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Abstract. In [12], Hugh Woodin introduced Ω-logic, an approach to
truth in the universe of sets inspired by recent work in large cardinals.
Expository accounts of Ω-logic appear in [13, 14, 1, 15, 16, 17]. In this
paper we present proofs of some elementary facts about Ω-logic, relative
to the published literature, leading up to the generic invariance of Ω-
logic and the Ω-conjecture.

Introduction

One family of results in modern set theory, called absoluteness results,
shows that the existence of certain large cardinals implies that the truth
values of certain sentences cannot be changed by forcing1. Another family
of results shows that large cardinals imply that certain definable sets of reals
satisfy certain regularity properties, which in turn implies the existence of
models satisfying other large cardinal properties. Results of the first type
suggest a logic in which statements are said to be valid if they hold in every
forcing extension. With some technical modifications, this is Woodin’s Ω-
logic, which first appeared in [12]. Results of the second type suggest that
there should be a sort of internal characterization of validity in Ω-logic.
Woodin has proposed such a characterization, and the conjecture that it
succeeds is called the Ω-conjecture. Several expository papers on Ω-logic
and the Ω-conjecture have been published [1, 13, 14, 15, 16, 17]. Here we
briefly discuss the technical background of Ω-logic, and prove some of the
basic theorems in this area.

This paper assumes a basic knowledge of Set Theory, including con-
structibility and forcing. All undefined notions can be found in [4].

1. ²Ω

1.1. Preliminaries.
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Given a complete Boolean algebra B in V , we can define the Boolean-
valued model V B by recursion on the class of ordinals On:

V B0 = ∅
V Bλ =

⋃

β<λ

V Bβ , if λ is a limit ordinal

V Bα+1 = {f : X → B | X ⊆ V Bα },
Then, V B =

⋃
α∈On V Bα . The elements of V B are called B-names. Every

element x of V has a standard B-name x̌, defined inductively by: ∅̌ = ∅, and
x̌ : {y̌ : y ∈ x} → {1B}.

For each x ∈ V B, let ρ(x) = min{α ∈ On | x ∈ V Bα+1}, the rank of x in
V B.

Given ϕ, a formula of the language of set theory with parameters in V B,
we say that ϕ is true in V B if its Boolean-value is 1B, i.e.,

V B ² ϕ iff [[ϕ]]B = 1B,

where [[·]]B is defined by induction on pairs (ρ(x), ρ(y)), under the canonical
well-ordering of pairs of ordinals, and the complexity of formulas (see [4]).
V B can be thought of as constructed by iterating the B-valued power-set
operation. Modulo the equivalence relation given by [[x = y]]B = 1, V Bα is
precisely Vα in the sense of the Boolean-valued model V B (see [4]):

Proposition 1.1. For every ordinal α, and every complete Boolean algebra
B, V Bα ≡ (Vα̌)V B, i.e., for every x ∈ V B,

(∃y ∈ V Bα [[x = y]]B = 1) iff [[x ∈ Vα̌]]B = 1B.

Corollary 1.2. For every ordinal α, and every complete Boolean algebra B,

V Bα ² ϕ iff V B ² “Vα̌ ² ϕ”.

Notation:
i) If P is a partial ordering, then we write V P for V B, where B = r.o.(P)

is the regular open completion of P (see [4]).
ii) Given M a model of set theory, we will write Mα for (Vα)M and MB

α

for (V Bα )M = (Vα)MB
.

iii) Sent will denote the set of sentences in the first-order language of
set theory.

iv) T∪{ϕ} will always be a set of sentences in the language of set theory,
usually extending ZFC.

v) We will write c.t.m. for countable transitive ∈-model.
vi) We will write c.B.a. for complete Boolean algebra.
vii) For A ⊆ R, we write L(A,R) for L({A} ∪R), the smallest transitive

model of ZF that contains all the ordinals, A, and all the reals.
As usual, a real number will be an element of the Baire spaceN = (ωω, τ),

where τ is the product topology, with the discrete topology on ω. Thus, the
set R of real numbers is the set of all functions from ω into ω. Throughout
this paper, we often talk in terms of generic filters instead of Boolean-valued
models. Each way of talking can be routinely reinterpreted in the other.
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Let P be a forcing notion. We say that ẋ is a simple P-name for a real
number if:

i) The elements of ẋ have the form ( ˇ(n,m), p) with p ∈ P and n,m ∈ ω,
so that p °P ẋ(ň) = m̌.

ii) For all n ∈ ω, {p ∈ P | ∃m such that ( ˇ(n,m), p) ∈ ẋ} is a maximal
antichain of P.

For any forcing notion P and for all P-names τ for a real, there exists
a simple P-name ẋ such that °P τ = ẋ. Hence, any P-generic filter will
interpret these two names in the same way.

Let WF := {x ∈ ωω | Ex is well-founded}, where given x ∈ ωω, Ex :=
{(n,m) ∈ ω × ω | x(Γ(n,m)) = 0}, with Γ some fixed recursive bijection
between ω × ω and ω. Recall that WF is a complete Π1

1 set (see [4]).

let T be a theory whose models naturally contain a submodel N of Peano
Arithmetic. A model M of T is an ω-model if NM is standard, i.e., it is
isomorphic to ω. In this case, we naturally identify M with its isomorphic
copy M ′ in which NM ′

is ω.

Stationary Tower Forcing, introduced by Woodin in the 1980’s, will be
used to prove some important facts about Ω-logic:

Definition 1.3. (cf.[6]) (Stationary Tower Forcing)
i) A set a 6= ∅ is stationary if for any function F : [∪a]<ω → ∪a, there

exists b ∈ a such that F”[b]<ω ⊆ b.
ii) Given a strongly inaccessible cardinal κ, we define the Stationary

Tower Forcing notion: its set of conditions is

P<κ = {a ∈ Vκ : a is stationary},

and the order is defined by:

a ≤ b iff ∪ b ⊆ ∪a and {Z ∩ (∪b) | Z ∈ a} ⊆ b.

Fact 1.4. Given γ < δ strongly inaccessible, a = Pω1(Vγ) ∈ P<δ.

Proof: Given F : [Vγ ]<ω → Vγ , let x ∈ [Vγ ]<ω and let:

A0 = x, An+1 = An ∪ {F (y) : y ∈ [An]<ω}

Let b =
⋃

n∈ω An. So, b ∈ Pω1(Vγ) and F”[b]<ω ⊆ b. ¤
Recall the large-cardinal notion of a Woodin cardinal :

Definition 1.5. ([10]) A cardinal δ is a Woodin cardinal if for every function
f : δ → δ there exists κ < δ with f”κ ⊆ κ, and an elementary embedding
j : V → M with critical point κ such that Vj(f)(κ) ⊆ M .

