p, ψ ∈ Φnδ and θ ∈ Φpδ are such that

Hn
δ (ψ, j) = Hp

δ (θ, k).

Then there exist q ∈ ω \ max{n, p}, a formula ρ ∈ Φqδ and functions j′ ∈ In,q
and k′ ∈ Ip,q such that Xq = range(j′)∪ range(k′), j′ ◦ j = k′ ◦ k, ψ = Hq

δ (ρ, j′)
and θ = Hq

δ (ρ, k′).

Proof. Fixing m and p, we prove the proposition by induction on n. If n = m,
then we can let q = p, ρ = θ, k′ = ip and j′ = k ◦ j−1, using the second half of
Remark 2.14, which we do repeatedly throughout this proof.

Suppose now that the proposition holds for some n ∈ ω \m. Let j ∈ Im,n+1,
k ∈ Im,p, ψ ∈ Φn+1

δ and θ ∈ Φpδ be such that Hn+1
δ (ψ, j) = Hp

δ (θ, k). Let
f ∈ In+1,n+1 be in+1 if xn 6∈ range(j); otherwise, fix n′ such that xn′ 6∈ range(j)
and let f map xn and xn′ to each other and fix the rest of Xn+1. Then f−1 = f
and xn 6∈ range(f ◦ j). Let ψ0 = Hn+1

δ (ψ, f); then ψ = Hn+1
δ (ψ, f). Let

ψ1 = Hn+1
δ (ψ0, in). By the second part of Remark 2.14,

Hn
δ (ψ1, f ◦ j) = Hn

δ (Hn+1
δ (ψ0, in), f ◦ j)

= Hn+1
δ (ψ0, in ◦ (f ◦ j))

= Hn+1
δ (ψ0, f ◦ j)

= Hn+1
δ (Hn+1

δ (ψ0, f), j)
= Hn+1

δ (ψ, j)
= Hp

δ (θ, k).

Applying the induction hypothesis to f◦j, k, ψ1 and θ, we get q0 ∈ ω\max{n, p},
a formula ρ0 ∈ Φq0δ and functions j0 ∈ In,q0 and k′ ∈ Ip,q0 such that

Xq0 = range(j0) ∪ range(k′),

j0 ◦ (f ◦ j) = k′ ◦ k, ψ1 = Hq0
δ (ρ0, j0) and θ = Hq0

δ (ρ0, k
′).

Suppose first that there exists a y ∈ Xq0 \ range(j0) such that

ψ0 = Hq0
δ (ρ0, j0 ∪ {(xn, y)}).

Then q0, ρ0 and k′ are as desired. If f = in+1, then we can let j′ = j0∪{(xn, y)}
and we are done. Otherwise, let j′ send xn′ to y, xn to j0(xn′) and every other
member of Xn to the same place that j0 does (i.e., let j′ = (j0 ∪ {(xn, y)}) ◦ f).
Then j′ ◦ j = k′ ◦ k, and

ψ = Hn+1
δ (ψ0, f)

= Hn+1
δ (Hq

δ (ρ, j0 ∪ {(xn, y)}), f)
= Hq

δ (ρ, (j0 ∪ {(xn, y)}) ◦ f)
= Hq

δ (ρ, j′),
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as desired.
Finally, suppose that there is no such y ∈ Xq0 \ range(j0). Putting together

the amalgamation property of Φ and the equation ψ1 = Hn+1
δ+1 (ψ0, in), we get

that there exist a formula ρ ∈ Φq0+1
δ such that Hq0+1

δ (ρ, iq0) = ρ0 and a y ∈
Xq0+1 \ range(j0) such that Hq0+1

δ (ρ, j0 ∪ {(xn, y)}) = ψ0. Then k′, ρ, and
q = q0 + 1 are as desired. If f = in+1, then we can let j′ = j0 ∪ {(xn, y)},
and we are done. Otherwise, as above, let j′ = (j0 ∪ {(xn, y)}) ◦ f . Then again
j′ ◦ j = k′ ◦ k and ψ = Hq

δ (ρ, j′), as desired.

6 Building countable models
{threadsec}

We say that a τ -structure M is a model of a Scott process 〈Φα : α < δ〉 if
Φα = Φα(M) for all α < δ. In this section we show that any Scott process
of successor length has a countable model if its last level is countable. This in
turn implies that such a sequence can be extended to any given ordinal length
(although the rank of the Scott process of length ω1 corresponding to a countable
model is countable).

{threaddef}
6.1 Definition. Given an ordinal β, and a countable set Φ ⊆ Ψβ , a thread
through Φ is a set of formulas {φn : n ∈ ω} ⊆ Φ such that

1. for all n ∈ ω, φn ∈ Ψn
β ;

{allin}
2. for all m < n in ω, φm = Hn

β (φn, im);
{goodlift}

3. for all m ∈ ω, all α < β, and all ψ ∈ E(Vα+1,β(φm)), there exist an n ∈
ω\(m+1) and a y ∈ Xn\Xm such that ψ = Vα,β(Hn

β (φn, im∪{(xm, y)})).

6.2 Remark. If β is a successor ordinal, condition (3) of Definition 6.1 is equiv-
alent to the restriction of the condition to the case where α = β−1. This follows
from Proposition 4.3. Similarly, condition (3) of Definition 6.1 is equivalent to
the restriction of the condition to the set of α in any cofinal subset of β.

{cofrestr}
6.3 Remark. Suppose that 〈Φα : α ≤ δ〉 is a Scott process, and β < δ is such
that Vβ,δ�Φδ is injective. Then the Vβ+1,δ-preimage of a thread through Φβ+1

is a thread through Φδ. This follows from Remark 2.9, Proposition 2.15 and
Proposition 4.3. For conditions (1) and (2) of Definition 6.1 this is almost im-
mediate; for condition (3) it requires tracing through the horizontal and vertical
projections.

The proof of Proposition 6.4 shows how to build thread for a Scott process
whose last level is countable. The proof of Theorem 6.5 then shows how use
such a thread to build a model of the Scott process.

{threadcon}
Proposition 6.4. If 〈Φα : α ≤ δ〉 is a Scott process with Φδ countable, then
there exists a thread through Φδ.
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Proof. The case δ = 0 follows easily from condition (1e) of Definition 3.1, so
suppose that δ is positive. By Remark 6.3, if suffices to consider the cases where
δ is either a successor ordinal or an ordinal of cofinality ω. Let A be {δ − 1}
in the case where δ is a successor ordinal, and a countable cofinal subset of δ
otherwise. We choose the formulas φn recursively, meeting instances of condition
(3) of Definition 6.1 for α ∈ A while satisfying condition (2). Note that φ0 is
the unique element of Φ0

δ . To satisfy an instance of condition (3), we need to
see that if m ≤ n are in ω, α ∈ A, φn has been chosen, and ψ ∈ E(Vα+1,β(φm))
is not equal to Vα,β(Hn

β (φn, im ∪ {(xm, y)})) for any y ∈ Xn \ Xm, then φn+1

can be chosen so that

ψ = Vα,β(Hn+1
β (φn+1, im ∪ {(xm, xn)}))

(since Φδ is countable, the set of such formulas ψ is also countable). The ex-
istence of such a φn+1 follows from condition (3) of Definition 2.11 applied to
Vα+1,β(φn) and im, giving a θ ∈ E(Vα+1,β(φn)) such that

Hn+1
α (θ, im ∪ {(xm, xn)}) = ψ,

followed by condition (2b) of Definition 3.1 applied to φn, giving φn+1 as desired.

{existmodel}
Theorem 6.5. Given a Scott process 〈Φα : α ≤ δ〉 with Φδ countable, a thread
〈φn : n ∈ ω〉 through Φδ and an injective sequence C = {cn : n ∈ ω}, there is a
τ -structure with domain C in which each tuple 〈cm : m < n〉 satisfies φn.

Proof. Let each tuple 〈cm : m < n〉 satisfy all the atomic formulas indicated
by V0,δ(φn). We show by induction on α ≤ δ that each tuple 〈cm : m < n〉
satisfies the formula Vα,δ(φn). This follows immediately for limit stages. For
the induction step from α to α+1, 〈cm : m < n〉 satisfies Vα+1,δ(φn) if and only
if

E(Vα+1,δ(φn)) = Vα,δ[{Hp
δ (φp, in ∪ {(xn, y)}) : p ∈ ω \ (n+ 1), y ∈ Xp \Xn}].

That is, checking that 〈cm : m < n〉 satisfies Vα+1,δ(φn) means showing that the
left side of the equality is the set of formulas from Φn+1

α satisfied by extensions of
〈cm : m < n〉 by one point, which by the induction hypothesis is what the right
side is. The left-to-right containment follows from condition (3) of Definition
6.1. For the other direction, note first that by Proposition 4.4,

E(Vα+1,δ(φn)) = Vα,δ[{θ ∈ Φn+1
δ | Hn+1

δ (θ, in) = φn}].

That
{Hp

δ (φp, in ∪ {(xn, y)}) : p ∈ ω \ (n+ 1), y ∈ Xp \Xn}

is contained in {θ ∈ Φn+1
δ | Hn+1

δ (θ, in) = φn} follows from the assumption that
φn = Hp

δ (φp, in), by part (2) of Remark 2.14.
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{cthreaddef}
6.6 Definition. Given an ordinal β, and a countable set Φ ⊆ Ψβ , a thread
{φn : n ∈ ω} through Φ is complete if for all m ∈ ω and all ψ ∈ Φ ∩Ψm

β , there
exist n ∈ ω and j ∈ Im,n such that ψ = Hn

β (φn, j).
{cthreadrem}

6.7 Remark. The thread through Φδ given by Proposition 6.4 induces (via
Theorem 6.5) a model of 〈Φα : α < δ〉 for which the δ-th level of the corre-
sponding Scott process is contained in the given Φδ. The δ-th level is equal to
Φδ if and only if the thread is complete. Condition (2c) of Definition 3.1 implies
that one can add stages to the construction in Proposition 6.4 to produce a
complete thread.

Proposition 6.4, Theorem 6.5 and Remark 6.7 give the following.
{ctblehasmodel}

Theorem 6.8. Every Scott process 〈Φα : α ≤ δ〉 with Φδ countable has a
countable model.

6.9 Remark. Theorem 9.9 gives a stronger version of Theorem 6.8, showing
that every Scott process with all levels countable (and possibly of limit length)
has a model.

6.10 Remark. If 〈Φα : α ≤ δ〉 is a Scott process, γ < δ and {φn : n ∈ ω} is a
thread through Φδ, then {Vγ,δ(φn) : n ∈ ω} is a thread through Φγ (this follows
from Proposition 2.15). This thread induces (as in the proof of Theorem 6.5)
the same class-length Scott process as {φn : n ∈ ω}.

We insert here two arguments for constructing pairs of models. With re-
spect to Theorem 6.11, note that (by Theorem 6.8 and Scott’s Isomporphism
Theorem) if P = 〈Φα : α ≤ δ〉 is a Scott process such that Φδ is countable
and amalgamates, there is exactly one model of P of Scott rank at most δ, up
to isomorphism. Whether or not the Scott rank of this model is less than δ
depends on whether or not P terminates.

{extendtofull}
Theorem 6.11. Let P = 〈Φα : α ≤ δ〉 be a Scott process such that Φδ is
countable and amalgamates, and let M be a countable τ -structure such that ev-
ery finite tuple from M satisfies a member of Φδ. Then there is a countable
τ -structure N , modeling P, such that M is a quantifier-depth-δ-elementary sub-
structure of N , and N has Scott rank at most δ.

Proof. Let 〈cn : n ∈ ω〉 be an enumeration of the domain of M . By Theorem
6.5, it suffices to find a thread {φn : n ∈ ω} through Φδ and an infinite set
Y ⊆ ω such that, for each n ∈ ω,{extendone}

1. letting

• jn be the order preserving map from Xn to the first n elements of
the set {xm : m ∈ Y }, and

• kn be the least element of ω such that |Y ∩ kn| = n,

Hkn
δ (φkn , jn) = φM〈c0,...,cn−1〉,δ;
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{extendtwo}
2. for each ψ ∈ Φn+1

δ such that Hn+1
δ (ψ, in) = φn, there exist m > n in ω

and y ∈ Xm \Xn such that Hm
δ (φm, in ∪ {(xn, y)}) = ψ.

Condition (2), and the assumption that Φδ amalgamates, will then give the
following:

• {φn : n ∈ ω} is complete (one can show by induction on m, for instance,
that

Φδ ∩Ψm
δ = {Hn

δ (φn, j) : n ∈ ω \m, j ∈ Im,n}

for all m ∈ ω);

• the model given by Theorem 6.8 will have Scott rank δ, as the induced
(δ + 1)-st level of the Scott process of N will be the maximal completion
of Φδ.

