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SOME RESULTS ABOUT (+) PROVED BY ITERATED FORCING

TETSUYA ISHIU AND PAUL B. LARSON

Abstract. We shall show that the consistency of CH+¬(+) and CH+(+)+there are

no club guessing sequences on ω1. We shall also prove that ♢+ does not imply the existence

of a strong club guessing sequence on ω1.

§0. Introduction. The principle (+) and its variations were first considered
by the second author in [2]. They are very weak club guessing principles. The
properties of the principles were largely unknown until recently. While J. Moore
proved that MRP implies the negation of (+), it was not known whether the
negation of (+) has any large cardinal strength, or CH implies (+).
The first main result is to show that just from ZFC, we can build a model

of CH+¬(+). Hence, it answers both questions in the previous paragraph. We
also build a model of CH+(+) in which there is no club guessing sequence on
ω1. This is the first model satisfying these properties.
The last part of this paper is devoted to construct a model of ♢+ in which

there is no strong club guessing sequence on ω1. It answers the question asked
by the first author in [1]. The proof in fact builds a model of ♢+ in which
the “strong” version of (+) fails. This demonstrates how effective the use of
variations of (+) is in the investigation of guessing principles.
The structure of this paper is as follows. In Section 1, we shall give the defini-

tions of (+)k, (+)<ω, and related notions. In Section 2, the results by S. Shelah
and J. Moore about the iteration adding no new reals are described. It will be
used repeatedly in the later sections. Then, we shall build a model of CH+¬(+)
in Section 3. In Section 4, we shall prove some lemmas about the internalization.
They are slightly improved from the ones in [1]. By using these lemmas, we shall
prove the consistency of CH+(+)<ω + there is no club guessing sequence on ω1

in Section 5, and ♢+ + ‘there is no strong club guessing sequence on ω1’ in Sec-
tion 6.
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§1. The principle (+). The following principle was introduced by the second
author in [2].

Definition 1.1. Let k < ω and S a stationary subset of ω1 ∩ Lim. (+)k(S)
is defined as the principle that asserts the existence of a stationary subset T of
[H(ω2)]

ℵ0 such that for every N ∈ T , N ∩ ω1 ∈ S and for N0, . . . , Nk−1 ∈ T
with Ni ∩ω1 = N0 ∩ω1 ∈ S for every i < k, if Di ∈ Ni is a club subset of ω1 for
every i < k, then

∩
i<k Di ∩N0 ̸= ∅. (+)(S) denotes (+)2(S).

(+)<ω(S) is defined as the principle that asserts the existence of a stationary
subset T of [H(ω2)]

ℵ0 that witnesses (+)k(S) for every k < ω, i.e. for every
N ∈ T , N ∩ ω1 ∈ S and for every finite subset {N0, . . . , Nk−1} of T with
Ni ∩ω1 = N0 ∩ω1 ∈ S for every i < k, if Di ∈ Ni is a club subset of ω1 for every
i < k, then

∩
i<k Di ∩N0 ̸= ∅.

Trivially, (+)<ω(S) implies (+)k(S) for every k < ω and for every k < ω,
(+)k+1(S) implies (+)k(S).

Definition 1.2. We say that ⟨Fδ : δ ∈ ω1 ∩ Lim⟩ is a (+)<ω-sequence if and
only if

(i) for every δ ∈ ω1 ∩Lim, Fδ is a filter on δ such that every cobounded subset
of δ belongs to Fδ, and

(ii) for every club subset D of ω1, there exists a δ ∈ ω1∩Lim such that D∩ δ ∈
Fδ.

Definition 1.3. Let k < ω. We say that ⟨Fδ : δ ∈ ω1 ∩ Lim⟩ is a (+)k-
sequence if and only if

(i) for every δ ∈ ω1 ∩ Lim, Fδ is a family of subsets of δ such that Fδ is
closed under superset and contains all cobounded subsets of δ and for every
x0, . . . , xk−1 ∈ Fδ,

∩
i<k xk is unbounded in δ, and

(ii) for every club subset D of ω1, there exists a δ ∈ ω1∩Lim such that D∩ δ ∈
Fδ.

We omit k when k = 2.

J. Moore showed that (+)<ω holds if and only if there exists a (+)<ω-sequence
and (+)k holds if and only if there exists a (+)k-sequence.

§2. Iteration adding no new reals. For every set X, let θ̄X be the least

regular θ cardinal such that P(X) ∈ H(θ) and θX =
(
2|H(θ̄X)|

)+

. Notice that if

P is a forcing notion, then for every regular cardinal θ ≥ θP , if G ⊆ P is generic,
then H(θ)V [G] = H(θ)V [G].

Definition 2.1. Let P be a forcing notion. If P is proper and adds no new
reals, then we say that P is totally proper. Let N be a set (typically a countable
elementary submodel of some H(θ)). We say that a condition p ∈ P is totally
(N,P )-generic if and only if p is (N,P )-generic and p decides all open dense
subsets of P lying in N .
We say that a condition p ∈ P is finitely (N,P )-generic if and only if p is

(N,P )-generic and for every maximal antichain A of P lying in N , there are at
most finitely many a ∈ A that is compatible with p.
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Clearly, for every proper forcing notion P , P is ωω-bounding if and only if
whenever N is a countable elementary submodel of H(θP ), P ∈ N , and p ∈
P ∩N , there exists a q ≤ p that is finitely (N,P )-generic.
The following lemma is due to S. Shelah and proved in [4].

Lemma 2.2. Let P be an ωω-bounding proper forcing notion and Q̇ a P -name
for an ωω-bounding proper forcing notion. Let θ ≥ θP∗Q̇ be a regular cardinal.

N0 and N1 two countable elementary submodels of H(θ) with P, Q̇ ∈ N0 ∈ N1.
Suppose that p is finitely (N0, P )-generic and (N1, P )-generic, q̇ ∈ N0 is a P -

name for an element of Q̇. Then, there exists a P -name q̇′ such that (p, q̇′) is

finitely (N0, P ∗ Q̇)-generic and (N1, P ∗ Q̇)-generic.

The main point of the previous lemma is that if p is strong enough, then we
do not have to extend p to find a finitely (N0, P ∗ Q̇)-generic condition. This
is a key lemma to prove the preservation of ωω-bounding forcing by countable
support iteration.
It was pointed out by S. Shelah in [4] that a countable-support iteration of

totally proper forcing notions may add a new real. In the same book, he gave
several conditions that guarantees that the iteration adds no new reals. The
following is one of them.

Lemma 2.3. Suppose that ⟨Pα, Q̇β : β < α ≤ η⟩ is a countable support itera-
tion such that for every α < η, Pα forces that

(i) Q̇β is D-complete with respect to some simple 2-completeness system D, and
(ii) Q̇β is proper in every totally proper extension.

Then, Pη adds no new reals.

Instead of completeness systems, we shall use the notion of completely proper
forcing, introduced by J. Moore in [3]. Consider the language of ZFC with a

predicate P for a distinguished forcing. Let ZFCP be the axioms of ZFC with
the power set axiom replaced by “P(P(P )) exists”. The objects of the category
M are countable transitive sets M together with a distinguished element PM

such that M satisfies ZFCP when P is interpreted as PM .
An arrow

−−→
MN inM is an elementary embedding ε : M → N with the property

that ε ∈ N and N � ‘M = dom(ε) is countable’. We write M → N to mean

that
−−→
MN is an arrow in M. We usually consider commutative diagrams in M,

so there will be at most one arrow between two given objects.