Theorem 1.6. (cf. [6]) Suppose that δ is a Woodin cardinal and that G ⊆
P<δ is a V -generic filter. Then in V [G] there is an elementary embedding
j : V → M , with M transitive, such that V [G] ² M<δ ⊆ M and j(δ) = δ.
Moreover, for all a ∈ P<δ, a ∈ G iff j” ∪ a ∈ j(a).
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1.2. Definition of ²Ω and invariance under forcing.

Definition 1.7. ([17]) For T ∪ {ϕ} ⊆ Sent, let

T ²Ω ϕ

if for all c.B.a. B, and for all ordinals α, if V Bα |= T then V Bα |= ϕ.

If T ²Ω ϕ, we say that ϕ is ΩT -valid, or that ϕ is Ω-valid from T .

Observe that the complexity of the relation T ²Ω ϕ is at most Π2. Indeed,
T ²Ω ϕ iff

∀B∀α(B a c.B.a. ∧ α ∈ On → (V Bα ² T → V Bα ² ϕ))

The displayed formula is Π2, since to be a c.B.a. is Π1 and the class function
α 7→ V Bα is ∆2 definable (i.e., both Σ2 and Π2 definable) in V with B as a
parameter.

Clearly, if T ² ϕ then T ²Ω ϕ. Observe, however, that the converse is not
true. Indeed, we can easily find ΩZFC-valid sentences that are undecidable
in first-order logic from ZFC, i.e., sentences ϕ such that ZFC 6² ϕ and
ZFC 6² ¬ϕ. For example, CON(ZFC): For all α ∈ On and all c.B.a.
B, if V Bα ² ZFC, then since V Bα is a standard model of ZFC, we have
V Bα ² CON(ZFC).

Under large cardinals, the relation ²Ω is absolute under forcing extensions:

Theorem 1.8. ([17]) Suppose that there exists a proper class of Woodin
cardinals. If T ∪ {ϕ} ⊆ Sent, then for every forcing notion P,

T ²Ω ϕ iff V P ² “T ²Ω ϕ”

Proof: ⇒) Let P be a poset. Suppose β̌, Q̇ ∈ V P are such that V P ² “V Q̇
β̌

²
T”. By Corollary 1.2, V P∗Q̇ ² “Vβ̌ ² T”. By hypothesis, V P∗Q̇ ² “Vβ̌ ² ϕ”,

and hence V P ² “V Q̇
β̌

² ϕ”.

⇐) Suppose V P ² “T ²Ω ϕ”. Let Q be a forcing notion and α ∈ On.
Suppose that V Qα ² T and G is a V -generic filter for Q. Let κ = |TC(P)|,
and let δ > κ, α be a Woodin cardinal. Let

a = {X | X ≺ Hκ+ and X countable}.
Notice that, by Fact 1.4, a ∈ PV [G]

<δ . Let PV [G]
<δ (a) be the forcing PV [G]

<δ
restricted to a.

Let I ⊆ PV [G]
<δ (a) be a V [G]-generic filter. In V [G][I] there is an elemen-

tary embedding j : V [G] → M with M transitive such that:
i) V [G][I] ² M<δ ⊆ M ,
ii) (Hκ+)V is countable in M and j(α) < δ. (See [6].)

P ∈ M and the set of dense subsets of P in V is a countable set in M , so in
M there exists a V -generic filter J ⊆ P. Then V [J ] ⊆ V [G][I] and for some
poset S ∈ V [J ], there is a V [J ]-generic K ⊆ S such that V [G][I] = V [J ][K].
Since by hypothesis, V Qα ² T , V

V [G]
α ² T . Then

(Vj(α))
M = (Vj(α))

V [G][I] = (Vj(α))
V [J ][K] ² T.
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Since V P ² “T ²Ω ϕ”, (Vj(α))V [J ][K] ² ϕ. So (Vj(α))M ² ϕ, and therefore

V
V [G]
α ² ϕ. Thus, V Qα |= ϕ. ¤

1.3. Some properties of ²Ω.

Lemma 1.9. For every recursively enumerable (r.e.) set T ∪ {ϕ} ⊆ Sent,
the following are equivalent:

i) T ²Ω ϕ.
ii) ∅ ²Ω “T ²Ω ϕ”.

(Note that since T is r.e., “T ²Ω ϕ” can be written as a sentence in Sent.
So, ii) makes sense.)

Proof: i) ⇒ ii) Let α ∈ On and B a c.B.a. Suppose β < α, and Q̇ is a c.B.a.
in V Bα such that V Bα ² “V Q̇

β̌
² T”. Then V B∗Q̇β ² T . By i), V B∗Q̇β ² ϕ, and

hence V Bα ² “V Q̇
β̌

² ϕ”.

ii) ⇒ i) Suppose α ∈ On, B is a c.B.a., and V Bα |= T . Fix β > α, β a
limit ordinal. Since T is r.e., if V Bβ |= “ψ ∈ T”, then ψ ∈ T , and therefore
V Bα |= ψ. Thus, V Bβ |= “Vα̌ |= T”. By ii), V Bβ |= “T |=Ω ϕ”. Hence,
V Bβ |= “Vα̌ |=Ω ϕ”, and we have V Bα |= ϕ. ¤

Remarks 1.10. Suppose that ZFC is consistent. For iv) suppose, more-
over, that it is consistent with ZFC that V Bα |= ZFC, for some ordinal α
and some c.B.a. B. Then,

i) If ϕ is absolute for transitive sets, then ZFC ` (ϕ → ∅ ²Ω ϕ).
ii) For some ϕ ∈ Sent, ZFC 6` (ϕ → (∅ ²Ω ϕ)).
iii) For some ϕ ∈ Sent, ZFC 6` ((ZFC ²Ω ϕ) → ϕ).
iv) For some ϕ ∈ Sent, ZFC 6` ((ZFC ²Ω “ZFC ²Ω ϕ”) → (ZFC ²Ω

ϕ)).

Proof: i) is clear. ii) holds for every sentence ϕ that can be forced to be
true and false, for example CH.

iii) Let ϕ=“∃β(Vβ ² ZFC)”. Let M be a model of ZFC. If for every
α and every B in M , MB

α 6|= ZFC (call this Case 1), then M ² “ZFC ²Ω

ϕ” + ¬ϕ. Otherwise, let β be the least such that MB
β |= ZFC, for some B.