Then {φn : n ∈ ω} induces the desired τ -structure N , and the set Y induces
the desired copy of M inside N .

We start (as we must) with φ0 as the unique element of Φ0
δ . In our con-

struction, we alternate stages for putting new elements in Y (while preserving
condition (1)) and meeting condition (2). At each stage we will have chosen φp
and decided Y ∩ p for some p ∈ ω. As we construct, we maintain the following
condition (*) : for each p ∈ ω, if φp and Y ∩p have been chosen, and |Y ∩p| = n,
then there do not exist y ∈ Xp \ {xm : m ∈ Y ∩ p} and c ∈ M \ {c0, . . . , cn−1}
such that Hp

δ (φn, jn ∪ {(xn, y)}) = φM〈c0,...,cn−1,c〉,δ. As long as well do this, our
assumption that Φδ amalgamates implies that we can choose φn+1 in such a
way that we can put n ∈ Y and maintain condition (1). To meet condition
(2), suppose that p ∈ ω is maximal such that φp and Y ∩ p have been chosen,
and let ψ be given as in condition (2). Again, since Φδ amalgamates, we may
assume that Hp+1

δ (ψ, ip) = φp (that is, to meet the condition for some n ≤ p
we can meet it for p). If possible (while maintaining condition (1)), we satisfy
this instance of condition (2) with a formula φq ∈ Φqδ (for some q > p) while
putting all of q \ p in Y . If this is not possible, then we can let φp+1 be ψ, and
condition (*) is preserved.

The proof of the following theorem is similar, but we assume a weaker amal-
gamation property. Given an ordinal γ and sets Υ ⊆ Φ ⊆ Ψγ , say that Υ weakly
amalgamates with respect to Φ if whenever

• m, n and p are in ω, with m ≤ n,

• φ is in Φ ∩Ψn
γ ,

• k ∈ Im,n is such that Hn
γ (φ, k) ∈ Υ and

• ψ is in Υ ∩Ψp
γ ,

there exist θ ∈ Φ ∩ Ψn+p
γ , q ≤ m + p, j ∈ Ip,n+p and k′ ∈ Iq,n+p extending k

such that
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• Hn+p
γ (θ, in) = φ,

• Hn+p
γ (θ, k′) ∈ Υ and

• Hn+p
γ (θ, j) = ψ.

If Φ amalgamates, then it weakly amalgamates with respect to itself. The issue
of extending Theorem 6.12 (or the weak version of it where Φγ is assumed to
amalgamate) to uncountable models is discussed in Remark 7.15.

{addthis}
Theorem 6.12. Let γ be a countable ordinal, and suppose that 〈Φβ : β ≤ γ〉 is a
Scott process with Φγ countable. Let Φ∗ be a subset of Φγ such that the extension
of 〈Φβ : β < γ〉 by Φ∗ is also a Scott process, and Φ∗ weakly amalgamates
with respect to Φγ . Then there exists τ -structures M and N such that M is
a substructure of N , N is a model of 〈Φβ : β ≤ γ〉 and M is a model of the
extension of 〈Φβ :< γ〉 by Φ∗.

Proof. By Theorem 6.5, it suffices to find a complete thread φ̄ = 〈φn : n ∈ ω〉
through Φγ and an infinite set Y ⊆ ω such that, letting, for each n ∈ ω,

• jn be the order preserving map from Xn to the first n elements of the set
{xm : m ∈ Y },

• kn be the least element of ω such that |Y ∩ kn| = n,

〈Hkn
γ (φkn , jn) : n ∈ ω〉 is a complete thread through Φ∗.
A construction of such a pair 〈φn : n ∈ ω〉, Y can be carried out in essentially

the same manner as the proof of Theorem 6.4, recursively putting n into Y
whenever Hn

γ (φn, j|Y ∩n| ∪ {(x|Y ∩n|, xn}) is a member of Φ∗. Again, we let φ0

be the unique member of Φ0. The only new issue is the completeness of the two
threads being constructed. For φ̄, completeness can be achieved using condition
(2c) of Definition 3.1. That is, having chosen φn (and thus Y ∩ (n + 1)), and
given some ψ ∈ Φmγ , we let φn+m be an element of Φγ (as given by Condition 2c
of Definition 3.1) such that Hn+m

γ (φn+m, in) = φn and Hn+m
γ (φn+m, j) = ψ, for

some j ∈ Im,n+m. We then use our recursive rule to decide Y ∩ (n+ 1, n+m).
The notion of weak amalgamation of Φ∗ with respect to Φγ was defined to

make the same argument work for the sequence 〈Hkn
γ (φkn , jn) : n ∈ ω〉. Here

we again have φn and Y ∩ (n+ 1), we are given a ψ ∈ Φ∗ ∩Ψp
γ , for some p ∈ ω,

and we want to find a formula φn+p ∈ Φn+p
γ and an extension of Y ∩ (n+ 1) to

Y ∩ (n+ p+ 1) of size at least p such that ψ = Hn+m
γ (φn+m, kp). Our recursive

condition on Y guarantees that for the extension k′ (the desired kp) given by
weak amalgmatation, the range of k′ \ k (where k is k|Y ∩(n+1)|) is contained in
Xn+p \Xn, so that we can extend Y as desired.

7 Models of cardinality ℵ1
{arbcardsec}

In this section we show how to build models for Scott processes of length a
successor ordinal, under the assumption that the last level of the process amal-
gamates and has cardinality at most ℵ1.
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Given two finite sets of ordinals a ⊆ b with a = {α0, . . . , αn−1} (listed in
increasing order), let ja,b be the function j in In,|b| such that j(xm) = x|b∩αm|
for all m < n.

In the case γ = ω, the following definition is essentially the same as Definition
6.1, as the formulas {φn : n ∈ ω} of the weaving then satisfy Definition 6.1.

{threaddef2}
7.1 Definition. Suppose that δ is an ordinal and Φ is a subset of Ψδ. A weaving
through Φ is a set of formulas {φa : a ∈ [γ]<ω} ⊆ Φ, for some infinite ordinal γ,
such that the following hold.{basic}

1. Each φa ∈ Ψ
|a|
δ .

{allin2}
2. For all a ⊆ b ∈ [γ]<ω, φa = H

|b|
δ (φb, ja,b).{goodlift2}

3. For all a ∈ [γ]<ω, all α < δ, and all ψ ∈ E(Vα+1,δ(φa)), there exist a
b ∈ [γ]|a|+1 containing a and a y ∈ X|b| \ range(ja,b) such that

ψ = Vα,δ(H
|a|+1
δ (φb, ja,b ∪ {(x|a|, y)})).

The proof of Theorem 7.2 is an adaptation of the proof of Theorem 6.5.
{existmodel2}

Theorem 7.2. Given a Scott process 〈Φα : α ≤ δ〉, an infinite ordinal γ, a
weaving 〈φa : a ∈ [γ]<ω〉 through Φδ and an injective sequence C = 〈cα : α < γ〉,
there is a τ -structure with domain C in which, for each a ∈ [γ]<ω, the tuple
〈cα : α ∈ a〉 satisfies φa.

Proof. For each a ∈ [γ]<ω, let the tuple 〈cα : α ∈ a〉 satisfy all the atomic
formulas indicated by V0,δ(φa). We show by induction on β < δ that each tuple
〈cα : α ∈ a〉 satisfies the formula Vβ,δ(φa). This follows immediately for limit
stages. For the induction step from β to β + 1, 〈cα : α ∈ a〉 satisfies Vβ+1,δ(φa)
if and only if E(Vβ+1,δ(φa)) is equal to

Vβ,δ[{H |b|δ (φb, ja,b ∪ {(x|a|, y)}) : a ⊆ b ∈ [γ]<ω, y ∈ X|b| \ range(ja,b)}].

The left-to-right containment follows from condition (3) of Definition 7.1. For
the other direction, note first that by Proposition 4.4,

E(Vβ+1,δ(φa)) = Vβ,δ[{θ ∈ Φ
|a|+1
δ | H |a|+1

δ (θ, i|a|) = φa}].

That

{H |b|δ (φb, ja,b ∪ {(x|a|, y)}) : a ⊆ b ∈ [γ]<ω, y ∈ X|b| \ range(ja,b)}

is contained in {θ ∈ Φ
|a|+1
δ | H |a|+1

δ (θ, i|a|) = φa} follows from condition (2) of
Definition 7.1 and part (2) of Remark 2.14.

{cweavedef}
7.3 Definition. Suppose that δ is an ordinal, γ is an infinite cardinal and Φ is a
subset of Ψδ. A weaving {φa : a ∈ [γ]<ω} through Φ is complete if for all n ∈ ω
and all ψ ∈ Φ ∩Ψn

δ , there exist a ∈ [γ]n and j ∈ In,n such that ψ = Hn
δ (φa, j);
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{cweaverem}
7.4 Remark. As in Remark 6.7, given a Scott process 〈Φα : α ≤ δ〉 and a
weaving through Φδ, the proof of Theorem 7.2 gives a model of 〈Φα : α < δ〉,
for which the δ-th level of its Scott process is contained in the given Φδ. The
δ-th level is equal to Φδ if and only if the weaving is complete.

Proposition 7.10 below show that if P = 〈Φα : α ≤ δ〉 is a Scott process
such that Φδ amalgamates and has cardinality ℵ1, then there exists a complete
weaving through P. To simplify the proof, we introduce a notion of strong
weaving (at the cost of limiting the set of models of P we can construct, see
Remark 7.8).

{sweavingdef}
7.5 Definition. Suppose that δ is an ordinal and Φ is a subset of Ψδ. A strong
weaving through Φ is a set

{φa : a ∈ [γ]<ω} ⊆ Φ,

for some infinite ordinal γ, satisfying conditions (1) and (2) of Definition 7.1

plus the following condition: for all a ∈ [γ]<ω, and all ψ ∈ Φ ∩ Ψ
|a|+1
δ such

that H
|a|+1
δ (ψ, i|a|) = φa, there exist a b ∈ [γ]|a|+1 containing a and a y ∈

X|b| \ range(ja,b) such that

ψ = H
|a|+1
δ (φb, ja,b ∪ {(x|a|, y)})).

7.6 Remark. In condition (3) of Definition 7.1 and in Definition 7.5, the vari-
able y is in fact the unique member of X|b| \ range(ja,b).

{betterpick}
Proposition 7.7. Suppose that δ is an ordinal and Φ is a subset of Ψδ. Every
strong weaving through Φ is both a weaving and complete.

Proof. That a strong weaving satisfies condition (3) of Definition 7.1 follows
from condition (2b) of Definition 3.1. Completeness for formulas in Φ ∩ Ψn

δ

follows by induction on n.
{limitremark}

7.8 Remark. Let P = 〈Φα : α ≤ δ〉 be a Scott process. If there is a strong
weaving through Φδ, then Φδ amalgamates. Moreover, the τ -structures induced
by strong weavings through Φδ (as in the proof of Theorem 7.2) are, up to
isomorphism, the models of P of and Scott rank at most δ. This is in contrast
to threads and weavings : every model of a Scott process P of successor length
is induced (up to isomorphism) by weaving through the last level of P.

A subset S of a collection C of sets is ⊆-cofinal in C if every member of C
is contained in a member of S.

{cofstrong}
Proposition 7.9. Suppose that 〈Φα : α ≤ δ〉 is a Scott process such that Φδ
amalgamates. Let W = {φa : a ∈ [γ]<ω} be a subset of Φ satisfying conditions
(1) and (2) of Definition 7.1, such that the set of a ∈ [γ]<ω for which the
condition in Definition 7.5 is satisfied is ⊆-cofinal in [γ]<ω. Then W is a strong
weaving.
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Proof. Suppose that we have a ⊆ b ∈ [γ]<ω, and that the condition in Definition

7.5 holds for b. Suppose that ψ ∈ Φ
|a|+1
δ is such that H

|a|+1
δ (ψ, i|a|) = φa. By

Proposition 5.20, there is formula θ ∈ Φ
|b|+1
δ such that H

|b|+1
δ (θ, i|b|) = φb

and H
|b|+1
δ (θ, ja,b ∪ {(x|a|, x|b|)}) = ψ. Then there exist a β ∈ γ \ b a y ∈

X|b|+1 \ range(jb,b∪{β}) such that

θ = H
|b|+1
δ (φb∪{β}, jb,b∪{β} ∪ {(x|b|, y)}),

which implies that

ψ = H
|a|+1
δ (φa∪{β}, ja,a∪{β} ∪ {(x|a|, y)}),

for y the unique element of X|a|+1 \ range(ja,a∪{β}).

The proof of Proposition 7.10 implements the final part of Harrington’s
argument as it appears in Marker’s slides [14].