Definition 2.4. Suppose that N̂ is a model of ZFCP and M̂ is an elementary
submodel of N̂ such that M̂ ∈ N̂ and N̂ �‘M̂ is countable’. Let M and N be the
transitive collapses of M̂ and N̂ respectively. Then, there is a unique induced
arrow

−−→
MN that commutes with the collapsing map (See Figure 1).

Definition 2.5. Let θ be a regular cardinal. Then, a (P, θ)-diagram is a
diagram in M such that there exist a minimum M in the order induced from the
arrows and an elementary embedding ε : M → H(θ) such that ε(PM ) = P . Let

M̂ denote ε′′M . A P -diagram means a (P, θ)-diagram for some θ.
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Figure 1. Induced arrow
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Figure 2. Completely proper forcing notion

Definition 2.6. Let
−−→
MN be an arrow in M. Let G ⊆ PM . We say that G

is
−−→
MN -prebounded if it satisfies the following condition: for every Ñ in M, if

G ∈ Ñ and there is an arrow from N to Ñ , we have Ñ �‘G is bounded in P Ñ ’.

Note that G is not necessarily in N , so we cannot ask if N satisfies ‘G is
bounded in PN ’. The point of the previous definition is that despite of this fact,
no matter how we pick the expansion Ñ of N with G ∈ Ñ , Ñ satisfies ‘G is

bounded in P Ñ ’.

Definition 2.7. A forcing notion P is completely proper if there is a regular
cardinal θ such that for every (P, θ)-diagram of the form M → Ni (i < 2) and
p ∈ PM , there exists a (M,PM )-generic filter G ⊆ PM such that n p ∈ G, and

G is
−−→
MNi-prebounded for i < 2.

Figure 2 depicts the definition of completely proper forcing notions. Suppose
that we are given the diagram of M,N0, N1. Then, for every p ∈ PM , there
exists a (M,PM )-generic filter such that p ∈ G and for both i < 2, whenever Ñi

is in M and G ∈ Ñi, Ñi satisfies ‘G is bounded in P Ñi ’. Note that G may not
belong to either N0 or N1.
In [3], J. Moore proved the following lemma.

Lemma 2.8. Every completely proper forcing notion is D-complete with respect
to some simple 2-completeness system D.

The following lemma easily follows from Lemma 2.3 and Lemma 2.8.

Lemma 2.9. Let P = ⟨Pα, Q̇β : β < α ≤ η⟩ be a countable support iteration
such that for every α < η, Pα forces that

(i) Q̇α is completely proper, and

(ii) Q̇α is proper in every totally proper extension.

Then, P is totally proper.
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§3. The negation of (+) is consistent with CH. This section is devoted
to the construction of the model of CH+¬(+).

Definition 3.1. Let F⃗ = ⟨Fδ : δ ∈ ω1 ∩ Lim⟩ be a sequence on ω1 that
satisfies (i) of Definition 1.3, i.e. for every δ ∈ ω1 ∩ Lim, Fδ is a filter on δ such

that every cobounded subset of δ belongs to Fδ. Let P (F⃗ ) be the forcing notion

defined as p ∈ P (F⃗ ) if and only if p is a closed bounded subset of ω1 so that for

every δ ∈ p ∩ Lim, p ∩ δ ̸∈ Fδ. P (F⃗ ) is ordered by end-extension.

Lemma 3.2. Let F⃗ = ⟨Fδ : δ ∈ ω1 ∩ Lim⟩ be a sequence on ω1 that satisfies

(i) of Definition 1.3. Then, P (F⃗ ) is proper. Moreover, P (F⃗ ) is proper in every
totally proper extension.

Proof. First, we shall show that P (F⃗ ) is proper. Let P = P (F⃗ ). Let θ ≥ θP
be a regular cardinal, N a countable elementary submodel of H(θ) with F⃗ , P ∈
N , and p ∈ P ∩N . Define δ = N ∩ ω1. It is easy to build two generic sequence
⟨p0n : n < ω⟩ and ⟨p1n : n < ω⟩ for N such that p00 = p10 = p and for every n < ω,
p0n∩p1n = p. Define q0 =

∪
n<ω p0n∪{δ} and q1 =

∪
n<ω p1n∪{δ}. If q0 ∈ P , then

clearly q0 is (N,P )-generic. Suppose not. Then, q0 ∩ δ ∈ Fδ. Since every pair
of elements in Fδ must have unbounded intersection in δ, q1 ∩ δ ̸∈ Fδ. It follows
that q1 ∈ P and hence q1 is (N,P )-generic.

To see that P (F⃗ ) is proper in every totally proper extension, let W be any

totally proper extension of V . Note that since P(ω)W = P(ω)V , F⃗ satisfies

(i) of Definition 1.3 in W . Thus, we can consider P (F⃗ )W . By using the same

proof as above, we can show that P (F⃗ )W is proper. However, it is easy to see

P (F⃗ )W = P (F⃗ )V . Therefore, P (F⃗ )V is proper in W . ⊣

Lemma 3.3. Let F⃗ = ⟨Fδ : δ ∈ ω1 ∩ Lim⟩ be a sequence on ω1 that satisfies

(i) of Definition 1.3. Then, P (F⃗ ) is completely proper.

Proof. Let P = P (F⃗ ). Let M,N0, N1 be countable transitive sets such that

M is the transitive collapse of a countable elementary submodel M̂ of H(θ) with

P ∈ M̂ , M → N0, M → N1. Let p ∈ PM . We need to show that there is a
M -generic filter G ⊆ PM which is

−−→
MNi-prebounded. Let δ = ω1

M .
We can easily build three generic sequence ⟨pkn : n < ω⟩ (k < 3) such that

p00 = p10 = p20 = p and for every k < l < 3 and n < ω, pkn ∩ pln = p. Then

for each i = 0, 1, for at most one k < 3,
∪

n<ω pkn ∈ Fδ
Ni . Thus, there exists

a k < 3 such that
∪

n<ω pkn ̸∈ Fδ
Ni for i = 0, 1. Let q =

∪
n<ω pkn ∪ {δ} and

G = {p′ ∈ PM : q ≤ p′}. Then for i = 0, 1, if Ni → Ñi and G ∈ Ñi, then

we have q ∈ Ñi and q is a lower bound of G. Thus, G is
−−→
MNi-prebounded for

i = 0, 1. ⊣

Theorem 3.4. It is consistent with GCH that (+) fails.

Proof. We begin with the model of GCH. Let P be the countable support

iteration of length ω2 of the bookkeeping of all forcing notions of the form P (F⃗ )

where F⃗ is a (+)-sequence. By Lemma 3.3, P (F⃗ ) is completely proper. It is

easy to see that P (F⃗ ) is proper in every extension that has the same ω1 and
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countable subsets of ω1. Therefore, P is proper and by Lemma 2.9, P adds no
new reals. Thus, P forces that CH holds and (+) fails. ⊣

§4. Internalization. In this section, we shall prove the lemmas that are
slighly improved from the ones proved by the first author in [1], which are nec-
essary for the next section.
First, we shall state the rough idea behind the lemmas. Let θ′, θ be un-

countable regular cardinals such that θ′ < θ. Let A be a structure expanding
⟨H(θ),∈,≤H(θ)⟩ where ≤H(θ) is a fixed well-ordering of H(θ). Then, we can
find a structure B on H(θ′) such that whenever N is a countable elementary

substructure of B, we have SkA(N) ∩H(θ′) = N .
In order to deal with (+)<ω, we need to use a tower of structures instead of a

single structure.