Then MB
β is a model of ZFC, call it N , and has the property that for every

α and every c.B.a. C, NC
α 6|= ZFC. So, we are back to Case 1.

iv) Consider the sentence ϕ=“∃β∃γ(β < γ ∧ Vβ ² ZFC ∧ Vγ ² ZFC)”.
Let M be a model of ZFC such that M |= ∃α∃B(V Bα |= ZFC). If for every
α and every c.B.a. B, MB

α 6|= ϕ (call this Case 1), then M ² (ZFC ²Ω

“ZFC ²Ω ϕ”) + ¬(ZFC ²Ω ϕ).
If for some α and B, MB

α |= ϕ, then let γ be the least ordinal such that
MB

γ ² ZFC + ∃β(V Bβ ² ZFC). Let N be MB
γ . Then N has the property

that for every α and every C, NC
α 6|= ϕ, and so we are back to Case 1. ¤

Theorem 1.11 (Non-Compactness of ²Ω). There is T ∪ {ϕ} ⊆ Sent such
that T ²Ω ϕ, but for all finite S ⊆ T , S 2Ω ϕ.

Proof: Let ϕ0 be the sentence asserting: There is a largest limit ordinal.
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For each n ∈ ω, n > 0, let ϕn be the sentence asserting: If α is the largest
limit ordinal, then α + n exists.

Finally, let ϕ be the sentence that asserts: Every ordinal has a successor.
Let T = {ϕn : n ∈ ω}.
Then, T |=Ω ϕ. But if S ⊆ T is finite, then S 6|=Ω ϕ. ¤
With a bit more work we can show that Compactness of ²Ω also fails for

T = ZFC. Indeed, recall that by Gödel’s Diagonalization, for each formula
ψ(x), with x the only free variable and ranging over natural numbers, there
is a sentence ϕ such that ZFC ` (ϕ ↔ ψ(pϕq)), where pϕq is the term
denoting the Gödel code of ϕ.

Theorem 1.12. If ZFC is consistent, then there is a sentence ϕ such that
ZFC ²Ω ϕ but for all finite S ⊆ ZFC, S 2Ω ϕ.

Proof: Let ψ(x) be the formula:

x Gödel-codes a sentence ϕx ∧ ∀S(S a finite subset of ZFC → S 2Ω ϕx)

By Gödel’s Diagonalization, there is a sentence ϕ such that ZFC ` (ϕ ↔
ψ(pϕq)). Let T ⊆ ZFC be finite such that T ` (ϕ ↔ ψ(pϕq)). Let θ be the
conjunction of the set of sentences of T . Then, ∅ ` θ → (ϕ ↔ ψ(pϕq)).

Claim. ZFC ²Ω ϕ.
Proof of Claim: Suppose not. Pick α and B such that V Bα ² ZFC +¬ϕ. So,
there is S ∈ V Bα a finite set of sentences of ZFC such that V Bα ² “S ²Ω ϕ”.
Since V Bα ² ZFC, by reflection, let β < α such that V Bβ ² S +¬ϕ. But since
V Bα ² “S ²Ω ϕ”, and V Bβ ² S, we obtain V Bβ ² ϕ, a contradiction. ¤
Claim. If S ⊆ ZFC is finite then S 2Ω ϕ.
Proof of Claim: Suppose there is S ⊆ ZFC finite such that S ²Ω ϕ. By
Lemma 1.9, ∅ ²Ω “S ²Ω ϕ”. Let B be a c.B.a.. Since ZFC ` θ+S and V B ²
ZFC, by reflection, let α be such that V Bα ² θ + S. Since ∅ ²Ω “S ²Ω ϕ”,
V Bα ² “S ²Ω ϕ”, i.e., V Bα ² (∃S)(S finite and S ²Ω ϕ). Hence V Bα ² ¬ψ(pϕq).
But since V Bα ² θ, V Bα ² ¬ϕ, contradicting the assumption that S ²Ω ϕ. ¤

2. `Ω

In order to define the Ω-provability relation `Ω (Definition 2.29), the
syntactic relation associated to ²Ω, also introduced by W. H. Woodin, we
need to recall some notions that will play an essential part in the definition.
Along the way we will also prove some useful facts about these notions.

2.1. Universally Baire sets of reals.

The universally Baire sets of reals play the role of Ω-proofs in Ω-logic.
Recall that for an ordinal λ, a tree on ω × λ is a set T ⊆ ω<ω × λ<ω

such that for all pairs (s, t) ∈ T , lh(s) = lh(t) and (s¹i, t¹i) ∈ T for each
i ∈ lh(s) ∈ ω. Given a tree on ω×λ, p[T ] = {x ∈ ωω | ∃f ∈ λω(x, f) ∈ [T ]} is
the projection of T , where [T ] = {(x, f) ∈ ωω × λω | ∀n ∈ ω(x¹n, f¹n) ∈ T}.
Definition 2.1. ([2])

i) For a given cardinal κ, a set of reals A is κ-universally Baire (κ-uB)
if there exist trees T and S on ω<ω × λ<ω, λ some ordinal, such
that A = p[T ] and p[T ] = ωω \ p[S] in any forcing extension by a
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partial order of cardinality less than κ. We say that the trees T and
S witness that A is κ-uB.

ii) A ⊆ R is universally Baire (uB) if it is κ-uB for each cardinal κ.

Proposition 2.2. ([2]). For A ⊆ R, the following are equivalent:
i) A is universally Baire.
ii) For every compact Hausdorff space X and every continuous function

f : X → R, the set f−1(A) = {x ∈ X | f(x) ∈ A} has the property of
Baire, i.e., there exists an open set O ⊆ X such that the symmetric
difference f−1(A)4O is meager.

iii) For every notion of forcing P there exist trees T and S on ω × 2|P|

such that A = p[T ] = ωω \ p[S] and V P ² p[T ] = ωω \ p[S]. We say
that the trees T and S witness that A is uB for P.

The following is a special case of the well-known fact that the well-
foundedness of a given tree is absolute to all models of ZFC with the same
ordinals.

Proposition 2.3. Let T and S be trees on ω × κ, for some ordinal κ.
Suppose that p[T ] ∩ p[S] = ∅. Then, in any forcing extension V [G] we also
have that p[T ]V [G] ∩ p[S]V [G] = ∅.
Proof: Towards a contradiction, suppose that P is a forcing notion, p ∈ P,
τ is a P-name for a real, and p ° τ ∈ p[T ] ∩ p[S].

Let N ≺ H(λ), λ a large enough regular cardinal, N countable and such
that p,P, τ, T, S ∈ N . Let M be the transitive collapse of N , and let p̄, P̄, τ̄ , T̄
and S̄ be the transitive collapses of p,P, τ, T and S, respectively. Thus, in
M we have

p̄ °P̄ τ̄ ∈ p[T̄ ] ∩ p[S̄].
Let g be P̄-generic over M with p̄ ∈ g. So, in M [g], we have

τ̄ [g] ∈ p[T̄ ] ∩ p[S̄].