{existweaving}
Proposition 7.10. If 〈Φα : α ≤ δ〉 is a Scott process such that Φδ amalgamates
and has cardinality ℵ1, then there is a strong weaving through Φδ.

Proof. We recursively pick suitable formulas φa, for a ∈ [ω1]<ω. To begin with,
let φn (n ∈ ω) be any elements of Φδ with the property that Hn

δ (φn, im) = φm,
for all m ≤ n < ω. Suppose now that we have α < ω1 and that φa has
been chosen for each finite subset of α (note that a choice of φa determines
a choice of φb for each subset of b, where a is a finite subset of ω1) and no
other subsets of ω1. Using some wellordering of [ω1]<ω × Φδ in ordertype ω1,

we fix the least pair a ∈ [α]<ω, ψ ∈ Φ
|a|+1
δ as in Definition 7.5 for which

the corresponding condition has not been met (which must exist since Φδ is
uncountable), and let φa∪{α} be this ψ. Fixing a bijection π : ω → (α \ a),
we now successively choose the formulas φa∪{α}∪π[n]. For each positive n, the
choice of φa∪{α}∪π[n] requires amalgamating φa∪{α}∪π[n−1] with φa∪π[n], which
have already been chosen. The fact that Φδ amalgamates (via Proposition 5.20)
implies that there exists a suitable choice for φa∪{α}∪π[n]. Since φa∪{π(n−1)} did
not satisfy the third condition of Definition 7.5 with respect to a and ψ, this
choice of φa∪{α}∪π[n] does not require identifying π(n − 1) and α. Proceeding
in this fashion completes the construction of the desired strong weaving.

Putting together Theorems 6.8 (for the case where Φδ is countable) and 7.2
with Propositions 7.7 and 7.10, we have the following.

{omega1model}
Theorem 7.11. If 〈Φα : α ≤ δ〉 is a Scott process, Φδ amalgamates and |Φδ| ≤
ℵ1, then 〈Φα : α ≤ δ〉 has a model of Scott rank at most δ.

{noomega2}
7.12 Remark. One might naturally try to adapt the proof of Theorem 7.2
to build a model of size ℵ2 by assigning a formula from Φδ to each finite tuple
from ω2. Doing this in the manner of the proof of Theorem 7.2, one finds oneself
with an uncountable α < ω2 such that formulas have been assigned for all finite
subsets of α, but not for {α}. Choosing formulas for all finite subsets of α+ 1,
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one comes to a point where, for some countably infinite B ⊆ α, formulas have
been chosen for all sets of the form {α} ∪ b, for b a finite subset of B. Then, for
some β ∈ α \B, one would like to chose a formula for some finite superset c of
{α, β} intersecting B. Finally, consider γ ∈ B \ c. We have at this point that
formulas have been chosen for {α, γ}, {β, γ} and c, but not for {α, β, γ}, and our
assumptions do not give us suitable choice for {α, β, γ} that extends the choices
already made. One can naturally define a notion of 3-amalgamation such that
this construction could succeed under the assumption that this property holds.

{namalgremark}
7.13 Remark. Given an ordinal δ and n ∈ ω \ 2, say that a set Φ ⊆ Ψδ

n-amalgamates if for all m ∈ ω and all

{φa : a ∈ [(m+ n) \m]n−1} ⊆ Φ ∩Ψm+n−1
δ ,

if (using the notation ja,b from the beginning of this section, restricted to finite
subsets of ω),

Hm+n−1
δ (φa, jm∪(a∩b),m∪a) = Hm+n−1

δ (φb, jm∪(a∩b),m∪b)

for all a, b ∈ [(m+ n) \m]n−1 then there exists θ ∈ Φ ∩Ψm+n
δ such that

Hm+n
δ (θ, jm∪a,m+n) = φa

for all a. The proof of Proposition 7.10 then gives that for all n ∈ ω \ 2 and all
Scott processes

P = 〈Φα : α ≤ δ〉
such that |Φδ| ≤ ℵn−1, if Φδ n-amalgamates then P has a model of cardinality
at most ℵn−1 with Scott rank at most δ. We leave the details to the inter-
ested reader, as well as the verification that 2-amalgamation is equivalent to
amalgamation.

Theorem 7.14. If P = 〈Φα : α ≤ δ〉 is a Scott process such that, for all
n ∈ ω \ 2, Φδ n-amalgamates, then P has a model of cardinality |Φδ| and Scott
rank at most δ

Proof. Let κ = |Φδ|. We build a strong weaving {φa : a ∈ [γ]<ω} through
Φδ, for some ordinal γ ∈ [κ, κ+), where the value of γ is determined by the
construction. At each stage of our construction, we will have chosen formulas

φa ∈ Φ
|a|
δ for all a in some subset of [η]<ω closed under subsets, for some η < κ+,

satisfying condition (2) of Definition 7.1. As always, we let φ〈〉 be the unique
member of Φ0

δ . We have tasks of two types:

• Choosing a formula for each nonempty a ∈ [η]<ω, once we have chosen
formula for each element of [a]|a|−1. This we can do by |a|-amalgamation
(with m = 0).

• Satisfying Definition 7.5. When doing this for a given a ∈ [η]<ω (for which

φa has been chosen) and ψ ∈ Φ
|a|+1
δ (for which H

|a|+1
δ (ψ, i|a|) = φa),

we choose the corresponding b from [η]|a|+1 if possible (given the choices
already made). If this is not possible, we let φa∪{η} = ψ (and increase η
by one).
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The ordinal γ will then be the supremum of the values of η during the construc-
tion.

Say that a set Φ ⊆ Ψδ is rigid if there is no φ ∈ Φ∩Ψ2
δ such that H2

δ (φ, i1) =
H2
δ (φ, {(x0, x1)}). Intuitively, this says that no two distinct points satisfy the

same formula at level δ. A countable τ -structure M of Scott rank δ is rigid in the
usual sense if and only if Φδ(M) is rigid in this sense. If Φ is rigid then Φ satisfies
n-amalgamation for all n ∈ ω. A question of Arnie Miller asks : can there exist
a φ in Lℵ1,ℵ0

with uncountably many rigid models but not perfectly many?
Remark 7.13 shows that such a φ would have models of all infinite cardinalities.
Part (4) of Theorem 11.1 shows that it would have non-rigid models as well.
One could ask similar questions for n-amalgamation.

{addthisrem}
7.15 Remark. The natural attempt to combine the proofs of Theorem 6.12 (in
the simplified case where Φ∗ satisfies amalgamation) and Proposition 7.10 to
produce a version of Theorem 6.12 for models of size ℵ1 runs into a problem
similar to the one in Remark 7.12. In this case, we have a Scott process 〈Φα :
α ≤ β〉, for some β ∈ [ω1, ω2) such that, letting Φ∗ be the set of isolated threads
in Φβ ,

• Φ∗ is a proper subset of Φβ ,

• the extension of 〈Φα : α < β〉 by Φ∗ gives a Scott process.

We could then try to build a strong weaving {φa : a ∈ [ω1]<ω} through Φβ , and
an an uncountable set Y ⊆ ω1 such that {φa : a ∈ [Y ]<ω} is a strong weaving
through Φ∗ (or, more precisely, induces one via some bijection between Y and
ω1). Carrying out this construction, we come to a point where, for some infinite
γ < ω1, φa has been chosen for every finite subset of γ, and for {γ} ∪ a, for
some finite a ⊆ γ intersecting Y as so far constructed, but not contained in it.
At some stages it will also be that this γ has been put into Y . Now suppose
that δ is in Y ∩ γ, as constructed so far, but that no formula for {δ, γ} has been
chosen. Then we need to choose a formula for a ∪ {δ, γ} such that the induced
formula for (a ∩ Y ) ∪ {δ, γ} is in Φ∗. Since Φδ amalgamates, we can choose
a formula for a ∪ {δ, γ}, but we can’t guarantee that the induced formula for
(a∩ Y )∪ {δ, γ} will be in Φ∗. Similarly, since Φ∗ amalgamates we can choose a
formula for (a∩Y )∪{δ, γ} in Φ∗. Then we have the same 3-amalgamation issue
as in Remark 7.12, as we would then need to amalgamate the chosen formulas
for (a ∩ Y ) ∪ {δ, γ}, a ∪ {δ} and a ∪ {γ} in Φβ .

8 Finite existential blocks
{qsec}

The function E defined in Definition 2.4 corresponds to a single existential
quantifier. In this section we extend E to the function F which corresponds
to finite blocks of existential quantifiers. The analysis of F in this section is
used in the following section. Most of this section consists of consequences of
Proposition 8.5, which gives an alternate characterization of F .
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{qdef}
8.1 Definition. For each ordinal β, each m ∈ ω and each φ ∈ Ψm

β , F (φ) is the

set of ψ such that for some n ∈ ω and some ordinal α with α+n ≤ β, ψ ∈ Ψm+n
α

and there exist ψ0, . . . , ψn such that

• ψ0 = ψ;

• for all p ∈ {0, . . . , n− 1}, ψp ∈ E(ψp+1);

• ψn = Vα+n,β(φ).

8.2 Remark. Suppose that α, β, m, φ and ψ0, . . . , ψn are as in Definition 8.1.
Then by condition (1b) of Definition 3.1, each ψi is in Ψm+n−i

α+i .
{fshift}

8.3 Remark. Given α, β, n, φ and ψ as in Definition 8.1, the issue of whether
or not ψ is in F (φ) depends only on Vα+n,β(φ) (as opposed to φ). It follows that
if ψ ∈ F (φ) then ψ ∈ F (θ) for any formula θ ∈ Ψm

γ (for some ordinal γ ≥ α+n)
such that Vα+n,γ(θ) = Vα+n,β(φ).

8.4 Remark. An iterated application of condition (1b) of Definition 3.1 gives
that if 〈Φα : α < δ〉 is a Scott process, α < β are in δ, φ ∈ Φβ and ψ ∈ F (φ),
then ψ ∈ Φβ .

Fix for rest of this section a Scott process 〈Φα : α < δ〉.
{qlem}

Proposition 8.5. Suppose that m,n ∈ ω and α, β < δ are such that α+n ≤ β.
Let φ and ψ be elements of Φmβ and Φm+n

α , respectively. Then ψ ∈ F (φ) if and

only if there is a formula θ ∈ Φm+n
β such that Hm+n

β (θ, im) = φ and Vα,β(θ) = ψ.

Proof. By induction on n. In the case n = 1, ψ ∈ F (φ) if and only if ψ ∈
E(Vα+1,β(φ)). In this case, the proposition is Proposition 4.4. The induction
step from n = p to n = p+ 1 follows from the induction hypothesis in the cases
n = p and n = 1 (applied twice).

Remarks 8.6 and 8.7 and Propositions 8.8, 8.9 and 8.10 list several useful
properties of the function F .

{flat}
8.6 Remark. Applying Propositions 2.15 and 8.5, and condition (1e) of Defini-
tion 3.1, we get that if m,n, p ∈ ω and α, β < δ are such that α+n+p ≤ β, and
if φ ∈ Φmβ , then for each ψ ∈ Φm+n

α ∩ F (φ) there exists a ρ ∈ Φm+n+p
α ∩ F (φ)

such that Hm+n+p
α (ρ, im+n) = ψ.

{permutef}
8.7 Remark. Fix m,n ∈ ω and suppose α, β < δ are such that α + n ≤ β.
Let φ be an element of Φm+n

β , let f be an element of Im,m+n and let g be any
element of Im+n,m+n extending f . Then, by Proposition 8.5 and part (2) of
Remark 2.14, Vα,β(Hm+n

β (φ, g)) is in F (Hm+n
β (φ, f)).

Proposition 8.8 follows from Proposition 8.5 and Remark 2.8. It shows, for
suitable φ and α, that F (φ) is closed under Vγ,α for all γ ≤ α.
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{qdownshift}
Proposition 8.8. Fix φ ∈ Φmβ , for some β < δ and m ∈ ω. Let ψ ∈ Φm+n

α be
an element of F (φ), for some n ∈ ω and some ordinal α with α+ n ≤ β. Then
for all γ < α, Vγ,α(ψ) ∈ F (φ).

Propositions 2.15 and 8.5 imply that members of F (φ) project horizontally
to vertical projections of φ.

{fhorproj}
Proposition 8.9. Suppose that α < β < δ, m ≤ n ∈ ω, φ ∈ Φmβ and ψ ∈
Φnα ∩ F (φ). Then Hn

α(ψ, im) = Vα,β(φ).

Proposition 8.10 is used in the proof of Theorem 9.9.
{qlift}

Proposition 8.10. Suppose that m,n ∈ ω, α < β are such that β + n < δ,
φ ∈ Φmβ+n and ψ ∈ Φm+n

α ∩ F (φ). Then there exists a ψ′ ∈ V −1
α,β [{ψ}] ∩ F (φ).