Definition 4.1. A sequence ⟨Nβ : β < η⟩ is called a tower if and only if

(i) (increasing) for every γ < β < η, Nγ ⊆ Nβ ,
(ii) (continuous) for every β < η, if β is a limit ordinal, then Nβ =

∪
γ<β Nγ ,

and
(iii) for every δ < η with δ + 1 < η, ⟨Nγ : γ ≤ δ⟩ ∈ Nδ+1.

Typically, we also assume that each Nγ is a model of ZFC−. Here, ZFC−

denotes the axioms of ZFC without the power set axiom. Then, for example,
Nγ ∈ Nγ+1 when γ + 1 < η.
However, if ⟨Nγ : γ < δ⟩ is a tower of countable elementary substructures of

B, ⟨SkA(Nγ) : γ < δ⟩ is not a tower in general. The reason is that since the

operation of taking the Skolem hull is not definable over A, ⟨SkA(Nξ) : ξ ≤ γ⟩
may not belong toNγ+1. So, we would like to define a good closure operation that
is definable over a reasonable structure and gives you back a nice substructure
to work on. This is exactly the motivation for Lemma 4.3.
We temporarily say that a set A is good if and only if A is a transitive, ω1 ∈ A,

⟨A,∈⟩ � ZFC−, and A is closed under countable sequences, i.e. Aℵ0 ⊆ X.
Let A be a good set, and ≤A a fixed well-ordering on A. Let A be a structure

expanding ⟨A,∈,≤A⟩. We shall define two sequences ⟨Aβ : β < ω1⟩ of expansions
of A and ⟨Fβ : β < ω1⟩ as follows. Let A0 = A and F0 = ∅.
Suppose that we have defined Aγ and Fγ for all γ < β. Then, let Fβ :

β × [A]≤ℵ0 → A be defined by Fβ(γ, x) = SkAγ (x). Then, define Aβ = ⟨A0, Fβ⟩.
After we have defined Aβ and Fβ for all β < ω1, let F =

∪
β<ω1

Fβ and A∗ =

⟨A0, F ⟩.
The following lemma lists some trivial facts.

Lemma 4.2. (i) For every β < ω1 and x ∈ [A]≤ℵ0 , F (β, x) ≺ A.
(ii) If N is a countable substructure of A∗ and β ∈ N ∩ ω1, then N is an

elementary substructure of Aβ.
(iii) If N is a countable elementary substructure of Aβ for some β < ω1, and

γ ∈ N ∩ β, then N is an elementary substructure of Aγ .
(iv) If γ < β < ω1 and γ ∈ x ∈ [A]≤ℵ0 , then F (γ, x) ⊆ F (β, x).
(v) If x, y ∈ [A]≤ℵ0 , x ⊆ y, and γ < ω1, then F (γ, x) ⊆ F (γ, y).
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(vi) For every γ < ω1, δ < ω1, and an ⊆-increasing sequence ⟨xβ : β < δ⟩ in
[A]≤ℵ0 , F (γ,

∪
β<δ xβ) =

∪
β<δ F (γ, xβ).

Proof. (i) is trivial since for every β < ω1, Aβ is an expansion of A.
For (ii), let N be a countable substructure of A∗ and β ∈ N∩ω1. Suppose that

φ(v, v1, . . . , vk) be a formula in the language of Aβ . Suppose that a1, . . . , ak ∈
N and Aβ � (∃v)φ(v, a1, . . . , ak). Let a ∈ A be ≤A-least such that Aβ �
φ(a, a1, . . . , ak). It suffices to show that a ∈ N . Let x = F (β, {a1, . . . , ak}).
Since N is a substructure of A∗, N is closed under F . So, x ∈ N . Since x is
countable, we have x ⊆ N . Since x ≺ Aβ and a is definable from a1, . . . , ak over
Aβ , we have a ∈ x. So, a ∈ N .
(iii) can be proved by the same argument as in the previous paragraph.
For (iv), notice that since γ ∈ F (β, x) ≺ Aβ , by (iii) F (β, x) ≺ Aγ . Since

F (γ, x) = SkAγ (x), we have F (γ, x) ⊆ F (β, x).
(v) and (vi) are clear from general facts about the Skolem hull. ⊣
Then, we can prove the following lemma.

Lemma 4.3. Let A and B be good sets with B ∈ A. Let ≤A be a fixed well-
ordering on A. Let A be a structure expanding ⟨A,∈,≤A, B⟩. Let B be a struc-

ture expanding ⟨B,∈,≤A� B⟩ such that whenever N ≺ B, SkA
∗
(N) ∩ B = N .

Let ⟨Nβ : β < η⟩ be a tower of countable subsets of B. For each β < η, let
δβ = Nβ ∩ ω1. Then, there exists a tower ⟨Mβ : β < η⟩ of countable elementary
substructures of A such that for every β < η if Nβ ≺ B, then Mβ ∩B = Nβ.

Proof. ⟨Mβ : β < η⟩ is defined by induction as follows. Let M0 = F (0, N0).
When β is a non-zero limit ordinal and ⟨Mγ : γ < β⟩ is defined, then let Mβ =∪

γ<β Mγ . For every β < η with β + 1 < η, let Mβ+1 = F (δβ + 1, Nβ+1).

Claim 1. ⟨Mβ : β < η⟩ forms a tower.

⊢ By definition, this sequence is continuous. We shall show that for every
β < η with β + 1 < η, ⟨Mγ : γ ≤ β⟩ ∈ Mβ+1. Since ⟨Nγ : γ ≤ β⟩ ∈ Nβ+1, we
have ⟨Nγ : γ ≤ β⟩ ∈ Mβ+1. Since F � (δβ +1)× [A]≤ℵ0 = Fδβ+1, ⟨Mγ : γ ≤ β⟩ is
definable from ⟨Nγ : γ ≤ β⟩ over Aδβ+1. Recall that Mβ+1 = F (δβ +1, Nβ+1) ≺
Aδβ+1. Thus, ⟨Mγ : γ ≤ β⟩ ∈ Mβ+1.
For every β < η with β + 1 < η, since Mβ is a countable element of Mβ+1,

we have Mβ ⊆ Mβ+1. So, it is easy to see that ⟨Mβ : β < η⟩ is increasing.

⊣ (Claim 1)

Claim 2. For every β < η, Mβ ≺ A.

⊢ If β is 0 or a successor ordinal, this is trivial from the definition. If β is a
nonzero limit ordinal, then Mβ is a union of an increasing sequence of elementary
substructures of A. Hence, Mβ ≺ A. ⊣ (Claim 2)

Claim 3. For every β < η, if Nβ ≺ B, then Mβ ∩B = Nβ .

⊢ Suppose that β < η and Nβ ≺ B. By the definition of B, we have

SkA
∗
(Nβ) ∩B = Nβ . So, it suffices to show that Mβ ⊆ SkA

∗
(Nβ).
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If β = 0, then M0 = F (0, N0) = SkA0(N0). By Lemma 4.2 (ii), SkA
∗
(N0) ≺

A0. Thus, M0 ⊆ SkA
∗
(N0).

If β is a successor ordinal, let γ be its predecessor. Then, Mβ = F (δγ+1, Nβ) =

SkAδγ+1(Nβ). Since ⟨Nξ : ξ ≤ γ⟩ ∈ Nβ , we have δγ + 1 ∈ Nβ . So, by Lemma 4.2

(ii), SkA
∗
(Nβ) ≺ Aδγ+1. Therefore, Mβ ⊆ SkA

∗
(Nβ).