Notice that p[T ∩N ] ⊆ p[T ] and p[S ∩N ] ⊆ p[S]. Moreover, T̄ ∼= T ∩N and
S̄ ∼= S ∩ N . Hence, since the transitive collapse is the identity on natural
numbers, p[T̄ ] ⊆ p[T ] and p[S̄] ⊆ p[S], contradicting the fact that p[T ] and
p[S] are disjoint. ¤

Corollary 2.4. Let T, T ′ and S be trees on ω × κ, for some ordinal κ.
Suppose that p[T ] = p[T ′] and p[S] = ωω \ p[T ]. If in V [G], p[S]V [G] =
ωω \ p[T ]V [G], then p[T ′]V [G] ⊆ p[T ]V [G].

Remark 2.5. In general, under the same assumptions as in the Corollary
2.4, we cannot conclude that p[T ′]V [G] = p[T ]V [G]. For instance, one can
easily construct trees S and T on ω×ω such that p[S] is the set of reals that
take the value 0 infinitely often on the even elements of ω, and p[T ] is the
set of reals that take the value 0 finitely often on the even elements of ω, and
such that S and T will project to the sets with these definitions (and thus to
complements) in all forcing extensions. Furthermore, if {xα : α < 2ω} is the
set of reals (in the ground model) that take the value 0 finitely often on the
even elements of ω, and T ′ is the tree consisting all pairs (a, b) where b is a
finite constant sequence with some fixed value α < 2ω and a is xα¹|b|, then
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p[T ] = p[T ′] in the ground model, but p[T ] 6= p[T ′] in any forcing extension
that adds a real.

By Corollary 2.4, if A ⊆ R is κ-uB in a model N of ZFC, witnessed
by trees T and S, and N [G] is an extension of N by a forcing notion of
cardinality less than κ, then AG := p[T ]N [G] is equal to the set of reals in
N [G] which are in the projection (in N [G]) of some tree in N witnessing that
A is κ-uB. Therefore, given A ⊆ R a uB set, A has a canonical interpretation
AG in any set forcing extension V [G] of V , namely:

AG =
⋃
{p[T ]V [G] | T ∈ V and A = p[T ]V }.

Thus, if P is a forcing notion and A is uB for P, witnessed by trees T ,
S, and also by trees T ′, S′, then in any P-generic extension V [G], p[T ] =
p[T ′] = AG.

Remark 2.6. It is clear from Proposition 2.2 (iii) that a set A⊆R is uB iff
for every c.B.a. B, V B²“AĠ is uB”.

Theorem 2.7. ([2]) i) Every analytic set, and therefore every coanalytic
set, is universally Baire.

ii) Every Σ1
2 set of reals is uB iff for every set x, x] exists.

2.2. A-closed models.

Let us now define the notion of A-closed set, which will be also funda-
mental for the definition of the Ω-provability relation `Ω.

Definition 2.8. ([12]) Given a uB set A ⊆ R, a transitive ∈-model M of
(a fragment of) ZFC is A-closed if for all posets P ∈ M and all V -generic
filters G ⊆ P,

V [G] ² M [G] ∩AG ∈ M [G]
(i.e., °P “M [Ġ] ∩ AĠ ∈ M [Ġ]”, where Ġ is the standard P-name for the
generic filter).

Woodin has given several other definitions of A-closure, but the next
proposition shows they are equivalent.

Proposition 2.9. Given a uB set A ⊆ R and a transitive model M of ZFC,
the following are equivalent:

a) M is A-closed.
b) For all infinite γ ∈ M ∩On, for all G ⊆ Coll(ω, γ) V -generic,

V [G] ² M [G] ∩AG ∈ M [G].

c) For all posets P ∈ M and all τ ∈ MP, {p ∈ P | p °V
P τ ∈ AĠ} ∈ M.

d) For all infinite γ ∈ M ∩On and all τ ∈ MColl(ω,γ),

{p ∈ Coll(ω, γ) | p °V
Coll(ω,γ) τ ∈ AĠ} ∈ M.

e) For all posets P ∈ M ,

{(τ, p) | τ ∈ M a simple P-name for a real , p ∈ P and p °V
P τ ∈ AĠ} ∈ M.

f) For all posets Pγ = Coll(ω, γ), with γ ∈ M ∩On infinite,

{(τ, p) |τ ∈ M a simple Pγ-name for a real , p ∈ Pγ and p °V
Pγ

τ ∈ AĠ}∈M.
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Proof: Observe that the implications (a)⇒ (b), (c)⇒ (d) and (e)⇒ (f) are
immediate.
(b)⇒ (d): Fix γ ∈ M ∩ On. Since M ² ZFC and M is transitive,
Coll(ω, γ) ∈ M . Let τ ∈ MColl(ω,γ). By (b), there exist p ∈ Coll(ω, γ)
and σ0 ∈ MColl(ω,γ) such that p °V

Coll(ω,γ)M [Ġ] ∩AĠ = σ0. Since Coll(ω, γ)
is homogeneous, we can replace σ0 with a Coll(ω, γ)-name σ in M such that
every condition in Coll(ω, γ) forces (in V ) that M [Ġ] ∩ AĠ = σ. Thus, for
every q ∈ Coll(ω, γ),

q °V
Coll(ω,γ) τ ∈ σ iff q °V

Coll(ω,γ) τ ∈ AĠ.

Hence, since {Coll(ω, γ), τ, σ} ⊆ M and M is transitive, by absoluteness,

{p ∈ P | p °V
Coll(ω,γ) τ ∈ AĠ} = {p ∈ P | p °V

Coll(ω,γ) τ ∈ σ}
= {p ∈ P | p °M

Coll(ω,γ) τ ∈ σ} ∈ M.

(d)⇒ (c): Fix a poset P in M and τ ∈ MP. We may assume that τ is a simple
P-name for a real. Let γ = |P|M , and let τ∗ be the simple P × Coll(ω, γ)-
name defined by letting ( ˇ(m,n), 〈p, q)) ∈ τ∗ if and only if ( ˇ(m,n), p) is in
τ . Then since P × Coll(ω, γ) has a dense set isomorphic to Coll(ω, γ), by
(d), {(p, q) ∈ P× Coll(ω, γ) | (p, q) °V

P×Coll(ω,γ) τ∗ ∈ AĠ} ∈ M. Since for all
(p, q) ∈ P×Coll(ω, γ), (p, q) °V

P×Coll(ω,γ) τ∗ ∈ AĠ if and only if p °V
P τ ∈ AĠ,

the conclusion of (c) follows.