Proof. By Proposition 8.5, there is a θ ∈ Φm+n
β+n such that Vα,β+n(θ) = ψ and

Hm+n
β+n (θ, im) = φ. By Proposition 8.5 again, Vβ,β+n(θ) ∈ F (φ).

Proposition 8.11 is a version of condition (2c) of Definition 3.1 for F (φ).
{qext}

Proposition 8.11. For all m,n, p ∈ ω, all α, β < δ such that β ≥ α+n+p, and
all φ ∈ Φmβ , ψ ∈ Φm+n

α ∩F (φ) and θ ∈ Φm+p
α ∩F (φ), there exist j ∈ Im+p,m+n+p

and ρ ∈ Φm+n+p
α ∩ F (φ) such that

• j ◦ im = im;

• Hα(ρ, im+n) = ψ;

• Hα(ρ, j) = θ.

Proof. This can be proved by induction on p, for all m and n simultaneously.
In the case where p = 0 there is nothing to show (since then θ = Vα,β(φ)), so

suppose that p is positive. Since θ ∈ F (φ), there is a θ′ ∈ Φm+p−1
α+1 ∩ F (φ) such

that θ ∈ E(θ′). By Proposition 8.10, there is a ψ′ ∈ Φm+n
α+1 ∩ F (φ) such that

Vα,α+1(ψ′) = ψ. Let ρ′ ∈ Φm+p+p−1
α+1 be the result of applying the induction

hypothesis to ψ′ and θ′. Since θ ∈ E(θ′), the desired ρ can be found in E(ρ′)
by applying condition (3) of Definition 2.11.

Proposition 8.12 shows that the set F (φ) is closed under suitable (horizontal)
restrictions. The proposition follows immediately from Propositions 2.15 and
8.5.

{qhdown}
Proposition 8.12. Suppose that α < β < δ, m,n ∈ ω, φ ∈ Φmβ and ψ ∈ Φm+n

α

are such that α + n ≤ β and ψ ∈ F (φ). Fix p ∈ [m,m+ n] and let j ∈ Ip,m+n

be such that j�Xm = im. Then Hm+n
α (ψ, j) ∈ F (φ).
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9 Extending a process of limit length
{ellsec}

Suppose that δ is a limit ordinal and P is a Scott process. Must there be a Scott
process properly extending P? We show in this section that there exists such a
proper extension if δ has countable cofinality and each level of P is countable
(Theorem 9.9). We also derive a positive answer from various scatteredness
conditions on P (see Proposition 9.13, for instance). In general the question
remains open, as far as we know.

9.1 Definition. Given a limit ordinal β and a sequence 〈Φα : α < β〉 such that
each Φα is a subset of Ψα, a path through 〈Φα : α < β〉 is a formula φ in Ψβ

such that Vα,β(φ) ∈ Φα for each α < β.

9.2 Remark. For each limit ordinal α, Ψα is the set of paths through the
sequence 〈Ψβ : β < α〉. If 〈Φα : α < δ〉 is a Scott process, and β < δ is a limit
ordinal, then each member of Φβ is a path through 〈Φα : α < β〉.

The issue of extending a given Scott process P of limit length then is whether
there exists a set of paths through P large enough to satisfy conditions (1c) and
(2b) of Definition 3.1 while also satisfying condition and (2c) (conditions (1d)
and (1e) can then be achieved by closing under horizontal projections).

Proposition 9.3 implies in particular that every path through a Scott process
of limit length determines the entire process (recall from Definition 8.1 that the
set F (φ) depends only on φ, and not on a particular Scott processes containing
φ).

{fdetermine}
Proposition 9.3. Suppose that 〈Φα : α < β〉 is a Scott process. Fix γ < β,
n ∈ ω and φ ∈ Φnγ . Then for each α < β and m ∈ ω such that α +m ≤ γ, the
set Φmα is equal to {Hn

α(ψ, j) : ψ ∈ F (φ) ∩ Φn+m
α , j ∈ Im,n+m}.

Proof. Let ψ be a member of Φmα . By condition (1c) of Definition 3.1, there is a
ψ′ ∈ Φmγ such that Vα,γ(ψ′) = ψ. By condition (2c) of Definition 3.1, there exist
j ∈ Im,n+m and θ ∈ Φn+m

γ such that Hn+m
γ (θ, in) = φ and Hn+m

γ (θ, j) = ψ′.
Then Vα,γ(θ) is in F (φ) by Proposition 8.5, and is as desired by Proposition
2.15.

Proposition 9.3 implies that “according to 〈Φα : α < β〉 ” is unnecessary in
the following definition, if 〈Φα : α < β〉 is a Scott process.

{minimalsetdef}
9.4 Definition. Let β be a limit ordinal β and let 〈Φα : α < β〉 be such that
each Φα is a subset of Ψα. Let φ be a path through 〈Φα : α < β〉, and let n ∈ ω
be such that φ ∈ Ψn

β . The minimal set of φ according to 〈Φα : α < β〉 is the set
of paths θ through 〈Φα : α < β〉 for which there exist

• m ∈ ω \ n;

• p ∈ m+ 1;

• α0 < β;
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• ψ0 ∈ Φmα0
∩ F (φ);

• j ∈ Ip,m;

such that for all α ∈ [α0, β) and all ψ ∈ Φmα ∩ F (φ) such that Vα0,α(ψ) = ψ0,
Hm
α (ψ, j) = Vα,β(θ).

We write ms(φ) for the minimal set of φ.
{mschar1}

9.5 Remark. In the case where P = 〈Φα : α < β〉 is a Scott process and each
element of

⋃
{Φα : α < β} is extended by a path through P (for instance, if

β has countable cofinality, or P is scattered (see Definition 9.15)), the part of
Definition 9.4 after the itemized list can equivalently be replaced by “such that
for all ψ ∈ Ψβ such that Vα0,β(ψ) = ψ0 and Hm

β (ψ, in) = φ, Hm
β (ψ, j) = θ.”

{msdown}
9.6 Remark. Let p ≤ n be elements of ω, let j be an element of Ip,n, let β be
a limit ordinal, and let φ and ψ be paths through a Scott process 〈Φα : α < β〉,
with ψ ∈ ms(φ) and ψ ∈ Ψn

β . Then Hn
β (ψ, j) is an element of ms(φ).

{weakminimal setrem}
9.7 Remark. Let the weakly minimal set of a formula φ (in the context of
Definition 9.4) be the set of formulas υ ∈ Ψp

β for which membership in ms(φ) is
witnessed with j = ip. One obtains an equivalent definition of the minimal set
of φ by taking the closure of the weakly minimal set under permutations of free
variables (i.e., including all formulas of the form Hp

β(θ, j), where θ ∈ Ψp
β is in

the weakly minimal set of φ and j is in Ip,p. This follows from the second part
of Remark 2.2, and condition (1d) of Definition 3.1.

{love}
9.8 Remark. Suppose that β is a limit ordinal, 〈Φα : α ≤ β〉 is a Scott process
and ρ is an element of Φβ . Then ms(ρ) ⊆ Φβ . This follows from Proposition
8.5.

{limitext}
Theorem 9.9. Suppose that δ is a limit ordinal of countable cofinality and
〈Φα : α < δ〉 is a Scott process such that each Φα is countable. Let ρ be a path
through 〈Φα : α < δ〉. Then there exists a countable Φδ ⊆ Ψδ such that ρ ∈ Φδ
and 〈Φα : α ≤ δ〉 is a Scott process.

Furthermore, if Υ is a countable subset of Ψδ disjoint from ms(ρ), Φδ can
be chosen to be disjoint from Υ.

Proof. In order to make 〈Φα : α ≤ δ〉 a Scott process, we need to pick Φδ so
that conditions (1c), (1d), (1e), (2b) and (2c) of Definition 3.1 are satisfied. Let
〈γ0
p : p < ω〉 be an increasing sequence cofinal in δ. We will recursively pick

formulas θp (p < ω), a nondecreasing sequence of ordinals γp (p < ω) below
δ and a nondecreasing unbounded sequence of integers np (p < ω) such that
ρ ∈ Ψn0

δ and such that, for each p ∈ ω,

• γp ≥ γ0
p ;

• θp ∈ Φ
np
γp ∩ F (ρ);

• Hnp+1
γp (Vγp,γp+1(θp+1), inp) = θp.
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These conditions imply that θ0 = Vγ0,δ(ρ).
Having chosen the θp’s, for each n ∈ ω we let φn be the path through

〈Φα : α < δ〉 determined by {Hnp
γp (θp, in) | p ∈ ω, np ≥ n}. Then for all

m ≤ n ∈ ω we will have that φm = Hδ(φn, im), and we will let

Φδ =
⋃
n<ω

{Hn
δ (φn, j) : m ≤ n, j ∈ Im,n}.

This is enough to ensure that conditions (1d), (1e) and (2c) from Definition
3.1 are met. For condition (1d) this is immediate. For condition (1e), the
right-to-left containment follow from condition (1d). For the other direction, fix
m ≤ n in ω. An arbitrary formula ψ ∈ Φmδ has the form Hq

δ (φq, j), for some
q ∈ ω \m and some j ∈ Im,q. Since φn = Hp

δ (φp, in) for all p ≥ n in ω, we may
assume that q ≥ n. Letting j′ ∈ In,q be such that j�Xm = j′�Xm, we have that
Hq
δ (φq, j

′) ∈ Φnδ , and that ψ = Hn
δ (Hq

δ (φq, j
′), im), by part (2) of Remark 2.14.

To see that condition (2c) holds, fix n,m ∈ ω, φ ∈ Φnδ and ψ ∈ Φmδ . Then
there exist p, q ∈ ω, j ∈ In,p and k ∈ Im,q such that φ = Hp

δ (φp, j) and
ψ = Hq

δ (φq, k). Since

φp = H
max{p,q}
δ (φmax{p,q}, ip)

and
φq = H

max{p,q}
δ (φmax{p,q}, iq),

we may assume by part 2 of Remark 2.14 that p = q. Similarly, we may assume
that p ≥ m+n. Let A be a subset of Xp of size m+n which contains the ranges
of both j and k. Let j′ : Xm+n → A be a bijection such that j = j′ ◦ in. Then

φ = Hp
δ (φp, j

′ ◦ in) = Hm+n
δ (Hp

δ (φp, j
′), in),

by part 2 of Remark 2.14, and Hp
δ (φp, j

′) ∈ Φδ. Finally, let k′ ∈ Im,m+n be
such that k = j′ ◦ k′. Then ψ = Hm+n

δ (Hp
δ (φp, j

′), k′), as desired.
To complete the proof, we show how to choose the formulas θp so that

conditions (1c) and (2b) of Definition 3.1 are satisfied, and also so that no
member of Υ is in Φδ. We let θ0 = Vγ0,δ(ρ), as above. Suppose that p ∈ ω is
such that θp has been chosen, but θp+1 has not.

To satisfy condition (1c), let γp+1 be the least member of {γ0
q : q ∈ ω} which

is at least as big as both γp and γ0
p+1, and suppose that ψ is an element of Φmα ,

for some α ≤ γp+1 and some m ∈ ω. By Proposition 8.5, we can find a formula
θ′p ∈ Φ

np
γp+1+m+np such that Vγp,γp+1+m+np(θ′p) = θp and

H
np
γp+1+m+np(θ′p, in0) = Vγp+1+m+np,δ(ρ).

By condition (1c), there is a ψ′ ∈ Φmγp+1+m+np such that Vα,γp+1+m+np(ψ′) = ψ.

Applying condition (2c) of Definition 3.1, we can choose θ′′p ∈ Φ
m+np
γp+1+m+np and

j ∈ Im,np+m such that

H
m+np
γp+1+m+np(θ′′p , inp) = θ′p
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and
H
m+np
γp+1+m+np(θ′′p , j) = ψ′.

Then θp+1 = Vγp+1,γp+1+m+np(θ′′p ) is as desired, by Propositions 2.15 and 8.5.
To satisfy condition (2b), fix m ∈ ω. Each element of Φmδ will have the form

H
np
δ (φp, j) for some np ≥ m and j ∈ Im,np , in which case Vα+1,δ(φ) will be

Vα+1,γp(H
np
γp (θp, j)). Suppose then that for some p ∈ ω we have chosen np ≥ m

and θp but not θp+1, and that j ∈ Im,np and ψ in E(Vα+1,γp(H
np
γp (θp, j))) are

given. By Proposition 8.10, it suffices to find a θ′p ∈ Φ
np+1
γp ∩ F (ρ) such that

H
np+1
γp (θ′p, inp) = θp, and such that

Hnp+1
α (Vα,γp(θ′p), j ∪ {(xm, y)}) = ψ

for some y ∈ Xnp+1 \ range(j). By Proposition 2.15,

Vα+1,γp(Hnp
γp (θp, j)) = H

np
α+1(Vα+1,γp(θp), j).