Finally, assume β is a limit ordinal. Let x ∈ Mβ . Since Mβ =
∪

γ<β Mγ , there

exists γ < β such that x ∈ Mγ+1 = F (δγ + 1, Nγ+1). Since δγ + 1 ∈ Nγ+1 ⊆ Nβ

and Nγ+1 ∈ Nγ+2 ⊆ Nβ , we have Mγ+1 ∈ SkA
∗
(Nβ). Since Mγ+1 is countable,

we have Mγ+1 ⊆ SkA
∗
(Nβ). Hence, x ∈ SkA

∗
(Nβ). ⊣ (Claim 3)

⊣

§5. CH+(+)<ω+there is no club guessing sequence on ω1. The follow-
ing property is needed for our proof of the preservation lemma for a (+)<ω-
sequence.

Definition 5.1. We say that a (+)<ω-sequence ⟨Fξ : ξ ∈ ω1 ∩Lim⟩ is p-point
like if and only if for every ξ ∈ ω1 ∩ Lim,

(i) there exists an x ∈ Fξ such that otp(x) = ω,
(ii) for every y ⊆ ξ, either y ∈ Fξ or ξ \ y ∈ Fξ, and
(iii) whenever ⟨xn : n < ω⟩ is a ⊆-decreasing sequence in Fξ, there exists an

x ∈ Fξ such that x ⊆∗ xn.

While we are not sure whether (+)<ω implies a p-point like (+)<ω-sequence, it
can be easily built from a club guessing sequence on ω1 and a p-point as follows.

Lemma 5.2. Suppose that there is a club guessing sequence on ω1 and there is
a p-point. Then, there exists a p-point like (+)<ω-sequence.

Proof. Let ⟨Cδ : δ ∈ ω1 ∩Lim⟩ be a tail club guessing sequence on ω1 and U
a p-point. Without loss of generality, we may assume that for every δ ∈ ω1∩Lim,
otp(Cδ) = ω. For every n < ω and δ ∈ ω1 ∩Lim, let Cδ(n) denote the (n+1)-st
element of Cδ. For each δ ∈ ω1 ∩ Lim, define Fδ to be the filter on δ generated
by the sets of the form {Cδ(n) : n ∈ z} for some z ∈ U . It is easy to check that
⟨Fδ : δ ∈ ω1 ∩ Lim⟩ is a p-point like (+)<ω-sequence. ⊣
We shall prove a preservation theorem for a class of forcing notions that pre-

serve a p-point like (+)<ω-sequence.

Definition 5.3. Let P be a forcing notion, A a set, and F⃗ = ⟨Fξ : ξ ∈
ω1 ∩ Lim⟩ a (+)<ω-sequence. We say that P is (+)<ω-proper for F⃗ on A if and
only if there exists a club subset E of [A]ℵ0 such that whenever

(i) ⟨Nγ : γ ≤ δ + 1⟩ is a tower of countable elementary substructures of ⟨A,∈⟩
with Nδ ∩ ω1 = δ,

(ii) Nδ and Nδ+1 belong to E,

(iii) F⃗ , P ∈ N0,
(iv) p ∈ P ∩N0,
(v) x ∈ Fδ with otp(x) = ω,
(vi) for every γ ∈ x, Nγ ∩ ω1 = γ and Nγ ∈ E,
(vii) for every y ∈ Fδ ∩Nδ+1, x ⊆∗ y,
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there exists a q ≤ p such that q is (Nγ , P )-generic for every γ ∈ x. We say that

P is (+)<ω-proper for F⃗ if and only if P is (+)<ω-proper for F⃗ on H(θ̄P ).

First of all, we shall show that as long as θ is a sufficiently large regular
cardinal, the choice of θ does not matter in the definition of (+)<ω-properness.

Lemma 5.4. Let F⃗ be a (+)<ω-sequence and P a forcing notion. The following
are equivalent.

(i) P is (+)<ω-proper for F⃗ .

(ii) For some θ ≥ θP , P is (+)<ω-proper for F⃗ on H(θ).

(iii) For every θ ≥ θP , P is (+)<ω-proper for F⃗ on H(θ). Moreover, it is
witnessed by E = {N ∈ [H(θ)]ℵ0 : P ∈ N and P ≺ H(θ)}.

Proof. First we shall prove (i) implies (iii). Suppose that P is (+)<ω-proper

for F⃗ . Suppose that ⟨Nγ : γ ≤ δ + 1⟩ is a tower of countable subsets of H(θ)

with δ = Nδ ∩ ω1, Nδ and Nδ+1 are elementary submodels of H(θ), F⃗ , P ∈ N0,
p ∈ P ∩ N0, x ∈ Fδ with otp(x) = ω, for every γ ∈ x, Nγ is an elementary
submodel of ⟨H(θ),∈⟩, and for every y ∈ Fδ ∩Nδ+1, x ⊆∗ y. We shall show that
there exists a q ≤ p such that q is (Nγ , P )-generic for every γ ∈ x.

Note that θ̄P ∈ N0. Since F⃗ , P, θ̄P ∈ N0 and P is (+)<ω-proper for F⃗ , there
exists a club subset Ē ∈ N0 of [H(θ̄P )]

ℵ0 that witnesses the (+)<ω-properness

of P for F⃗ . For every γ ≤ δ + 1, define N̄γ = Nγ ∩H(θ̄P ). It is easy to see that
⟨N̄γ : γ ≤ δ + 1⟩ is a tower of countable subsets of H(θ̄P ), δ = N̄δ ∩ ω1, N̄δ and

N̄δ+1 belong to Ē, F⃗ , P ∈ N̄0, for every γ ∈ x, N̄γ is an elementary submodel
of H(θ̄P ), and for every y ∈ Fδ ∩ N̄δ+1, x ⊆∗ y. Hence, there exists a q ≤ p
such that q is (N̄γ , P )-generic for every γ ∈ x. However, for every γ ∈ x, since
P(P ) ⊆ H(θ̄P ), N̄γ ∩ P(P ) = Nγ ∩ P(P ). So, q is (Nγ , P )-generic.
Clearly (iii) implies (ii).
So it suffices to show that (ii) implies (i). Let θ ≥ θP be a regular cardinal such

that P is (+)<ω-proper for F⃗ on H(θ) witnessed by a club subset E of [H(θ)]ℵ0 .
Then, there exists a structure A expanding ⟨H(θ),∈,≤H(θ), P ⟩ such that for

every N ∈ [H(θ)]ℵ0 , SkA(N) ∈ E. Let B be a structure expanding ⟨H(θ̄P ),∈
,≤H(θ)� H(θ̄P ), P ⟩ such that for every countable N ≺ B, SkA

∗
(N) ∩B = N .