(e) ⇒ (a) (similarly for (f)⇒ (b)): Fix a poset P ∈ M and suppose G ⊆ P
is V -generic. Let

σ = {(τ, p) | τ ∈ M a simple P-name for a real, p ∈ P and p °V
P τ ∈ AĠ}.

By (e), σ ∈ M . Hence σ ∈ MP = V P ∩M and iG[σ] ∈ M [G].
Claim. iG[σ] = AG ∩M [G].
Proof of Claim: Suppose r ∈ iG[σ]. Let p ∈ G ⊆ P be such that (ṙ, p) ∈ σ
and iG[ṙ] = r. Thus ṙ is a simple P-name in M for a real and p °V

P ṙ ∈ AĠ.
Hence r ∈ AG ∩M [G].

Suppose now r ∈ AG ∩ M [G]. Let p ∈ G and ṙ ∈ MP be such that
p °V

P ṙ ∈ AĠ. Let τ be a simple P-name for a real in M such that p °V
P τ = ṙ.

Then (τ, p) ∈ σ and therefore r ∈ iG[σ]. ¤
(d) ⇒ (f) : Fix γ ∈ M ∩On. Let P = Coll(ω, γ) and P′ = Coll(ω, 2|γ|). Let〈
τα | α < 2|γ|

〉 ∈ M be an enumeration of all the simple P-names in M for
reals. Let π : P× P′ → P′ be an order-preserving bijection. Define a simple
P× P′-name σ as follows:

σ = {( ˇ(i, j), (p, q)) | ∃α < 2|γ| such that q(0) = α and ( ˇ(i, j), p) ∈ τα}
Let σ∗ be the simple P′-name {( ˇ(i, j), π(p, q)) | ( ˇ(i, j), (p, q)) ∈ σ}.
By (d), X = {q ∈ P′ | q °V

P′ σ∗ ∈ AĠ} ∈ M .
Hence,

Z ={(p, q) ∈ P× P′ | π(p, q) ∈ X} = {(p, q) ∈ P× P′ | π(p, q) °V
P′ σ∗ ∈ AĠ}

={(p, q) ∈ P× P′ | (p, q) °V
P×P′ σ ∈ AĠ×Ḣ} ∈ M.
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Let

Y ={(τ, p) | ∃α < 2|γ| such that τ = τα and (p, (0, α)) ∈ Z}.
Since Z ∈ M , Y ∈ M . For τ ∈ MP, let τ̄ be the corresponding P× P′-name
which depends only on the first coordinate. In particular, for each α < 2|γ|,
since τα ∈ MP, for all (p, q) ∈ P× P′,

p °V
P

ˇ(i, j) ∈ τα iff (p, q) °V
P×P′ ˇ(i, j) ∈ τ̄α.

Claim. For each α < 2|γ|, for all p ∈ P, (p, (0, α)) °V
P×P′ σ = τ̄α.

Proof of Claim: Let G = G1×G2 ⊆ P×P′ be V -generic such that (p, (0, α)) ∈
G. We check that iG[σ] = iG[τ̄α] : If (i, j) ∈ iG[σ], then for some (r, s) ∈ G,
( ˇ(i, j), (r, s)) ∈ σ, s(0) = β for some β < 2|γ| and r °V

P
ˇ(i, j) ∈ τβ. Since

(r, s), (p, (0, α)) ∈ G, α = β and (i, j) ∈ iG[τ̄α].
If (i, j) ∈ iG[τ̄α], let (r, s) ≤ (p, (0, α)) in G be such that (r, s) °V

P×P′
ˇ(i, j) ∈ τ̄α. Then r °V

P
ˇ(i, j) ∈ τα. Moreover, since s ≤ (0, α), s(0) =

α. Hence, ( ˇ(i, j), (r, (0, α))) ∈ σ and (r, (0, α)) °V
P×P′

ˇ(i, j) ∈ σ. Since
(r, (0, α)) ≥ (r, s), (r, (0, α)) ∈ G and (i, j) ∈ iG[σ]. ¤
Moreover, given p ∈ P, and τ a simple P-name in M ,

(τ, p) ∈ Y iff ∃α < 2|γ| such that τ = τα and (p, (0, α)) °V
P×P′ σ ∈ AĠ×Ḣ

iff ∃α < 2|γ| such that τ = τα and p °V
P τα ∈ AĠ

iff p °V
P τ ∈ AĠ.

Hence,

Y = {(τ, p) | τ ∈ M a simple P-name for a real, p ∈ P and p °V
P τ ∈ AĠ}.

(f) ⇒ (e) : Fix P ∈ M . Let γ = |P|M and Pγ = Coll(ω, γ). Let X =

{(τ, p) |τ ∈ M a simple Pγ-name for a real, p ∈ Pγ and p °V
Pγ

τ ∈ AĠ}.
By f), X ∈ M . In M , let e be a complete embedding of P into Coll(ω, γ).
As before, e extends naturally to an embedding e∗ : MP → MColl(ω,γ) in M .
Let

Y = {(τ, p) | τ ∈ M a simple P-name for a real, p ∈ P and p °V
P τ ∈ AĠ}.

So,

Y ={(τ, p) |τ ∈ M a simple P-name for a real, p ∈ P and (e∗(τ), e(p)) ∈X}.
Thus, Y ∈ M . ¤
For M countable, the notion of A-closure has a simpler formulation, as
shown in Proposition 2.11 below.

Lemma 2.10. Suppose A ⊆ R is uB and M is an A-closed c.t.m. of ZFC.
Let α be such that M is countable and A-closed in Vα. Suppose X ≺ Vα is
countable with {M, A, S, T} ∈ X, where T and S are trees witnessing that
A is ω1-uB, and N is the transitive collapse of X. Then, for every forcing
notion P ∈ M and every N -generic filter g ⊆ P, M [g] ∩A ∈ M [g].
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Proof: Let π be the transitive collapsing function on X. So, N = π(X). Let
π(S) = S̄ and π(T ) = T̄ . Observe that π(M) = M and π(A) = A ∩ X =
A ∩N . Fix g ⊆ P ∈ M N -generic. Since p[T̄ ] ⊆ p[T ] = A, writing (Ag)N [g]

for (π(A)g)N [g], we have:

(Ag)N [g] = (p[T̄ ])N [g] ⊆ N [g] ∩A

and since p[S̄] ⊆ p[S] = ωω \A,

N [g] ∩A ⊆ (p[T̄ ])N [g].