By condition (3) of Definition 2.11, there is a ψ′ ∈ E(Vα+1,γp(θp)) such that

ψ = Hnp+1
α (ψ′, j ∪ {(xm, y)})

for some y ∈ Xnp+1\range(j). By Proposition 8.10, there is a θ∗p ∈ Φ
np
γp+1∩F (ρ)

such that θp = Vγp,γp+1(θ∗p). By Proposition 4.3, there is a θ′p ∈ E(θ∗p) such that
Vα,γp(θ′p) = ψ′. Then θ′p is as desired.

Finally let us see how to avoid the members of Υ. Fix m ≤ np, j ∈ Im,np
and υ ∈ Υ ∩ Ψm

δ . It suffices to show that we can find γp+1 in the interval
(max{γp, γ0

p+1}, δ) and a θp+1 ∈ Φ
np
γp+1 ∩ F (ρ) such that H

np
δ (θp+1, j) 6= υ.

Since Υ is disjoint from ms(ρ), there exists such a θp+1 as desired.

We now turn our attention to extending Scott processes of limit length in
the scattered case, which includes the case of counterexamples to Vaught’s Con-
jecture.

{ecdef}
9.10 Definition. Given a limit ordinal β and sets Φβ (α < β) such that each
Φα is a subset of Ψα, a path

∧
{ψα : α < β} through 〈Φα : α < β〉 is isolated

(with respect to 〈Φα : α < β〉) if for some α0 < β, |V −1
α0,α[{φα0}] ∩ Φα| = 1 for

all α ∈ (α0, β).

Proposition 9.3 shows that the term “with respect to 〈Φα : α < β〉” is
unnecessary in Definition 9.10, if 〈Φα : α < β〉 is a Scott process.

{ecover}
9.11 Remark. Suppose that β is a limit ordinal, and P = 〈Φα : α < β〉 is a
Scott process. Suppose that m ≤ n are elements of ω, j ∈ Im,n and φ ∈ Ψn

β is
an isolated path through P. Then Hn

β (φ, j) is isolated. To see this, note first of
all that the case m = n follows from part (1) of Remark 2.14. This fact allows
us to reduce to the case where j = im. Then a proof by induction reduces to
the case where n = m+ 1. This case follows part (2) of Proposition 5.1.
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9.12 Remark. Given a limit ordinal β and sets Φβ (α < β) such that each
Φα is a subset of Ψα, the isolated paths through 〈Φα : α < β〉 are exactly the
minimal set of the sentence formed by taking the conjunction of the unique
members of each set Φ0

α. This follows from Remark 9.11 and Proposition 8.5.

In Proposition 9.13, we do not require δ to have countable cofinality (whereas
we did for Theorem 9.9).

{limitecmodels}
Proposition 9.13. Suppose that δ is a limit ordinal, and that P = 〈Φα : α < δ〉
is a Scott process such that each element of

⋃
{Φα : α < δ} is extended by an

isolated path through P. Letting Φδ be the set of isolated paths through P,
〈Φα : α ≤ δ〉 is a Scott process. Furthermore, Φδ then satisfies amalgamation,
and every Scott process properly extending 〈Φα : α ≤ δ〉 has rank at most δ.

Proof. Checking that Φδ induces a Scott process involves checking conditions
(1e), (2b) and (2c) of Definition 3.1. Remark 9.11 gives one direction of (1e).
The other conditions can be shown by applying the corresponding fact at levels
above the ordinal α0 witnessing that the formulas in question are isolated.

That Φδ amalgamates also follows from the definition of the functions Hn
α+1

(n ∈ ω) for any ordinal α above the ordinal α0 witnessing that the formulas
in question are isolated. By Proposition 5.19, it also follows from the fact that
some Scott properly extending 〈Φα : α ≤ δ〉 has rank δ, which follows from the
next paragraph.

To see that every Scott process 〈Φα : α ≤ δ + 1〉 extending 〈Φα : α ≤ δ〉
has rank δ, suppose that we have n ∈ ω, φ ∈ Φnδ+1 and ψ ∈ Φn+1

δ such that

Hn+1
δ (ψ, in) = Vδ,δ+1(φ). Let β < δ be such that Vδ,δ+1(φ) and ψ are the unique

members of V −1
β,δ [{Vβ,δ+1(φ)}] and V −1

β,δ [{Vβ,δ(ψ)}] respectively. Then

Hn+1
β+1 (Vβ+1,δ(ψ), in) = Vβ+1,δ+1(φ)

by Proposition 2.15, so Vβ,δ(ψ) ∈ E(Vβ+1,δ+1(φ)) by condition (2a) of Definition
3.1. Then conditions (2a) and (2b) of Definition 3.1 imply that ψ ∈ E(φ).

9.14 Definition. A Scott subprocesses is a set of the form 〈Φα : α ∈ I〉, for
some Scott process {Φα : α < β} and I ⊆ β.

{scattereddef}
9.15 Definition. Given partial orders (P,≤P ) and (Q,≤Q), let us say that
(P,≤P ) contains a copy of (Q,≤Q) if there is a function π from Q to P such that
for all q1, q2 in Q, q1 ≤Q q2 if and only if π(q1) ≤ π(q2). We say that a partial
order is scattered if it does not contain a copy of 2<ω, ordered by extension.
We say that a Scott subprocess 〈Φα : α ∈ I〉 is scattered if (

⋃
α∈I Φα,≤V )

is scattered in this sense (recall Definition 2.7). We say that a Scott process
〈Φα : α < β〉 is eventually scattered if 〈Φα : α ∈ I〉 is scattered for some cofinal
I ⊆ β.

{CBrem0}
9.16 Remark. If a Scott process 〈Φα : α < β〉 of limit length is eventually
scattered, then there is a γ < β such that 〈Φα : α ∈ (γ, β)〉 is scattered.
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{CBrem}
9.17 Remark. Whether or not a given partial order is scattered is absolute
between wellfounded models of ZFC containing the partial order. Suppose that
(T,≤T ) is a tree ordering (a partial order such that the predecessors of any
point are wellordered by ≤T ) with T ⊆ L[T ]. The Cantor-Bendixon analy-
sis (iteratively removing nodes without incompatible extensions) shows that if
(T,≤T ) is scattered then every maximal linearly ordered subset of T is a mem-
ber of L[T ]. The Cantor-Bendixon rank of (T,≤T ) is the (possibly transfinite)
number of steps it takes for this analysis to terminate. If a Scott subprocess
P = 〈Φα : α ∈ I〉 is scattered, we call the Cantor-Bendixon rank of the partial
order (

⋃
{Φα : α ∈ I},≤V ) the Cantor-Bendixon rank of P. If an ordinal γ is

greater than the Cantor-Bendixon rank of P, then every path through P is an
element of Lβ+γ [P].

9.18 Definition. We say that a τ -structure N is Scott rank atomic if, letting
δ be the Scott rank of N , δ is a limit ordinal, and every element of Φδ(N) is
isolated in 〈Φα(N) : α < δ〉.

Combining Proposition 9.13 with Theorems 1.2, 6.8 and 7.11, we get the
following model-existence result. Recall that for any ordinal γ, Col(ω, γ) is the
partial order which adds a function (generically, a surjection) from ω to γ by
finite pieces, ordered by inclusion.

{alllimits}
Theorem 9.19. Let φ be a sentence of Lω1,ω(τ) and let η be the quantifier
depth of φ. Let β ∈ (η, ω2) be an ordinal such that φ has a model of Scott rank
β, but only countably many models of Scott rank γ for each countable ordinal γ
in the interval (η, β). Then for every limit ordinal δ ∈ (η, β), φ has a Scott rank
atomic model of Scott rank δ.

Proof. Let M be a model (which by taking the transitive collapse of a suitable
elementary substructure if necessary we may assume to be of cardinality at most
ℵ1) of φ of Scott rank β, and fix a limit ordinal δ < β. Let

P = 〈Φα(M) : α ∈ (η, δ)〉.

We claim first that P is scattered. To see this, suppose to the contrary that π
embeds 2<ω into (

⋃
{Φα(M) : α ∈ (η, δ)},≤V ). Let X be a countable elemen-

tary submodel of Lω3
[P] with η ⊆ X and π ∈ X. Let γ be the ordertype of

X ∩ δ. Let Q be the transitive collapse of X, and let P ′ = 〈Φα : α ∈ (η, γ)〉
and π′ be the images of P and π under this collapse. For each α ≤ η, let Φα
be Φα(M), and let P∗ be 〈Φα : α < γ〉. Let g be Q-generic for Col(ω, ωQ1 ), the

partial order adding a surjection from ω to ωQ1 by finite pieces.
For each x ∈ 2ω, 〈π′(x�n) : n ∈ ω〉 gives a path through an initial segment

of P∗ properly extending 〈Φα(M) : α ≤ η〉. Continuum many x ∈ 2ω are
generic over Q[g] for Cohen forcing. For each such x, the corresponding path
is a formula φx which by Theorem 9.9 is part of a Scott process in Q[g][x] of
successor length properly extending 〈Φα(M) : α ≤ η〉 and having a countable
top level. By Theorem 6.8, each of these formulas has a countable model Nx
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(of Scott rank rank less than ωQ2 ) in the corresponding Q[g][x], and by Theorem
1.2 they are all models of φ. Each φx then has the form φNxā,ζ , for some ordinal
ζ and some finite tuple ā from Nx. Since the formulas φxare pairwise ≤V -
incompatible, no τ -structure can satisfy more than one of them with the same
finite tuple, so no countable τ -structure can satisfy more than countably many
of them. It follows then that there exist continuum many models of φ of Scott
rank less than ωQ2 , which is countable, giving a contradiction.

Now Proposition 9.13 and Theorem 7.11 give a model of φ of Scott rank δ,
as desired (the model cannot have Scott rank less than δ, since P is nontermi-
nating).

{scatteredtree}
9.20 Remark. Suppose that P = 〈Φα : α < β〉 is a Scott process of countable
length, with all levels countable, having only countably many models of Scott
rank γ for each countable ordinal γ. Let T be the (class-sized) tree of Scott
processes extending P, ordered by extension. A minor variation of the first
paragraph of the proof of Theorem 9.19 shows that T is scattered.

9.21 Definition. Let P = 〈Φα : α < β〉 be a Scott process of limit length, let
m ≤ n be elements of ω and let φ ∈ Ψm

β and ψ ∈ Ψn
β be paths through P.

Let f be an element of Im,n. We say that ψ is (f, φ)-isolated if there exists
a γ < β such that, for all δ ∈ (γ, β), Vδ,β(ψ) is the unique θ ∈ Φnδ such that
Vγ,δ(θ) = Vγ,β(ψ) and Hn

δ (θ, f) = Vδ,β(φ).
{mschar2}

9.22 Remark. If P = 〈Φα : α < β〉 is an eventually scattered Scott process
of limit length, k ∈ ω and φ ∈ Ψk

β is a path through P, then ms(φ) is the set
of formulas of the form Hn

β (ψ, g), where for some m ≤ n in ω (with n ≥ k),
ψ ∈ Φnβ is (ik, φ)-isolated and g is in Im,n. That this set is contained in ms(φ)
follows from Remarks 9.5 and 9.6. The other direction follows from the usual
argument that in an eventually scattered partial order every node is extended
by an isolated path, applied to F (φ).

{rhoremark}
9.23 Remark. Theorem 9.9 shows that if δ is a limit ordinal and 〈Φα : α < δ〉
is a Scott process with just countably many paths, then for each such path ρ,
letting Φδ be ms(ρ) we get a Scott process 〈Φα : α ≤ δ〉. Since ms(φ) and
being scattered are absolute to forcing extensions, we get the same conclusion
from the assumption that 〈Φα : α < δ〉 is eventually scattered, without any
countability assumption. In this context, then, since ms(ρ) is the smallest set
one can add to 〈Φα : α < δ〉 to get a Scott processes with ρ in its last level, it
follows (again, in the case where 〈Φα : α < δ〉 is eventually scattered) that if φ
and ψ are paths through 〈Φα : α < δ〉 with φ ∈ ms(ψ), then ms(φ) is a subset
of ms(ψ).

In the following proposition, the countability assumption on the sets Φα can
be replaced by the assumption that 〈Φα : α < γ〉 is eventually scattered, using
Remark 9.23 (recall that pre-rank was defined in Definition 5.12).

{laterbound}
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Proposition 9.24. Let β be an ordinal, and let γ be the least limit ordinal
greater than or equal to β. Suppose that 〈Φα : α ≤ γ+1〉 is a Scott process of pre-
rank β, and that Φα is countable for all α < γ. Then the rank of 〈Φα : α ≤ γ+1〉
is at most γ.