We shall show that E′ = {N ∈ [H(θ̄P )]
ℵ0 : N ≺ B} witnesses P is (+)<ω-

proper for F⃗ . Let ⟨Nγ : γ ≤ δ+1⟩ be a tower of countable elementary substruc-

tures of ⟨H(θ),∈⟩, Nδ and Nδ+1 belong to E′, F⃗ , P ∈ N0, p ∈ P ∩ N0, x ∈ Fδ

with otp(x) = ω, for every γ ∈ x, Nγ ∩ ω1 = γ and Nγ ∈ E′. By Lemma 4.3,
there exists a tower ⟨Mγ : γ ≤ δ + 1⟩ of countable elementary substructures of
A such that for every ordinal γ ≤ δ + 1, if Nγ ≺ B, then Mγ ∩H(θ̄P ) = Nγ . In
particular, for every γ ∈ x, since Nγ ≺ B, we have Mγ ∩H(θ̄P ) = Nγ and hence
Mγ ∩ω1 = Nγ ∩ω1 = γ. Since P is (+)<ω-proper on H(θ) witnessed by E, there
exists a q ≤ p such that q is (Mγ , P )-generic for every γ ∈ x. However, for every
γ ∈ x, we have Mγ ∩H(θ̄P ) = Nγ . So, q is also (Nγ , P )-generic. ⊣
The main point of the (+)<ω-properness is that it preserves F⃗ as a (+)<ω-

sequence.
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Lemma 5.5. Let F⃗ = ⟨Fδ : δ ∈ ω1∩Lim⟩ be a p-point like (+)<ω-sequence and

P a forcing notion that is (+)<ω-proper for F⃗ . Then, P forces that F⃗ generates
a (+)<ω-sequence.

Proof. Let p ∈ P and Ḋ a P -name for a club subset of ω1. Let θ = θP . Pick
a sufficiently large regular cardinal θ. Build a tower ⟨Nγ : γ < ω1⟩ of countable
elementary submodels of ⟨H(θ),∈⟩ with P, F⃗ , p ∈ N0. Define E = {γ < ω1 :

Nγ ∩ ω1 = γ}. Then, E is a club subset of ω1. Since F⃗ is a (+)<ω-sequence,

there exists a δ ∈ E such that E ∩ δ ∈ Fδ. Since F⃗ is p-point like, there exists
an x ∈ Fδ such that otp(x) = ω, x ⊆ E ∩ δ, and x ⊆∗ y for every y ∈ Fδ ∩Nδ+1.

Then, we can apply (+)<ω-properness of P for F⃗ to ⟨Nγ : γ ≤ δ+1⟩, p, and x to
get q ≤ p such that q is (Nγ , P )-generic for every γ ∈ x. It implies that for every

γ ∈ x, q ‘γ = Nγ ∩ ω1 ∈ Ḋ’. Thus, q ‘x ⊆ Ḋ ∩ δ and hence Ḋ ∩ δ ∈ Fδ’. ⊣
The following forcing notion, defined by S. Shelah in [4], is the most obvious

one to force that C⃗ is not a tail club guessing sequence.

Definition 5.6. Let C⃗ = ⟨Cδ : δ ∈ ω1 ∩ Lim⟩ be a guessing sequence on ω1.

Then, let P (C⃗) be the forcing notion defined as p ∈ P (C⃗) if and only if p is a

closed bounded subset of ω1 such that for every δ ∈ p ∩ Lim, Cδ * p ∩ δ. P (C⃗)
is ordered by end-extension.

P (C⃗) is (+)<ω-proper for any p-point like (+)<ω-sequence. In particular, it
preserves any p-point like (+)<ω-sequence.

Lemma 5.7. Let C⃗ = ⟨Cδ : δ ∈ ω1 ∩ Lim⟩ be a tail club guessing sequence on

ω1 and F⃗ = ⟨Fδ : δ ∈ ω1 ∩ Lim⟩ a p-point like (+)<ω-sequence. Then, P (C⃗) is

(+)<ω-proper for F⃗ .

Proof. Set θ = θP (C⃗) and let ⟨Nγ : γ ≤ δ + 1⟩, p, and x be as in the

assumption of the definition of (+)<ω-properness. For every γ < δ, let δγ =
Nγ ∩ ω1. Let ⟨γn : n < ω⟩ be the increasing enumeration of x. Notice that by
(vi) of Definition 5.3, for every n < ω, δγn = Nγn ∩ ω1 = γn. It is easy to build
a decreasing sequence ⟨pn : n < ω⟩ such that

(i) p0 = p, and
(ii) for every n < ω,

(a) pn ∈ Nγn
,

(b) pn+1 is (Nγn , P )-generic,
(c) if (γn, γn+1) ∩ Cδ ̸= ∅, then (γn, γn+1) ∩ (Cδ \ pn+2) ̸= ∅.

We claim Cδ \ x is unbounded in δ. Since P ∈ N0 ⊆ Nδ+1 and δ ∈ Nδ+1, we

have Cδ ∈ Nδ+1. If Cδ ̸∈ Fδ, then since F⃗ is p-point like, δ \ Cδ ∈ Fδ ∩ Nδ+1.
By assumption, x ⊆∗ δ \ Cδ. Thus, we have Cδ ∩ x is bounded in δ and hence

Cδ \ x is unbounded in δ. Suppose that Cδ ∈ Fδ. Since F⃗ is p-point like, there
exists a y ∈ Fδ ∩Nδ+1 such that y is an unbounded co-unbounded subset of Cδ.
By assumption, x ⊆∗ y. Thus, Cδ \ x is unbounded in δ.
Let q =

∪
n<ω pn∪{δ}. Since Cδ \x is unbounded in δ, there are unboundedly

many n < ω such that (γn, γn+1)∩Cδ ̸= ∅ and hence (γn, γn+1)∩ (Cδ \ q) ̸= ∅.
Therefore, Cδ *∗ q, which implies q ∈ P . Thus, q witnesses the lemma. ⊣
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The following lemma is the reason why we defined the (+)<ω-properness. It

shows that not only P (C⃗) preserves p-point like (+)<ω-sequences, but also the

iteration of the forcing notions of the form P (C⃗) preserves them.

Lemma 5.8. Let F⃗ = ⟨Fδ : δ ∈ ω1 ∩ Lim⟩ be a (+)<ω-sequence. Suppose that

⟨Pα, Q̇β : β < α ≤ η⟩ is a countable support iteration such that

(i) for every α < η, 1Pα  ‘Q̇α is (+)<ω-proper for F⃗ ’, and
(ii) Pη adds no new real.

Then, Pη is (+)<ω-proper for F⃗ .

Proof. For every regular cardinal θ ≥ θPη , and β < α ≤ η, let φ(θ, β, α) be
the following assertion: For every ⟨Nγ : γ ≤ δ + 2⟩, ṗ, q, and x, if

(i) ⟨Nγ : γ ≤ δ + 2⟩ is a tower of countable subsets of H(θ) with Nδ ∩ ω1 = δ,
(ii) Nδ, Nδ+1, and Nδ+2 are elementary submodels of ⟨H(θ),∈⟩,
(iii) F⃗ , Pη, β, α ∈ N0,
(iv) ṗ ∈ N0 is a Pβ-name for an element of Pβ,α,
(v) x ∈ Fδ with otp(x) = ω,
(vi) for every γ ∈ x, Nγ∩ω1 = γ andNγ is an elementary submodel of ⟨H(θ),∈⟩,
(vii) for every y ∈ Fδ ∩Nδ+1, x ⊆∗ y, and
(viii) q ∈ Pβ is finitely (Nγ , Pβ)-generic for every γ ∈ x, finitely (Nδ, Pβ)-generic,

finitely (Nδ+1, Pβ)-generic, and (Nδ+2, Pβ)-generic,

then, there exists a q′ ∈ Pα such that q′ � β = q, q′ ‘q′ � [β, α) ≤ ṗ’, and
q′ is finitely (Nγ , Pα)-generic for every γ ∈ x, finitely (Nδ, Pα)-generic, finitely
(Nδ+1, Pα)-generic, and (Nδ+2, Pα)-generic.
Let φ′(θ, β, α) denote the assertion that under the same assumption as in

φ(θ, β, α), there exists a q′ ∈ Pα such that q′ � β = q, q′ ‘q′ � [β, α) ≤ ṗ’, and
q′ is (Nγ , Pα)-generic for every γ ∈ x.
Note that ⟨Nγ : γ ∈ x⟩ does not belong toNδ+1. Let φ(β, α) denote φ(θPη , β, α)

and φ′(β, α) denote φ′(θPη , β, α).
By the same argument as in 5.4, we can prove the following claim.