Hence (Ag)N [g] = N [g] ∩ A. Since M is A-closed in N , M [g] ∩ (Ag)N [g] ∈
M [g]. Hence, M [g] ∩A = M [g] ∩N [g] ∩A = M [g] ∩ (Ag)N [g] ∈ M [g]. ¤

If M is a countable transitive model and P is a partial order in M , we say
that a set G of M -generic filters g ⊂ P is comeager if there exists a countable
set D of dense subsets of P (not necessarily in M) such that G contains the
set of M -generic filters that intersect every member of D.

Notice that if G is comeager, then its complement in the set of all M -
generic filters is not comeager. For suppose D and D′ witness the comeager-
ness of G and its complement, respectively. Then, since D∪D′ is countable,
there is an M -generic filter G that intersects all dense sets in D ∪ D′. But
then G would belong to both G and its complement, which is impossible.

The following provides, in the case of a c.t.m. M, yet another characteri-
zation of M being A-closed, in addition to Proposition 2.9.

Proposition 2.11. Given A a uB set and M a c.t.m. of ZFC, the following
are equivalent:

i) M is A-closed.
ii) for all P ∈ M , the set of M -generic filters g ⊂ P such that

M [g] ∩A ∈ M [g]

is comeager.

Proof: i) ⇒ ii) Let P ∈ M . Let N be as in Lemma 2.10. Since N is
countable, there are countably many dense sets of P in N . Let D = {Di :
i ∈ ω} be this collection. Let g ⊆ P be an (M ∪ D)-generic filter. Since g
intersects each dense set in N , g is N -generic and by Lemma 2.10, M [g]∩A ∈
M [g].

ii) ⇒ i) Let P ∈ M . Towards a contradiction, let p ∈ P be such that
p °P M [Ġ]∩AĠ /∈ M [Ġ]. By ii), let D = {Di : i ∈ ω} be a collection of dense
subsets of P such that for all (M ∪ D)-generic g, M [g] ∩A ∈ M [g]. Let Vα,
α a large-enough uncountable regular cardinal, be such that M,A,D ∈ Vα.
Let T, S be trees witnessing that A is ω1-uB in Vα. Let X ≺ Vα be countable
with {D,M, A, T, S} ∈ X and let N be the transitive collapse of X. Let g

be N -generic such that p ∈ g. By elementarity, p °N
P M [Ġ] ∩ AĠ /∈ M [Ġ].

Hence, M [g]∩A = M [g]∩ (Ag)N [g] /∈ M [g]. But this contradicts ii), since g
is (M ∪ D)-generic. ¤

Corollary 2.12. If M is a c.t.m. of ZFC and A is a uB set, then “M is
A-closed” is correctly computed in L(A,R).
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Proof: The next sentence is true in V iff it is true in L(A,R) and says that
M is A-closed:
ϕ(A,M) :=(∀P ∈ M)(∃ 〈Di : i ∈ ω〉)[Di ⊆ P dense ∧ (∀g)(g ⊆ P)((g a filter

M -generic ∧ (∀i ∈ ω)(g ∩Di 6= ∅)) → M [g] ∩A ∈ M [g])]. ¤
The following alternate form of Proposition 2.11 is sometimes useful.

Lemma 2.13. Given a uB set A ⊆ R, M a c.t.m. of ZFC, P ∈ M a poset,
p ∈ P, and τ a P-name in M for a real, the following are equivalent:

i) p °V τ ∈ AĠ.
ii) The set of M -generic filters g ⊆ P such that p ∈ g and ig[τ ] ∈ A is

comeager.
Proof: i) ⇒ ii) Let T, S be witnesses for A being ω1-uB, A = p[T ], ωω \A =
p[S]. There exists ż such that for all i ∈ ω, p °V

P (τ ¹ i, ż ¹ i) ∈ Ť .
Let {Di | i < ω} be such that Di decides ż(i), i ∈ ω, i.e.,

Di = {q ∈ P | q °V “ż(i) = k”, for some k}.
For all i, Di is a dense subset of P. Then if g ⊆ P is M -generic with
p ∈ g and g ∩ Di 6= ∅ for every i ∈ ω, g decides ż(i) and for all i ∈ ω,
(ig[τ ] ¹ i, ig[ż] ¹ i) ∈ T . So ig[τ ] ∈ p[T ] = A.

ii) ⇒ i) Let Vα, α a large enough uncountable cardinal, be such that ii)
holds in Vα. Let T, S be trees witnessing A is ω1-uB in Vα. Let X ≺ Vα be
countable with {M,A, T, S} ∈ X and let N be the transitive collapse of X.
Observe that π(A) = A ∩N and π(M) = M, hence π(P) = P and π(p) = p.
Let π(S) = S̄ and π(T ) = T̄ . By elementarity, there is in N a collection
{Di : i ∈ ω} of dense subsets of P such that for all M -generic filters g ⊆ P, if
p ∈ g and g∩Di 6= ∅ for all i ∈ ω, then ig[τ ] ∈ A∩N . Pick any G N -generic
with p ∈ G. Since G∩Di 6= ∅ for all i and G is M -generic, by Lemma 2.10,
iG[τ ] ∈ A ∩M [G] = (AG)N [G] ∩M [G], so N [G] ² iG[τ ] ∈ AG. Since G was
an arbitrary N -generic filter containing p, p °N τ ∈ AĠ. By elementarity,
p °V τ ∈ AĠ. ¤

For a c.t.m. M, being A-closed is preserved by most generic extensions,
i.e., by a comeager set of M -generic filters, for any partial order in M .

Proposition 2.14. For every uB set A, if M is an A-closed c.t.m. and P
is a partial order in M , then the set of M -generic filters g ⊂ P such that
M [g] is A-closed is comeager.
Proof: By Proposition 2.11, for each P-name τ in M for a partial order there
is a countable set Eτ of dense subsets of P ∗ τ such that for every (M ∪ Eτ )-
generic forcing extension N of M by P ∗ τ , N ∩ A ∈ N . For each P-name
σ for a condition in τ and each E ∈ Eτ there is a dense set D(τ, E, σ) of
conditions p ∈ P for which there is some P-name ρ for a condition in τ such
that (p, ρ) ∈ E and p °P ρ ≤τ σ. Let D be the set of all such sets D(τ, E, σ).