Proof. Since Φα is countable for all α < γ, β is countable. By the definition of
pre-rank, 〈Φα : α ≤ γ〉 is the unique Scott process of length γ + 1 extending
〈Φα : α < γ〉. By Theorem 9.9, 〈Φα : α < γ〉 has only countably many paths.
By Proposition 9.13, all of them are isolated, and 〈Φα : α ≤ γ + 1〉 has rank at
most γ.

10 Absoluteness
{fabsection}

In this section we record various standard absoluteness results concerning coun-
terexamples to Vaught’s Conjecture. We assume here that our relational vocab-
ulary τ is countable. The set of τ -structures with domain ω is then naturally
seen as a Polish space Xτ , where a basic open set is given by the set of struc-
tures in which R(i0, . . . , in−1) holds, for R an n-ary relation symbol from τ
and i0, . . . , in−1 ∈ ω (see Section 11.3 of [4], for instance). Given a sentence
φ ∈ Lω1,ω(τ), the set of models of φ with domain ω is a Borel subset of Xτ .
By a theorem of Lopez-Escobar [11], every Borel subset of Xτ which is closed
under isomporphism is also the set of models (with domain ω) of some Lω1,ω(τ)
sentence.

Let us call the following (false) statement the analytic Vaught Conjecture: for
every countable relational vocabulary τ , every analytic subset of Xτ (closed un-
der isomorphism) which contains uncountably many nonisomorphic structures
contains a perfect set of nonisomorphic structures. Steel [19] presents two exam-
ples of analytic counterexamples to Vaught’s Conjecture (for certain relational
vocabularies), one due to H. Friedman and the other to K. Kunen. In this
section we use a forcing-absoluteness argument to prove the following, which
was presumably well-known. As mentioned in the introduction, the forcing-
absoluteness arguments in this section appear in essentially identical form in
Section 1 of [6].

{sec10thrm1}
Theorem 10.1. Suppose that A is a counterexample to the analytic Vaught
Conjecture, and let x ⊆ ω be such that A is Σ1

1 in x. Fix M ∈ A, and let β be
an ordinal. Then 〈Φα(M) : α < β〉 ∈ L[x].

Applying this theorem in forcing extensions of V we get the following osten-
sibly stronger fact.

{sec10cor2}
Corollary 10.2. Suppose that A is a counterexample to the analytic Vaught
Conjecture, and let x ⊆ ω be such that A is Σ1

1 in x. Let M be a member of the
reinterpreted version of A in a forcing extension of V , and let β be an ordinal.
Then 〈Φα(M) : α < β〉 ∈ L[x].

Before beginning the proof of Theorem 10.1 (which is short), we make a few
observations.
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10.3 Remark. Remarks 9.17 and 9.20, along with Theorem 1.2, show that if
φ is a counterexample to (the usual) Vaught’s Conjecture, γ is a limit ordinal
greater than the quantifier depth of φ andM is an inner model of ZFC containing
〈Φα(N) : α < β〉 for each τ -structure N |= φ and each β < γ, then M contains
〈Φα(N) : α < γ〉 for each τ -structure N |= φ.

In what follows we will talk of sufficient fragments of ZFC. The theory ZFC◦

from [2] is one such fragment.
{smallin}

10.4 Remark. As we are assuming that τ is countable, we can associate each
atomic or negated atomic formula from τ to an element of ω, and each Scott
process over τ of length 1 to a subset of P(ω). For a countable τ -structure,
this subset of P(ω) will be countable. Let =+ be the equivalence relation on
functions from ω × ω to 2 defined by setting f =+ g if

{{m : f(n,m) = 1} : n ∈ ω} = {{m : g(n,m) = 1} : n ∈ ω}.

Then =+ is easily seen to be a Borel equivalence relation, and it follows for
instance from Silver’s theorem on coanalytic equivalence relations (Theorem
5.3.5 of [4]) that every analytic set A ⊆ ω×ω2 containing representatives of
uncountably many equivalence classes contains a perfect =+-inequivalent set
(for =+ this can be proved more easily, considering separately the cases where

{{m : f(n,m) = 1} : n ∈ ω, f ∈ A}

is countable or uncountable, and in the former case arguing as in the proof of
Theorem 4.6 of [2]).

Let A be an analytic family of τ -structures on ω. It follows from the pre-
vious paragraph that if the set of Scott processes of length 1 corresponding to
structures in A is uncountable, then there exists a perfect subset of ω×ω2 cod-
ing distinct elements of this set, and, via the proofs of Theorems 6.4 and 6.5,
a perfect subset of ωω coding distinct structures in A. Working by induction,
essentially the same analysis (breaking into successor and limit cases) shows
that if β > 0 is a countable ordinal and the set of Scott processes of length
of less than β corresponding to structures in A is countable, then if there are
uncountably many Scott processes of length of β corresponding to structures
in A, then there is a perfect subset of ωω coding distinct elements of A. If A
is a counterexample to the analytic Vaught Conjecture, then, the set of Scott
processes length β corresponding to structures in A is countable for each β < ω1.

For any analytic family A of τ -structures, and any countable (possibly
empty) set of Scott processes of length β < ω1, the assertion that there ex-
ists a member of the family whose Scott process up to length β is not in this
countable set is Σ1

1 in codes for β, the family and the countable set, and thus
absolute to any model of (a sufficient fragment of) ZFC that contains them.
Furthermore, if such a model thought that there were uncountably many Scott
processes of length β corresponding to structures in A, it could find a perfect
subset of ωω coding distinct Scott processes in this family. It follows that if A is
a counterexample to the analytic Vaught Conjecture then any inner model N of
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(a sufficient fragment of) ZFC containing a real parameter code for A contains
all sequences of the form 〈Φα(M) : α < β〉, for M ∈ A and β < ωN1 . This gives

Theorem 10.1 for initial segments of Scott processes of length less than ω
L[x]
1 .

Proof of Theorem 10.1. Let θ > β be a regular cardinal of L[x] such that Lθ[x]
satisfies a sufficient fragment of ZFC as in Remark 10.4 (for instance, let θ be

a regular cardinal of V greater than 22(|β|+ω1)

). Let X be a countable (in V )
elementary submodel of Lθ[x] containing {x, 〈Φα : α < β〉} ∪ β. Let γ be such
that the transitive collapse of X is Lγ [x]. By the last paragraph of Remark
10.4, whenever g is an Lγ [x]-generic filter for Col(ω, β), 〈Φα : α < β〉 is in
Lγ [x][g]. This means that 〈Φα : α < β〉 is in Lγ [x] (this is a classical forcing
fact due to Solovay; the point is that otherwise one could choose a generic
filter while ensuring that each name in Lγ [x] realizes to some value other than
〈Φα : α < β〉).

{manyranks}
10.5 Remark. Let A be an analytic family of τ -structures on ω. The assertion
that A is a counterexample to the analytic Vaught Conjecture is Π1

2 in a real
parameter x for A, and therefore absolute to L[x].1 It follows (assuming that A
a counterexample to the analytic Vaught Conjecture) that for every ordinal γ,
there are cofinally many ordinals below (|γ|+)L[x] which are the Scott rank of a
countable structure in A, in any forcing extension of L[x] via the partial order
Col(ω, γ) (all levels of the Scott processes of these structures are then countable
in the corresponding forcing extensions). Applying Theorem 9.19, this gives (in
the case where A is Borel) that this set of ordinals (in such a forcing extension)
includes coboundedly many limit ordinals below (κ+)L[x].

Theorems 7.11 and 9.19, along with Corollary 10.2 and Remark 10.5, give
the following unpublished theorem of Leo Harrington from the 1970’s. The
arguments we have given here give a slightly stronger version of Harrington’s
theorem than the one in [14]. A similar result (for countable models) appears
in [17]. Theorem 11.2 gives non-Scott-rank-atomic models (as does [17]).

{Harringtonplus}
Theorem 10.6 (Harrington). Suppose that τ is a countable relational vocabu-
lary and that φ ∈ Lω1,ω(τ) gives a counterexample to Vaught’s Conjecture. Let
α be the quantifier depth of φ. Then for every limit ordinal δ in the interval
[α, ω2), φ has a Scott rank atomic model of Scott rank δ.

Proof. By Theorem 9.19, it suffices to show that for cofinally many β < ω2, φ
has a model of Scott rank at least β. Fix such a β. By Remark 10.5, in some
forcing extension by the partial order Col(ω, β), φ has a countable model with
Scott rank in the interval (β, ω2). Let γ be the Scott rank of this model. By
Corollary 10.2, the Scott process of this model of length γ + 1 exists already
in V , and since the levels of this Scott process are countable in the Col(ω, β)

1There exist perfectly many nonisomorphic structures in A if and only if some wellfounded
countable model of a sufficient fragment of ZFC thinks there exist perfectly many nonisomor-
phic structures in A (see the proof of Theorem 4.6 of [2], for instance), and this later statement
is easily seen to be Σ1

2. The statement that there are countable models in A of unboundedly
many Scott ranks below ω1 is easily seen to be Π1

2.
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extension, they have cardinality at most ℵ1 in V . By Proposition 5.19, the top
level of this Scott process amalgamates. By Theorem 7.11, a model of this Scott
process exists. By Theorem 1.2, this model is a model of φ.

Standard arguments show that if there is a counterexample to Vaught’s
Conjecture then there is one of quantifier depth at most ω, in an expanded
language. We given a new proof of this fact in Section 12.

{hmremark}
10.7 Remark. The proof of Theorem 1 of [5] can be rephrased in terms of the
arguments given here, showing that any counterexample to Vaught’s Conjecture
can be strengthened to a minimal counterexample. The point again is that if
σ ∈ Lω1,ω(τ) is a counterexample to Vaught’s Conjecture, and α is the quantifier
depth of σ, then there is a sentence σ′ ∈ Lω1,ω(τ) which is the unique member
of Φ0

α(M) for uncountably many countable models M satisfying σ. Then all
models of σ′ are models of σ, by Theorem 1.2, and σ′ is also a counterexample
to Vaught’s Conjecture. Let S be the set of all countable length Scott processes
which have σ′ as their unique sentence at level α and are initial segments of
the Scott process of some model of uncountable Scott rank. Since σ′ is a coun-
terexample to Vaught’s Conjecture, S is not empty, by Theorem 10.6. On the
other hand, since σ′ does not have perfectly many countable models, there will
be a P in S without incompatible extensions in S. Since any extension of P
in S will have the same property, there is such a member of S with successor
length. Let φ be the unique sentence in the last level of this process. Then φ
is a counterexample to Vaught’s Conjecture, and all uncountable models of φ
satisfy the same Lω1,ω(τ)-theory.

{Hjorthremark}
10.8 Remark. Hjorth [7] showed that if there exists a counterexample to
Vaught’s Conjecture, then there is one with no model of cardinality ℵ2. Recently,
this has been extended by Baldwin, S. Friedman, Koerwien and Laskowski
[1], who showed (among other things) that if there exists a counterexample
to Vaught’s Conjecture, then there is one with with the property that for some
countable Lℵ1,ℵ0

-fragment T , no model of cardinality ℵ1 has a T -elementary
extension. Roughly speaking, Hjorth’s argument (as reformulated by [1]), finds
an absolutely definable method for taking any countable structure M in a rela-
tional language and building a structure H(M) in such a way that (1) the Scott
sentence of H(M) cannot have a model of cardinality ℵ2; (2) H(M) contains a
copy of M ; (3) if M and N isomorphic then so are H(M) and H(N). It follows
from (3) that for any structure M in a relational vocabulary (countable or not),
the structure H(M) has the same Scott process in each forcing extension in
which M is countable. From the classical fact due to Solovay mentioned in the
proof of Theorem 10.1 it follows that every initial segment of the Scott process
of H(M) (as constructed in any such forcing extension) exists in V . It follows
from (1) and (2) that if M has Scott rank γ ≥ ω2, then the initial segment
of the Scott process of H(M) of length γ does not have a model in V (so the
condition |Φδ| ≤ ℵ1 in the statement of Theorem 7.11 is necessary).
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11 A local condition for amalgamation
{localsec}

In this section we give a sufficient condition for showing that the set of all paths
though a Scott process of limit length amalgamates, and use it to produce
models of a counterexample to Vaught’s Conjecture which are not Scott rank
atomic. As in Remark 9.17 above, if γ in the theorem below is greater than the
Cantor-Bendixon rank of P, then Φβ ⊆ M . Parts (1) and (5) of the theorem
can be phrased more genrally as theorems about scattered trees.

{Barwisetheorem}
Theorem 11.1. Suppose that P = 〈Φα : α < β〉 is an eventually scattered Scott
process, where β is a countable limit ordinal. Let γ > β be an ordinal, and let
M = Lγ [〈Φα : α < β〉]. Suppose that, in M , the cofinality of β is greater than
|Φα|, for each α < β. Let Φβ be the set of all paths through P.