Claim 1. For every regular θ ≥ θPη , φ(θ, β, α) if and only if φ(β, α). Moreover,
φ′(θ, β, α) if and only if φ′(β, α).

The following claim is trivial.

Claim 2. For every β < γ < α ≤ ω2, if both φ(β, γ) and φ(γ, α) hold, then so
does φ(β, α).

To prove φ(β, α), the seemingly weaker conclusion φ′(β, α) suffices.

Claim 3. For every β < α ≤ ω2, φ(β, α) is equivalent to φ′(β, α).

⊢ Trivially, φ(β, α) implies φ′(β, α). Assume φ′(β, α). Let θ′ = θPη . Let

θ =
(
2H(θ′)

)+

. By Claim 1, it suffices to show φ(θ, β, α). Suppose that θ,

⟨Nγ : γ ≤ δ + 2⟩, ṗ, q, and x are as in the assumption of φ(θ, β, α). For every
γ ≤ δ, let N ′

γ = Nγ ∩ H(θ′). Notice that ⟨N ′
γ : γ ≤ δ⟩ is a tower of countable

subsets of H(θ′).
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In Nδ+1, pick two countable elementary substructures N ′
δ+1 and N ′

δ+2 of
⟨H(θ′),∈⟩ such that ⟨N ′

γ ≤ δ⟩ ∈ N ′
δ+1 ∈ N ′

δ+2. Define D to be the set of
all r ∈ Pβ such that r decides all open dense subsets of Pβ lying in N ′

δ+2.
Note D ∈ Nδ+1. Let A ⊆ D be a maximal antichain in Pβ lying in Nδ+1.

Since q is finitely (Nδ+1, Pβ)-generic, there exists a finite subset {r0, . . . , rk−1}
of A∩Nδ+1 that is predense below q. Without loss of generality, we may assume
that for every i < k, ri is compatible with q.
Fix i < k. Since ri decides all Pβ-names for ordinals lying in N ′

δ+2, ri is
compatible with q, and q is (N ′

γ , Pβ)-generic for every γ ∈ x, ri is also (N ′
γ , Pβ)-

generic for every γ ∈ x. In Nδ+1, we can pick a y′i ∈ Fδ such that otp(y′i) = ω
and for every γ ∈ y′i, ri is (N ′

γ , Pβ)-generic. By assumption, we have x ⊆∗ y′i,
i.e. x \ y′i is finite. Thus, x ∪ y′i ∈ Nδ+1. Thus, for every i < k, there exists
a yi ∈ Fδ ∩ Nδ+1 such that x ⊆ yi and ri is (N ′

γ , Pβ)-generic for every γ ∈ yi.
Let y =

∩
i<k yi. Then, y ∈ Fδ ∩ Nδ+1, x ⊆ y, and for every i < k, ri is

(N ′
γ , Pβ)-generic for every γ ∈ y.
Again fix i < k. By the definition of D, ri decides all open dense subsets

of Pβ lying in N ′
δ+2. It is easy to see that ri is totally (N ′

δ+1, Pβ)-generic and
totally (N ′

δ+2, Pβ)-generic. By applying φ′(β, α) to ⟨N ′
γ : γ ≤ δ + 2⟩, ṗ, y, and

ri, we can pick an r′i ∈ Pα such that r′i � β = ri, ri ‘r′i � [β, α) ≤ ṗ’, and r′i
is (N ′

γ , Pα)-generic for every γ ∈ y. Without loss of generality, we may assume
r′i ∈ Nδ+1.

Pick a Pβ-name ṙ′ ∈ Nδ+1 so that 1Pβ
‘ṙ′ ∈ Ṗβ,α’ and for every i < k,

ri ‘ṙ′ = r′i � [β, α)’. Recall that {r0, . . . , rk−1} is predense below q and for
every i < k, ri ‘r′i � [β, α) ≤ ṗ’. Thus, q ‘ṙ′ ≤ ṗ’. Also since for every

i < k and γ ∈ y, r′i is (Nγ , Pα)-generic, q ‘ṙ′ is (Nγ [Ġβ ], Pβ,α)-generic for every
γ ∈ y’.
By Lemma 2.2, there exists a q′ ∈ Pα such that q′ � β = q, q ‘q′ � [β, α) ≤ ṙ′’,

and q′ is finitely (Nδ+1, Pα)-generic, and (Nδ+2, Pα)-generic. Then, we have

q ‘q′ � [β, α) ≤ ṙ′ ≤ ṗ’. Moreover, for every γ ∈ x, since q is (Nγ , Pβ)-generic

and q ‘ṙ′ is (N ′
γ [Ġβ ], Pβ,α)-generic’, q

′ is (Nγ , Pα)-generic. Since Nγ ⊆ Nδ+1

and q′ is finitely (Nδ+1, Pα)-generic, it implies that q′ is finitely (Nγ , Pα)-generic.
Therefore, q′ witnesses φ(θ, β, α). ⊣ (Claim 3)

Claim 4. For every β < η, φ(β, β + 1) holds.

⊢ By Claim 3, it suffices to show φ′(β, β + 1). Let ⟨Nγ : γ ≤ δ + 2⟩, ṗ, q,
and x be as in the assumption of φ′(β, β + 1). Let Gβ ⊆ Pβ be generic with

q ∈ Gβ . Work in V [G]. By assumption, Qβ = (Q̇β)
Gβ is (+)<ω-proper for F⃗ .

Let s = (ṗ)Gβ (β). For every γ ∈ x, since q is (Nγ , Pβ)-generic, Nγ [Gβ ] is an
elementary submodel of H(θ)V [Gβ ]. So, ⟨Nγ [Gβ ] : γ ≤ δ + 1⟩, s, and x satisfy

the assumption of Definition 5.3. Since Qβ is (+)<ω-proper for F⃗ , there exists
a t ≤ s such that t is (Nγ [Gβ ], Qβ)-generic for every γ ∈ x. Let ṫ be a Pβ-name
for t.
Let q′ ∈ Pβ+1 be so that q′ � β = q and q ‘q′(β) = ṫ’. Then, clearly q′

witnesses φ′(θ, β, α). ⊣ (Claim 4)
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Now, we shall prove the limit case.

Claim 5. Let β < α ≤ η. Suppose that for every β′, α′ with β ≤ β′ < α′ < α,
φ(β′, α′) holds. Then, so does φ(β, α).