Now suppose that M [g] is a D-generic extension of M by P. Let Q be a
poset in M [g]. Then Q = ig[τ ] for some P-name τ ∈ M . Since g is D-generic,
for each E ∈ Eτ , the set E∗ = {ig[ρ] : ∃p ∈ g such that (p, ρ) ∈ E} is dense
in Q. Let E ′ be the set of these E∗’s, and let h ⊂ Q be a (M [g]∪E ′)-generic
filter. Then

g ∗ h = {(p, σ) ∈ P ∗ τ : p ∈ g and ig[σ] ∈ h}



AN Ω-LOGIC PRIMER 13

is an (M ∪ Eτ )-generic filter, and so M [g][h] ∩A ∈ M [g][h]. ¤

Let ZFC∗ be a finite fragment of ZFC. Proposition 2.18 below shows
that for any uB set A, there is an A-closed c.t.m. M which is a model of
ZFC∗. But first let us prove the following:

Lemma 2.15. If A ⊆ R is uB and κ is such that Vκ ² ZFC, then A is uB
in Vκ.
Proof: Let us see that for each poset P in Vκ there are trees T, S ∈ Vκ such
that p[T ] = A and p[S] = ωω \ A, and for all P-generic filters G over Vκ,
Vκ[G] ² p[T ] = ωω \p[S]. So fix P ∈ Vκ and suppose S, T witness A is uB for
P in V . Let τ be a P-name in Vκ for the set of reals of the P-extension. Let
θ be a large-enough regular cardinal such that S, T ∈ H(θ). Take X ≺ H(θ)
such that |X| < κ and {S, T}∪ τ ∪A ⊆ X. Let M be the image of X by the
transitive collapse π. Then π(S), π(T ) ∈ Vκ and they witness the universal
Baireness of A for P in Vκ, since p[T ] = p[π(T )] and p[S] = p[π(S)]. ¤

The notion of strong A-closure defined below is not standard. However, as
we shall see in Section 2.5 below, the syntactic relation for Ω-logic (Definition
2.29) would not change if strong A-closure is used in place of A-closure.

Definition 2.16. Given A ⊆ R, a transitive ∈-model M of (a fragment of)
ZFC is strongly A-closed if for all posets P ∈ M and all M -generic G ⊆ P,
M [G] ∩A ∈ M [G].

Notice that by Lemma 2.11, for c.t.m.’s, if A is a uB set, then strong A-
closure implies A-closure. Note also that if M is strongly A-closed, P ∈ M ,
and G ⊆ P is M -generic, then M [G] is also strongly A-closed.

Example 2.17. Let M be a c.t.m. of ZFC and let A be a uB set such
that M is not A-closed. Then if c is a Cohen real over M , then M is
({c} × A)-closed but not strongly ({c} × A)-closed. Furthermore, M [c] is
not ({c} ×A)-closed.

Proposition 2.18. Suppose A ⊆ R is uB, and κ is such that Vκ ² ZFC.
Then every forcing extension of the transitive collapse of any countable ele-
mentary submodel of Vκ containing A is strongly A-closed. In particular, the
transitive collapse of any countable elementary submodel of Vκ containing A
is A-closed.
Proof: By Lemma 2.15, A is uB in Vκ. Let X ≺ Vκ be countable such that
A ∈ X. Let M be the image of X by the transitive collapse π. We want
to see that any forcing extension of M is strongly A-closed. It suffices to
see that M is strongly A-closed. Let P ∈ M and let g ⊆ P be an M -generic
filter.

Let S and T be trees in X witnessing the universal Baireness of A for
π−1(P). Then π(S) = S̄ and π(T ) = T̄ are trees in M witnessing the
universal Baireness of A ∩ M for P. If σ is a P-name for a real in M , in
M [g], ig[σ] is in p[S̄] or in p[T̄ ] and not in both, by elementarity of the
collapsing map. Thus, since p[S̄] ⊆ p[S] and p[T̄ ] ⊆ p[T ],

ig[σ] ∈ A iff ig[σ] ∈ (p[T̄ ])M [g].

Hence, M [g] ∩A = (p[T̄ ])M [g] ∈ M [g], and M is strongly A-closed. ¤
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Recall the following result of Woodin:

Theorem 2.19 (cf.[7]). Suppose there is a proper class of Woodin cardinals.
Then for every uB set of reals A and every forcing notion P, if G ⊆ P is a V -
generic filter, then in V [G] there is an elementary embedding from L(A,RV )
into L(AG,RV [G]) sending A to AG.

Corollary 2.20. Suppose there is a proper class of Woodin cardinals. Then
for every uB set of reals A and every forcing notion P, if G ⊆ P is V -generic,
then in V [G], for every formula ϕ(x, y) and every r ∈ RV ,

L(A,RV ) ² ϕ(A, r) iff L(AG, RV [G]) ² ϕ(AG, r).

In particular, if ϕ(x, y) is the formula that defines A-closure, as in Corollary
2.12, it follows that a c.t.m. M is A-closed iff for every (some) generic
extension V [G] of V , M is AG-closed in V [G].

The notion of A-closed model makes sense even for non-well-founded ω-
models, i.e., given a uB set A ⊆ R, an ω-model M of (a fragment of) ZFC
is A-closed if for all posets P ∈ M , for all G ⊆ P V -generic,

V [G] ² M [G] ∩AG ∈ M [G]

i.e., °P “M [Ġ] ∩ AĠ ∈ M [Ġ]”, where Ġ is the standard P-name for the
generic filter.

However, let us see that the notion of A-closed set is a natural general-
ization of wellfoundedness.

Lemma 2.21. Let ZFC∗ be ZF minus the Powerset axiom. Suppose N is
an ω-model of ZFC∗ such that WF ∩ N ∈ N . Then for all x ∈ ωω ∩ N ,
x ∈ WF iff x ∈ WFN .

Proof: ⇒) By the downward absoluteness of Π1
1 formulas for ω-models.

⇐) Suppose x ∈ ωω ∩ N , x ∈ WFN and x /∈ WF . For each n, let
Ex¹n{m|mExn}, and let xn be a real coding Ex¹n. Since N |= “Ex is
wellfounded” and WF ∩ N ∈ N , there is a n0 ∈ ω such that xn0 6∈ WF
but for all mExn0, xm ∈ WF . Since Ex¹n0 is illfounded, there is an mExn0

such that Ex¹m is illfounded, giving a contradiction. ¤
Lemma 2.22. Every ω-model of ZFC which is WF -closed is well-founded.

Proof: Suppose (M, E) is a non well-founded WF -closed ω-model of ZFC.
Let γ be an “ordinal” of M which is illfounded in V , let G be M -generic for
a partial order in M making γ countable and let x be a real in M [G] coding
a wellordering of ω of ordertype γ. Then x ∈ WFM [G] \ WF , which by
Lemma 2.21 implies that M [G] ∩WF 6∈ M [G]. Since M is WF -closed, by
the previous Lemma, x /∈ WFM [G]. So Ex ∈ M [G] and is not well-founded.
Hence M [G] 6² “Foundation”, contradicting the fact that M ² “Foundation”
and M [G] is a forcing extension of M . ¤
Theorem 2.23. For every ω-model of ZFC, (M, E), the following are
equivalent:

i) (M, E) is well-founded.
ii) (M, E) is A-closed for each Π1

1 set A.