{Barone}
1. Let A be a subset of

⋃
{Φα : α < β}, in M , such that A contains a member

of Φα for cofinally many α < β. Then there is a φ ∈ Φβ such that, for each
α < β, there exist δ ∈ β \ α and ψ ∈ A ∩ Φδ such that Vα,β(φ) = Vα,δ(ψ).

{Bartwo}
2. If Φβ ⊆M , then 〈Φα : α ≤ β〉 is a Scott process.

{Barthree}
3. If Φβ ⊆M , then Φβ amalgamates.

{Barfive}
4. If Φβ ⊆ M and P is nonterminating, then no model of 〈Φα : α ≤ β〉 of

Scott rank β is rigid.{Barsix}
5. Suppose that γ ≥ (β+)M , n ∈ ω, A is a stationary subset of β in M ,

and {ψα,i : α ∈ A, i < n} is a set in M such that, for each α ∈ A and
i < n, ψα,i ∈ Φα. Then there exist φi ∈ Φβ (i < n) such that, in M , for
stationarily many α ∈ A, for all i < n, Vα,β(φi) = ψα,i.{Barseven}

6. If γ ≥ (β+)M , and P is nonterminating, then Φβ has a non-isolated path.
{Bareight}

7. If γ ≥ (β+)M , then, for club many α < β, Φα amalgamates.

Proof. Since P is eventually scattered, we may work in a forcing extension in
which β is countable, as the set of paths through P is the same in any such
extension.

For part (1), let 〈γi : i ∈ ω〉 be a cofinal increasing sequence in β. Let Θ be
the set of θ such that, for some i ∈ ω, θ ∈ Φγi , and, for cofinally many δ < β,
there exists a ψ ∈ Φδ ∩ A with Vγi,δ(ψ) = θ. Since in M there is no cofinal
function from any Φα to β, Θ ∩ Φγ0

is nonempty, and, for each i ∈ ω and each
θ in Θ ∩ Φγi , there is ρ ∈ Θ ∩ Φγi+1 with Vγi,γi+1(ρ) = θ. The existence of a φ
as desired follows.

For part (2), all parts of Definition 3.1 are immediate (from the assumption
that P is eventually scattered, which implies that every member of each Φα
(α < β) is part of an element of Φβ), aside from conditions (2b) and (2c). Each
of these follow easily from part (1). For condition (2b), fix φ ∈ Φnβ (for some

n ∈ ω), α < β and θ ∈ E(Vα+1,β(φ)). We wish to find a ψ ∈ Φn+1
β such that

Hn+1
β (ψ, in) = φ and Vα,β(ψ) = θ. Applying part (1), it suffices to show that
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for each δ ∈ (α, β), there is a ρ ∈ Φn+1
δ such that Hn+1

δ (ρ, in) = Vδ,β(φ) and
Vα,δ(ρ) = θ. The existence of such a ρ follows from condition (2b) applied to
Vδ,β(φ). The argument for condition (2c) is similar, but we use the fact that
the union of the sets Im,n is countable.

For part (3), fix m < n ∈ ω, φ ∈ Φm+1
β and ψ ∈ Φnβ such that Hm+1

β (φ, im) =
Hn
β (ψ, im). Applying the first conclusion, it suffices to show that for each α < β,

there exist θ ∈ Φn+1
α and y ∈ Xn+1 \Xm such that

Hn+1
α (θ, im ∪ {(xm, y)}) = Vα,β(φ)

and Hn+1
α (θ, in) = Vα,β(ψ). Fix α. Since Vα,β(φ) is in E(Vα+1,β(Hm+1

β (φ, im)))
and

Vα+1,β(Hm+1
β (φ, im)) = Vα+1,β(Hn

β (ψ, im)) = Hn
α+1(Vα+1,β(ψ), im),

(by Proposition 2.15) there exist θ ∈ E(Vα+1,β(ψ), im) and y ∈ Xn+1 \Xm such
that

Hn+1
α (θ, im ∪ {(xm, y)}) = Vα,β(φ).

Then θ is as desired.
For part (4), let f be {(x0, x1)}. We need to find a φ ∈ Φ2

β such that

H2
β(φ, i1) = H2

β(φ, f). Applying the first conclusion, it suffices to show that

for each α < β, there is a θ ∈ Φ2
α such that H2

α(φ, i1) = H2
α(φ, f). Fix α.

Since P is nonterminating, there exist n ∈ ω and distinct ρ1, ρ2 ∈ Φnα+1 such
that Vα,α+1(ρ1) = Vα,α+1(ρ2). By condition (2c) of Definition 3.1, there exists
an υ ∈ Φ2n

α+1, and f, g ∈ In,2n such that H2n
α+1(υ, f) = ρ1 and H2n

α+1(υ, g) =
ρ2. There must be some xi ∈ Xn then such that f(xi) 6= g(xi). Let h =
{(x0, f(xi)), (x1, g(xi))}. Then H2n

α (Vα,α+1(υ), h) is as desired.
Part (5) follows from repeated application of the result for the case n = 1.

We prove this case. Fix ξ < β such that 〈Φα : α ∈ (ξ, β)〉 is scattered, and let
η be the Cantor-Bendixon rank of 〈Φα : α ∈ (ξ, β)〉. Assuming that there is
no φ as desired there is a ζ ∈ (β + η, β+) such that, letting M ′ = Lζ [P], there
exist, in M ′ an enumeration 〈φα : α < β〉 of Φβ and a club C ⊆ β such that
for all δ ∈ C ∩ A and all α < δ, Vδ,β(φα) 6= ψδ. Working in M , we can find an
elementary submodel X of M ′ such that ξ ⊆ X, C ∈ X and X ∩β ∈ C ∩A. Let
δ = X ∩ β. Then the Cantor-Bendixon rank of 〈Φα : α ∈ (ξ, δ)〉 is less than the
ordertype of X ∩ ζ, which means that every path through 〈Φα : α ∈ (ξ, δ)〉, in
particular ψδ, is in the transitive collapse of X. This means that ψδ = Vδ,β(φα)
for some α < δ, giving a contradiction.

For part (6), the assumption that P is nonterminating, plus Proposition
9.13, implies that for every limit ordinal α < β, Φα has a non-isolated path.
Applying part (5) gives a non-isolated φ.

For part (7), let A be the set of α < β for which Φα does not amalgmate.
Working in M , for each α ∈ A, pick mα < nα in ω, φα ∈ Φmα+1

α and ψα ∈
Φnαα such that Hmα+1

α (φα, imα) = Hnα
α (ψα, imα), and for which there is no

amalgamating formula in Φα. Applying part (5), there exist φ and ψ in Φβ and
a stationary set B ⊆ A such that, for all α ∈ B, Vα,β(φ) = φα and Vα,β(ψ) = ψα.
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Letting p and n be such that φ ∈ Φpβ and ψ ∈ Φnβ , it follows that 0 < p ≤ n,

and Hp
β(φ, ip−1) = Hn

β (ψ, ip−1). Applying part (3), there exist θ ∈ Φn+1
β and

y ∈ Xn+1\Xp−1 such that Hn+1
β (θ, in) = ψ and Hn+1

β (θ, ip−1∪{(xp−1, y)}) = φ.
Then, for any α ∈ B, Vα,β(θ) contradicts our assumption that α ∈ A.

By Theorem 7.11, there is exactly one model of a Scott process

〈Φα : α ≤ β〉

of Scott rank β, if |Φβ | ≤ ℵ1, 〈Φα : α < β〉 is nonterminating and Φβ amalga-
mantes.

Putting Theorem 11.1 together with the results of Section 10, we get Theo-
rem 11.2 below. In conjunction with Theorem 10.6, we have the following the-
orem of Sacks (see [16, 17]): if φ is a counterexample to Vaught’s Conjecture,
then for club many ordinals α below each of ω1 and ω2, φ has two nonisomorphic
models of Scott rank α.

{twomodelclubs}
Theorem 11.2. Let τ be a countable relational vocabulary, and suppose that
φ ∈ Lω1,ω(τ) is a counterexample to Vaught’s Conjecture. Then for club many
ordinals α below each of ω1 and ω2, φ has a model Scott rank α which is not
Scott rank atomic.

Proof. Let κ be either ω or ω1 (of V ). Work in L[φ]. By Corollary 10.2 (and
the fact that φ remains a counterexample to Vaught’s Conjecture in any forcing
extension, as discussed in Remark 10.5), there exists a nonterminating Scott
process P = 〈Φα : α < κ+〉 such that

• in any forcing extension in which κ+ is countable, P is satisfied by a model
of φ;

• each Φα has cardinality less than κ+.

Letting η be the quantifier depth of φ, we have by Theorem 1.2 that any model
of 〈Φα : α ≤ η〉 is a model of φ. By part (7) of Theorem 11.1, Φβ amalgamates,
for club many β < κ+. Fix such a β. Since P is a nonterminating Scott process
of length greater than β, Φβ contains a non-isolated path, by Proposition 9.13.
By Theorem 7.11, there is a model of 〈Φα : α ≤ β〉 of Scott rank β (it cannot
be of Scott rank less than β, since P is nonterminating).

The following question, a natural follow-up to Theorems 10.6 and 11.2, ap-
pears to be open.

11.3 Question. Let τ be a countable relational vocabulary, and suppose that
φ ∈ Lω1,ω(τ) is a counterexample to Vaught’s Conjecture. Must there be an
ordinal α such that φ has three nonisomorphic models of Scott rank α?

A positive answer to the previous question would follow from a positive
answer to both parts of the following question. The question has several natural
variations (for instance, one could strengthen the assumption on γ, as in parts
(5) and (6) of Theorem 11.1).
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11.4 Question. Suppose that P = 〈Φα : α < β〉 is a nonterminating scattered
Scott process, where β is a limit ordinal. Let γ > β be an ordinal, and let
M = Lγ [〈Φα : α < β〉]. Suppose that, in M , the cofinality of β is greater than
|Φα|, for each α < β. Let Φβ be the set of paths through P, and suppose that
Φβ ⊆M .

1. Must ms(φ) amalgamate, for each φ ∈ Φβ?

2. Must there be a non-isolated φ ∈ Φβ such that ms(φ) 6= Φβ?

12 Isomorphic subprocesses
{Isomsubsec}

Recall that a Scott subprocesses is a set of the form 〈Φα : α ∈ I〉, for some Scott
process {Φα : α < β} and I ⊆ β. An isomorphism between Scott subprocesses
〈Φα : α ∈ I〉 and 〈Υα : α ∈ J〉 is a bijection

π :
⋃
{Φα : α ∈ I} →

⋃
{Υα : α ∈ J}

which commutes with the vertical and horizontal projection functions, i.e., such
that there is an order preserving bijection σ from I to J and,

• for all α ≤ γ in I, and all φ ∈ Φγ , Vσ(α),σ(γ)(π(φ)) = π(Vα,γ(φ));

• for all α ∈ I, m ≤ n in ω, φ ∈ Φnα and j ∈ Im,n,

Hn
σ(α)(π(φ), j) = π(Hn

α(φ, j)).

The following theorem shows, among other things, that a Scott process of
successor length is essentially determined by how the projection functions act
on its first and last levels.

{subisom}
Theorem 12.1. Let 〈Φα : α ≤ β〉 and 〈Υα : α ≤ γ〉 be nonterminating Scott
processes. Let δ < β and ε < γ such that the Scott subprocesses {Φδ,Φβ}
and {Υε,Υγ} are isomorphic. Then the intervals [δ, β] and [ε, γ] have the same
ordertype, and 〈Φα : α ∈ [δ, β]〉 and 〈Υα : α ∈ [ε, γ]〉 are isomorphic.

Proof. Let π : Φδ ∪ Φβ → Υε ∪ Υγ be an isomorphism. Let ζ be such that
δ+ ζ = β. Without loss of generality, we may assume that ε+ ζ ≤ γ. We define
recursively, for η < ζ a ⊆-increasing sequence of isomorphisms

πη :
⋃
{Φα : α ∈ [δ, δ + η] ∪ {β}} →

⋃
{Υα : α ∈ [ε, ε+ η] ∪ {γ}},

with π0 as π. When η is a limit ordinal, the existence of a unique extension as
desired follows from condition (1c) of Definition 3.1, applied to Φδ+η, Φβ , Υε+η.
The successor case is similar, but slightly more involved : for each n ∈ ω and
each φ ∈ Φnδ+η+1, the formula Vδ+η,β(ψ) and the set

Vδ+η,β [{θ ∈ Φn+1
β : Hn+1

β (θ, in) = ψ}]
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are the same for all ψ ∈ Φβ ∩ V −1
δ+η+1,β [{φ}]. It follows that the formula

Vε+η,γ(πη(ψ)) and the set

Vε+η,γ [{θ ∈ Υn+1
γ : Hn+1

γ (θ, in) = πη(ψ)}],

and therefore, Vε+η+1,γ(πη(ψ)) are the same for all such ψ, by Proposition 4.4.
This common value of Vε+η+1,γ(πη(ψ)) is the appropriate value for πη+1(φ).