⊢ By Claim 3, it suffices to show φ′(β, α). Let θ, ⟨Nγ : γ ≤ δ + 2⟩, ṗ, x,
and q be as in the assumption of φ(β, α). Let ⟨δn : n < ω⟩ be the increasing
enumeration of x. Let α0 = β and for each m < ω, let αm+1 = sup(α ∩ Nδm).
Note that for every m < ω, αm ∈ Nδm and since Nδ =

∪
γ<δ Nγ =

∪
m<ω Nδm ,

⟨αm : m < ω⟩ is an increasing cofinal sequence in α ∩Nδ.
We shall build sequences ⟨ṗm : m < ω⟩ and ⟨qm : m < ω⟩ as follows.
(i) ṗ0 = ṗ and q0 = q,
(ii) for every m < ω,

(a) ṗm is a Pαm-name for an element of Pαm,α,
(b) ṗm ∈ Nδm ,
(c) qm ∈ Pαm ,
(d) qm+1 � αm = qm,
(e) qm ‘qm+1 � [αm, αm+1) ≤ ṗm � [αm, αm+1)’,
(f) qm is finitely (Nγ , Pαm

)-generic for every γ ∈ x, finitely (Nδ, Pαm
)-

generic, finitely (Nδ+1, Pαm)-generic, and (Nδ+2, Pαm)-generic
(g) qm+1 ‘ṗm+1 ≤ ṗm � [αm+1, α)’, and

(h) qm+1 ‘ṗm+1 is (Nδn [Ġαm+1 ], Pαm+1,α)-generic for every n ≤ m’.

By definition, ṗ0 = ṗ and q0 = q satisfy the inductive hypothesis. Suppose that
ṗm and qm have been defined.
Let G ⊆ Pαm be generic with qm ∈ G. Let pm = (ṗm)G. Then, pm ∈

Pαm,α ∩ Nδm [G]. Since q is (Nδm , Pβ)-generic, Nδm [G] is an elementary sub-

model of H(θ)V [G]. Since Pαm,α is proper, there exists an p′m ≤ pm that is
(Nδm [G], Pαm,α)-generic. Let ṗm+1 ∈ Nδm+1 be a Pαm+1 -name for p′m � [αm+1, α)
and ṡm ∈ Nδm+1 a Pαm -name for p′m � [αm, αm+1).
Apply φ(αm, αm+1) to ⟨Nγ : δm+1 ≤ γ ≤ δ + 2⟩, ṡm, qm, and x \ δm+1 to get

qm+1 ∈ Pαm+1 such that qm+1 � αm = qm, qm  ‘qm+1 � [αm, αm+1) ≤ ṡm’, and
qm+1 is finitely (Nγ , Pαm+1)-generic for every γ ∈ x \ δm+1, finitely (Nδ, Pαm+1)-
generic, finitely (Nδ+1, Pαm+1)-generic, and (Nδ+2, Pαm+1)-generic.
Most of the inductive hypothesis are clear. We need to show that for every γ ∈

x∩δm+1, qm+1 is (Nγ , Pαm+1)-generic. If γ = δm, then qm is (Nδm , Pαm)-generic

and qm  ‘ṡm is (Nδm [Ġαm ], Pαm,αm+1)-generic and qm+1 � [αm, αm+1) ≤ ṡm’.
Thus, qm+1 is (Nδm , Pαm+1)-generic. Suppose n < m. By inductive hypothesis,

qm is (Nδn , Pαm)-generic and qm  ‘ṗm is (Nδn [Ġαm , Pαm,α)-generic’. Since
qm ‘qm+1 � [αm, αm+1) ≤ ṡm ≤ ṗm � [αm, αm+1)’, we have qm ‘qm+1 �
[αm, αm+1) is (Nδn [Ġαm ], Pαm,αm+1)-generic’. Therefore, qm+1 is (Nδn , Pαm+1)-
generic.
We shall show that q′ =

∪
m<ω qm witnesses φ′(β, α). Clearly we have q′ �

β = q. By the construction of q′, it is also easy to see q  ‘q′ � [β, α) ≤ ṗ’. We
also need to show that q′ is (Nδn , Pα)-generic for every n < ω. Let n < ω. Then,

qn+1 is (Nδn , Pαn)-generic and qn+1  ‘ṗn+1 is (Nδn [Ġαm+1 ], Pαm+1,α)-generic
and q′ � [αm+1, α) ≤ ṗn+1’, q

′ is (Nδn , Pαn)-generic. ⊣ (Claim 5)
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By combining those claims, we can easily see that φ(β, α) holds for every
β < α ≤ η.
Now we shall show that Pη is (+)<ω-proper. Let θ = θP and E = {N ∈

[H(θ)]ℵ0 : P ∈ N and P ≺ H(θ)}. Suppose that ⟨Nγ : γ ≤ δ + 1⟩, F⃗ , p, and x
are as in the assumption of Definition 5.3. Let Nδ+2 be a countable elementary
submodel of ⟨H(θ),∈⟩ with Nδ+1 ∈ Nδ+2. By applying φ(θ, 0, η), we can obtain
a q ∈ Pη such that q ≤ p and q is finitely (Nγ , Pη)-generic for every γ ∈ x. ⊣
Now, it is easy to show the following theorem.

Theorem 5.9. It is consistent that both CH and (+)<ω hold and there is no
club guessing sequence on ω1.

Proof. Assume that CH, 2ℵ1 = ℵ2, and there exists a club guessing sequence

on ω1. By Lemma 5.2, there exists a p-point like (+)<ω-sequence F⃗ = ⟨Fδ : δ ∈
ω1 ∩ Lim⟩.
Let P = ⟨Pα, Q̇β : β < α ≤ ω2⟩ be the countable support iteration of the

bookkeeping of all forcing notions of the form P (C⃗) where C⃗ is a tail club guessing
sequence. S. Shelah showed in [4] that P adds no new reals and hence P forces
that CH holds and there is no club guessing sequence on ω1. By Lemma 5.7,

for every α < ω2, 1Pα ‘Q̇α is (+)<ω-proper for F⃗ ’. By Lemma 5.8, P is

(+)<ω-proper for F⃗ . By Lemma 5.5, P forces that F⃗ is a (+)<ω-sequence. ⊣

Question 1. Do we really need to assume that F⃗ is p-point like?

§6. ♢+ does not imply the existence of a strong club guessing se-
quence. In this section, we shall consider the relationship between the following
two guessing principles.

Definition 6.1. ♢+ is the principle that asserts the existence of a sequence
⟨Aδ : δ < ω1⟩ such that

(i) Aδ is a countable subset of P(δ), and
(ii) for every subset X of ω1, there exists a club subset D of ω1 such that for

every δ ∈ D, X ∩ δ ∈ Aδ and D ∩ δ ∈ Aδ.

Definition 6.2. A sequence ⟨Cδ : δ ∈ ω1∩Lim⟩ is called a strong club guessing
sequence on ω1 if and only if

(i) for every δ ∈ ω1 ∩ Lim, Cδ is an unbounded subset of δ, and
(ii) for every club subset D of ω1, there exists a club subset E of ω1 such that

for every δ ∈ E, Cδ ⊆∗ D.

It is easy to see that ♢+ implies CH. However, a strong club guessing sequence
cannot be killed by ccc forcing. So, by adding many Cohen reals to a model with
a strong club guessing sequence on ω1, we can obtain a model in which there is a
strong club guessing sequence on ω1, but CH fails and hence so does ♢+. Thus,
the first author asked in [1] whether ♢+ implies the existence of a strong club
guessing sequence on ω1.
In this section, we shall use (+) to show that it is not the case. To this end,

we shall first define strong (+).
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Definition 6.3. Let k < ω and S a stationary subset of ω1 ∩ Lim. Strong
(+)k(S) is defined as the principle that asserts the existence of a club subset T
of [H(ω2)]

ℵ0 such that for every N ∈ T , N ∩ ω1 ∈ S and for N0, . . . , Nk−1 ∈ T
with Ni ∩ω1 = N0 ∩ω1 ∈ S for every i < k, if Di ∈ Ni is a club subset of ω1 for
every i < k, then

∩
i<k Di ∩N0 ̸= ∅. Strong (+)(S) denotes strong (+)2(S). If

S = ω1, we simply write strong (+)k.