Finally, having defined πη for each η < ζ, let π∗ be the union of these
functions. Then π∗ is an isomorphism from

⋃
{Φα : α ∈ [δ, β]} to

⋃
{Υα : α ∈

[ε, ε + ζ), γ}. It follows then that Vε+ζ,γ is injective on Υγ (essentially by the
argument just given for constructing the maps πη). Since 〈Υα : α ≤ γ〉 was
assumed to be nonterminating, we have that ε+ ζ = γ.

12.2 Remark. The assumption that the Scott subprocesses in Theorem 12.1 are
nonterminating is mostly for notational convenience. Without this assumption,
and adding the assumption that the ordertype of the interval [δ, β] is at most that
of the interval [ξ, γ], the proof gives directly that 〈Φα : α ∈ [δ, β]〉 is isomorphic
to 〈Υα : α ∈ [ε, ε + ζ) ∪ {γ}〉, where ζ is such that δ + ζ = β. In general, if
〈Φα : α ≤ δ〉 is a Scott process, γ is an element of δ, I is a subset of γ and
Vγ,δ�Φδ is injective, then 〈Φα : α ∈ I ∪{γ}〉 is isomorphic to 〈Φα : α ∈ I ∪{δ}〉.

The following theorem shows that, up to isomorphism, the tree of Scott
processes extending a given a Scott process of successor length is determined by
the last two levels of the Scott processes, up to isomorphism.

{recoverytheorem}
Theorem 12.3. Let P = 〈Φα : α ≤ β + 1〉 and Q = 〈Υα : α ≤ γ + 1〉 be Scott
processes such that the Scott subprocesses {Φβ ∪ Φβ+1} and {Υγ ∪ Υγ+1} are
isomorphic. Then for each ordinal δ > 0 and each Scott processes 〈Φα : α ≤
β + 1 + δ〉 extending P there is a unique Scott processes 〈Υα : α < γ + 1 + δ〉
extending Q such that the Scott subproceses 〈Φα : α ∈ [β, β + 1 + δ)〉 and
〈Υα : α ∈ [γ, γ + 1 + δ)〉 are isomorphic.

Proof. By induction on δ. The limit case is immediate. For the case δ + 1, the
desired set Υγ+1+δ+1 is induced by the fact that each φ ∈ Φβ+1+δ+1 is uniquely
determined by Vβ+1+δ,β+1+δ+1(φ) and E(φ). Checking that this induced set
Υγ+1+δ+1 gives a Scott process is routine for essentially all the conditions of
Definition 3.1. For condition (2b), it follows from the fact that the domain of
our given isomorphism contains cofinally many levels below γ + 1 + δ.

{recrem}
12.4 Remark. We needed to start with an isomorphism on a pair of levels in
Theorem 12.3, as opposed to just one level, in order to ensure that the successor
levels of Q would satisfy condition (2b) of Definition 3.1. In Theorem 12.5 below
this issue does not arise, since we start our construction of Q at level 0, so there
are no instances of condition (2b) to consider.

In combination with the previous theorem, the Theorem 12.5 shows that if
there is a counterexample to Vaught’s Conjecture, then there is one given by a
Scott process of length 2. This gives another proof of the well-known fact that
if there is a counterexample to Vaught’s Conjecture, then there is one given by
a Lℵ1,ℵ0

sentence of quantifier depth ω.
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{startingover}
Theorem 12.5. Let β, γ be ordinals, and let P = 〈Φα : α ∈ [β, β + γ)〉 be a
Scott subprocess. Then there is a Scott process Q = 〈Υα : α < γ〉 isomorphic to
P, over a distinct vocabulary.

Proof. By Theorem 12.3 and Remark 12.4, it suffices to produce a Scott process
of length 1 whose unique level is isomorphic to Φβ . Let τ be the vocabulary
corresponding to P. Let µ the vocabulary consisting of, in addition to =, a
relation symbol Rφ for each φ ∈ Φβ , where Rφ and φ have the same arity. We
construct Υ0 and the desired isomorphism π by defining the formula π(φ) for
each φ ∈ Φβ .

Fix n ∈ ω and Φnβ . The formula π(φ) will be a conjunction consisting of
one instance each of the formula xi 6= xj , for distinct pair xi, xj from Xn,
and for each formula of the form Rψ(y0, . . . , ym−1) (for m ∈ ω, ψ ∈ Φmβ and
{y0, . . . , ym−1} ⊆ Xn) either this formula or its negation. If there exist i <
j < m such that yi = yj (in particular, if m > n) we choose the negation.
Otherwise, letting f ∈ Im,n be such that yi = xf(i) for each i < m, we choose
Rψ(y0, . . . , ym−1) if and only if Hn

β (φ, f) = ψ. This determines π(φ).
To check that this works, consider n ∈ ω, φ ∈ Φnβ , k ≤ n and g ∈ Ik,n.

Let θ = Hn
β (φ, g). We want to see that π(θ) is the set of conjuncts from π(φ)

whose variables are contained in the range of g, with each variable replaced
by its g-preimage. For the conjuncts of the form xi 6= xj this is clear. Now
suppose that we have a formula of the form Rψ(y0, . . . , ym−1), for some m ∈ ω,
ψ ∈ Φmβ and {y0, . . . , ym−1} ⊆ Xk. Exactly one of Rψ(y0, . . . , ym−1) and its
negation is a conjunct of π(θ), and we want to see that Rψ(y0, . . . , ym−1) is a
conjunct of π(θ) if and only if Rψ(g(y0), . . . , g(ym−1)) is a conjunct of φ. The
case where there exists an i < j < m such that yi = yj works out (in each
direction), since g is an injection. In the other case, let f ∈ Ik,m be such that
yi = xf(i) for each i < m. Then Hn

β (φ, g ◦ f) = Hk
β (θ, f), by part (2) of Remark

2.14, so Hk
β (θ, f) = φ if and only if Hn

β (φ, g ◦ f) = ψ, as desired. For the
reverse direction, suppose that we have a formula of the form Rψ(y0, . . . , ym−1),
for some m ∈ ω and ψ ∈ Φmβ , with {y0, . . . , ym−1} contained in the range of

g. Then the formula Rψ(g−1(y0), . . . , g−1(ym−1)) is of the type just considered
(i.e., {g−1(y0), . . . , g−1(ym−1)} ⊆ Xk), and we are done.

13 Projection structures
{projstructsec}

The results of section 12 show that if there is a counterexample to Vaught’s
Conjecture then there is one whose models are essentially the Scott processes
of the structures from the given counterexample (note, however, that while the
Scott processes of two structures being isomorphic does not imply that the
structures themselves are isomorphic, it does imply that their Scott ranks are
the same). We make this explicit in this section. However, we leave most of
the verification to the reader, as the details are essentially the same as the
arguments of the previous section.
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We consider in this section structures whose relations satisfy the properties
of the projection functions on Scott subprocesses, and whose points play the
role of the formulas in a Scott process. These structures could be defined more
generally, but we concentrate on a case (i.e., subprocesses with four levels, cor-
responding to levels 0, 1, γ and γ+ 1 of a structure of Scott rank γ) that seems
more relevant to Vaught’s Conjecture.

We let µ∗ be the vocabulary consisting of =, unary predictate symbols Pn,i
(n ∈ ω, i ∈ 4) and unary function symbols vi for i ∈ 4 and hf for f in⋃

{Im,n : m ≤ n < ω}.

If M is a µ∗-structure, we let LMi and LM≥i denote the sets
⋃
{PMn,i : n ∈ ω} and⋃

{PMn,j : n ∈ ω, j ∈ 4 \ i} respectively, for each i ∈ 4. Similarly, we let RMm and

RM≥m denote the sets
⋃
{PMm,i : i ∈ 4} and

⋃
{PMn,i : n ∈ ω \ m, i ∈ 4} respectively,

for each m ∈ ω. We say that a projection structure is a µ∗-structure M such that
the following hold (the following lists established properties of the projection
functions, plus parts of the definition of Scott process corresponding to a Scott
subprocess whose first two levels are the first two levels of the corresponding
process, and such that the vertical projection function from the last level to the
second-to-last level is injective).

1. The sets PMn,i (n ∈ ω, i ∈ 4) are nonempty and partition the domain of M .
(The PMn,i’s correspond to Φnα’s.)

2. Each vMi has domain LM≥i and range LMi , and is the identity function on

LMi . (Each vMi corresponds to a function of the form
⋃
{β ∈ I}Vα,β , for I

the set of levels at or above α in the corresponding subprocess.)

3. For all i ≤ j < 4, vMi ◦ vMj = vMi�L
M
j. (This corresponds to Remark 2.8.)

4. The function vM3 is injective. (The third level of our structures correspond
to the γ-th level of a structure of Scott rank γ, and the fourth level to the
(γ + 1)-st level.)

5. For all i ≤ j < 4, and n ∈ ω, PMn,i = vMi[P
M
n,j]. (This corresponds to part

(1c) of Definition 3.1.)

6. For all m ≤ n in ω and all f ∈ Im,n \
⋃
{Im,p : p ∈ [m,n)}, hMf has

domain RM≥n and range RMm . (Each hMf corresponds to a function of the
form φ 7→ H(φ, f), omitting the subscripts and superscripts on H.)

7. For all i < j < 4, m ≤ n in ω, f ∈ Im,n and p ∈ PMn,j,

vi[{q ∈ PMm+1,j : hMim(q) = hMf(p)}]

is equal to

{hMim∪{(xm,y}(q) : y ∈ Xn+1 \ Xm, q ∈ vi[{r ∈ PMn+1,j : hMin(r) = p}]}

(This is a combination of part (3) of Definition 2.11 with Proposition 4.4.)
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8. For all i < 4, all n ∈ ω, all f ∈ In,n and all p ∈ PMn,i, h
M
f(p) ∈ PMn,i. (This

corresponds to part (1d) of Definition 3.1.)

9. For all i < 4, and all m ≤ n in ω, PMm,i = hMim [P
M
n,i]. (This corresponds to

part (1e) of Definition 3.1.)

10. For all i < 4, all m ≤ n ≤ p in ω, all p ∈ PMp,i, all f ∈ In,p and all g ∈ Im,n,
hMg(h

M
f(p)) = hMf◦g(p). (This corresponds to part (2) of Remark 2.14.)

11. For all i ≤ j < 4, all m ≤ n in ω, all f ∈ Im,n, and all p ∈ PMn,β ,

vMi(h
M
f(p)) = hMf(v

M
i(p)).

(This corresponds to Proposition 2.15.)

12. For all n ∈ ω and all distinct p, q ∈ PMn,1,

vM0[{r ∈ PMn+1,1 : hMin(r) = p}] 6= vM0[{r ∈ PMn+1,1 : hMin(r) = q}].

(This corresponds to the fact that formulas on level 1 are determined by
their E-sets, which in turn are definable from the projection functions, by
condition (2a) of Definition 3.1.)

13. For all n ∈ ω, p ∈ PMn,1 and q ∈ PMn,2 with vM1(q) = p,

vM0[{r ∈ PMn+1,2 : hMin(r) = q}] = vM0[{r ∈ PMn+1,1 : hMin(r) = p}].

(This corresponds to Proposition 4.4.)

14. For all i < 4, n,m in ω, p ∈ PMn,i and q ∈ PMm,i, there exist r ∈ PMn+m,i and
f ∈ Im,n+m such that p = hMin(r) and q = hMf(r). (This corresponds to
part (2c) of Definition 3.1.)

If P is a Scott process of length 2 (over a relational vocabulary τ as assumed
in this paper), then there is a surjective correspondence between the Scott pro-
cesses extending P whose length is two more than their rank and the projection
structures (as defined in this section) whose first two levels are isomorphic to
P (with the horizontal and vertical projection functions corresponding to the
functions hf and vi). This is essentially Theorem 12.3. This correspondence
may not be injective, as non-isomorphic structures may have isomorphic Scott
processes (consider for instance a structure M with a unary predicate P , where
the restrictions of M to PM and |M | \ PM are nonisomorphic; the structure
with the interpretation of P reversed gives an isomorphic Scott process). It
follows that if Vaught’s Conjecture is false, then there is a counterexample con-
sisting of all projection structures whose first two levels are isomorphic to some
fixed Scott process of length 2 (equivalently, an equivalence class of the class of
projection structures under isomorphism of the first two levels).
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