By the same argument by the second author in [2, Theorem 2.2]. we can show
that the existence of a strong club guessing sequence on ω1 implies strong (+)

Theorem 6.4. ♢+ does not imply strong (+), and hence the existence of a
strong club guessing sequence.

Proof. By Theorem 3.4, it is consistent with GCH that (+) fails. So, we
begin with such a model.
Let ⟨Pα, Q̇β : β < α ≤ ω2⟩ be the standard forcing to add a ♢+-sequence. So,

Q0 is the set of all functions q such that

(i) dom(q) = δ for some δ < ω1, and
(ii) for every γ ∈ δ, q(γ) is a countable subset of P(γ)

Let ⟨Ẋα : 1 ≤ α < ω2⟩ be a bookkeeping of all good names for subsets of ω1.

Suppose that ⟨Pβ , Q̇γ : γ < β ≤ α⟩ has been defined. To define Q̇α, let Gα ⊆ Pα

be generic over V and work in V [G]. For every δ < ω1, define Aδ = p(0)(δ) for

some p ∈ G with δ ∈ dom(p(0)). Let Xα = (Ẋα)
V [G]. Let Qα be the forcing to

shoot a club through {δ < ω1 : Xα ∩ δ ∈ Aδ}. By a standard argument, we can
show that Pω2 forces ♢+. Moreover, Pω2 adds no new reals.

Let P = Pω2 . Define P̃ to be the set of all p ∈ P such that for every α ∈
dom(p), p � α decides p(α).

Claim 1. P̃ is dense in P .

⊢ Let p ∈ P . Let θ = θP and N a countable elementary submodel of H(θ)
with P, p ∈ N . Set δ = N ∩ ω1. Let ⟨Dn : n < ω⟩ be an enumeration of all
open dense subsets of P lying in N . We can easily build a decreasing sequence
⟨pn : n < ω⟩ in P such that p0 = p and pn+1 ∈ N ∩ Dn for every n < ω.
Define q ∈ P as follows. Let dom(q) = N ∩ ω2. Let dom(q(0)) = δ + 1 and
q(0) � δ =

∪
n<ω pn(0). Let q(0)(δ) be the set of all subsets x of δ such that for

some P -name Ẋ ∈ N for a subset of ω1, x = {ξ < δ : ∃n < ω(pn  ‘ξ ∈ Ẋ’)}.
Suppose that we have defined q � α for some α with 0 < α < ω2. If α ̸∈ N∩ω2,

then we have nothing to do as α ̸∈ dom(q). Suppose α ∈ N ∩ ω2. Let q(α) be a
Pα-name such that q � α  ‘q(α) =

∪
n<ω pn(α) ∪ {δ}’.

It is easy to see that q ∈ P and q is totally (N,P )-generic. Note that for every
n < ω and α ∈ N ∩ω2, pn(α) is a Pα-name lying in N , thus q � α decides it. So,

we have q ∈ P̃ ⊣ (Claim 1)

If p ∈ P̃ , then for each α ∈ dom(p) with α > 0, we identify p(α) with x ⊆ ω1

such that p � α ‘p(α) = x’. For every α < ω2, let P̃α = Pα ∩ P̃ . It is easy to

see that for every α < ω2, P̃α is dense in Pα and |P̃α| = ℵ1.
Now, it suffices to show that P forces that strong (+) fails. Suppose that

there exist p ∈ P and a P -name Ė such that p ‘Ė witnesses strong (+)’.
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That is, p forces that Ė is a club subset of H(ω2) and for every N0, N1 ∈ Ė, if
N0 ∩ ω1 = N1 ∩ ω1, then for every pair ⟨D0, D1⟩ of club subsets of ω1 so that
D0 ∈ N0 and D1 ∈ N1, we have D ∩D1 ∩N0 ∩ ω1 ̸= ∅.
Let θ = θP . Since (+) fails in V , there exist N0, N1, D0, and D1 such that N0

and N1 are countable elementary submodels of H(θ), N0∩ω1 = N1∩ω1, D0 and
D1 are club subsets of ω1, P, p,D0 ∈ N0, P, p,D1 ∈ N1, and D0∩D1∩N0∩ω1 =
∅.
Let δ = N0∩ω1. Let ⟨D0

n : n < ω⟩ be an enumeration of all open dense subsets
of P lying in N0, and ⟨D1

n : n < ω⟩ an enumeration of all open dense subsets of
P lying in N1. Let η̄ = sup(N0 ∩ N1 ∩ ω2). Since N0 ∩ ω1 = N1 ∩ ω1, we have
N0 ∩ η̄ = N1 ∩ η̄. Let η0 be the least ordinal in N0 above η̄ and η1 the least
ordinal in N1 above η̄.
We shall define two decreasing sequences ⟨p0n : n < ω⟩ and ⟨p1n : n < ω⟩ such

that

(i) p00 = p10 = p,
(ii) for every n < ω, p0n+1 ≤ p0n and p1n+1 ≤ p1n,

(iii) for every n < ω, p0n+1 ∈ P̃ ∩ D0
n and p1n+1 ∈ P̃ ∩ D1

n, and
(iv) for every n < ω, p0n+1 � η̄ ≤ p1n � η̄ ≤ p0n � η̄.
Suppose that p0n and p1n has been defined. Note that p1n � η1 ∈ N1. So, dom(p1n �
η1) ∈ N1. Let ν1n = sup(dom(p1n � η1)). Then, ν1n ∈ N1 ∩ η̄ = N0 ∩ η̄. Since

Pν1
n
∈ N0∩N1, |P̃ν1

n
| = ω1, and N0∩ω1 = N1∩ω1, we have P̃ν1

n
∩N0 = P̃ν1

n
∩N1.

Therefore, p1n � η1 ∈ N0. Define p̄0n = (p1n � η1) ∪ (p0n � [η0, ω2)). Then, p̄
0
n ∈ N0.

Let p0n+1 ≤ p̄0n be so that p0n+1 ∈ P̃ ∩ D0
n ∩N0. By the same argument, we can

build p1n+1 that satisfies the inductive hypothesis.
Define q as follows: Let dom(q) =

∪
n<ω(dom(p0n)∪dom(p1n)). Let dom(q(0)) =

δ + 1, q(0) � δ =
∪

n<ω(p
0
n(0) ∪ p1n(0)), and q(0)(δ) be the set of all subsets x of

δ such that x = {ξ < δ : ∃n < ω(pin  ‘ξ ∈ Ẋ’)} for some i < 2 and a P -name

Ẋ ∈ Ni for a subset of ω1. For every α ∈ dom(q) with α > 0, define

q(α) =

{∪
n<ω p0n(α) ∪ {δ} if α ∈

∪
n<ω dom(p0n)∪

n<ω p1n(α) ∪ {δ} if α ∈
∪

n<ω dom(p1n)

It is easy to see that q ∈ P .
Moreover, q is (N0, P )-generic and (N1, P )-generic. Thus, q forces that both

N0[Ġ] and N1[Ġ] belong to Ė. But D0 ∈ N0[Ġ] and D1 ∈ N1[Ġ] are club subsets
of ω1 and D0 ∩D1 = ∅. This is a contradiction. ⊣
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