AN Ω-LOGIC PRIMER 15

Proof: i) ⇒ ii) Suppose (M, E) is an ω-model of ZFC which is well-founded.
Fix A ⊆ R a Π1

1 set. Let P ∈ M and let H be a P-generic over V .
Let (N,∈) be the transitive collapse of (M, E), and let G = π[H]. Since

π(P) ∈ N , G is π(P)-generic over V and N is transitive, G is π(P)-generic
over N . Since Π1

1 sets are absolute for transitive models of ZFC and A is
Π1

1, in V [G], AN [G] = N [G] ∩ A = N [G] ∩ A ∩ V [G] = N [G] ∩ AV [G]. And
since AV [G] = AG,

AN [G] = N [G] ∩AG ∈ N [G].

Since M is an ω-model, the transitive collapse π is the identity on the
reals and therefore,

AM [H] = M [H] ∩AH ∈ M [H].

ii) ⇒ i) Suppose (M, E) is A-closed for each Π1
1 set. Then it is WF -

closed, since WF is Π1
1. So by Lemma 2.22, (M, E) is well-founded. ¤

2.3. AD+.

Definition 2.24. (cf.[12]) A set A ⊆ R is ∞-Borel if for some S∪{α} ⊆ On
and some formula with two free variables ϕ(x, y),

A = {y ∈ R | Lα[S, y] ² ϕ(S, y)}.
Assuming AD +DC, a set of reals A is ∞-Borel iff A ∈ L(S,R), for some

S ⊆ Ord (cf. [12]).

Definition 2.25. Θ is the least ordinal α which is not the range of any
function π : R→ α. So, if the reals can be well ordered, then Θ = (2ω)+.

Recall that DCR is the statement:

∀R(R ⊆ ωω × ωω ∧ ∀x ∈ωω∃y ∈ ωω((x, y) ∈ R) →
∃f ∈ (ωω)ω∀n ∈ ω((f(n), f(n + 1)) ∈ R)).

Definition 2.26. (cf.[12]) (ZF + DCR) AD+ says:

i) Every set of reals is ∞-Borel,
ii) If λ < Θ and π : λω → ωω is a continuous function, where λ has been

given the discrete topology, then π−1(A) is determined for every
A ⊆ ωω.

AD+ trivially implies AD, and it is not known if AD implies AD+.
Woodin has shown that if L(R) |= AD, then L(R) |= AD+.
AD+ is absolute for inner models containing all the reals:

Theorem 2.27. (cf.[12])(AD+) For any transitive inner model M of ZF
with R ⊆ M , M ² AD+.

Theorem 2.28. ([12]) If there exists a proper class of Woodin cardinals and
A ⊆ R is uB then:

1) L(A,R) |= AD+,
2) Every set in P(R) ∩ L(A,R) is uB.
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2.4. Definition of `Ω and invariance under forcing.

Note that the following are equivalent:
i) For all A-closed c.t.m. M of ZFC, all α ∈ M ∩On, and all B such

that M |= “B is a c.B.a”, if MB
α |= T , then MB

α |= ϕ.
ii) For all A-closed c.t.m. M of ZFC, and for all α ∈ M ∩On,

if Mα |= T , then Mα |= ϕ.
Proof: ii) ⇒ i) Let M be an A-closed c.t.m. of ZFC, α ∈ M ∩ On, and
let B be such that M |= “B is a c.B.a”. Suppose MB

α |= T and, towards
a contradiction, suppose that, in M , for some b ∈ B, b ° “M [ġ]α |= ¬ϕ”,
where ġ is the standard name for the generic filter. By Proposition 2.14,
there is g B-generic over M such that b ∈ g and M [g] is A-closed. We have
M [g]α |= T . Hence, by ii) M [g]α |= ϕ, contradicting the assumption that b
forced M [ġ]α |= ¬ϕ. ¤

Definition 2.29. ([17]) For T ∪{ϕ} ⊆ Sent, we write T `Ω ϕ if there exists
a uB set A ⊆ R such that:

1) L(A,R) |= AD+,
2) Every set in P(R) ∩ L(A,R) is uB,
3) For all A-closed c.t.m. M of ZFC and for all α ∈ M ∩ On, if

Mα |= T , then Mα |= ϕ.

Thus, by Theorem 2.28, if there exists a proper class of Woodin cardinals,
T `Ω ϕ iff there exists a uB set A ⊆ R such that 3) above holds.

Notice that, by the equivalence of i) and ii) above, if T is recursive, then
point 3) of the last definition can be written as:

3’) For all A-closed c.t.m. M of ZFC, M ² “T ²Ω ϕ”.
By Theorem 2.28, if there exists a proper class of Woodin cardinals, or

if just L(R) |= AD and every set of reals in L(R) is uB, then for every
T ∪ {ϕ} ⊆ Sent, T ` ϕ implies T `Ω ϕ. However, as we would expect, the
converse does not hold: Let M be a c.t.m. of ZFC and let α ∈ M ∩On be
such that Mα ² ZFC. Since Mα is a standard model, Mα ² CON(ZFC).
This shows ZFC `Ω CON(ZFC).

We say that a sentence ϕ ∈ Sent is ΩT -provable if T `Ω ϕ. And if A
witnesses T `Ω ϕ, then we say that A is an ΩT -proof of ϕ, or that A is an
Ω-proof of ϕ from T .

Notice that if A is uB and satisfies 1) and 2) of Definition 2.29, then A is
an ΩT -proof of ϕ iff

L(A,R) ² ∀M∀α (M is a A-closed c.t.m. of ZFC ∧α ∈ M ∩On∧Mα |=
T → Mα ² ϕ).

It is not very difficult to see that the complexity of the relation T `Ω ϕ
is at most Σ3.

Remark 2.30. Arguments in [7] essentially show that if AD+ holds then
there exist A-closed models of ZFC for every set of reals A.

Lemma 2.31. Given A,B uB sets, the set C = A × B is uB, and if M is
a C-closed c.t.m., then M is both A-closed and B-closed.
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Proof: Given γ ∈ M ∩ On, let P = Coll(ω, γ). For a fixed P-name ẏ for an
element of BĠ,

{(τ, p) | p ∈ P, τ is a P-name for a real number and p °V (τ, ẏ) ∈ (A×B)Ġ}
= {(τ, p) | p ∈ P, τ is a P-name for a real number and p °V τ ∈ AĠ}.
Hence if M is C-closed, this set belongs to M and thus M is A-closed.
Symmetrically, the same holds for B. ¤

Corollary 2.32. Let T ∪ {ϕ,ψ} ⊆ Sent. Suppose that for every uB set A,
L(A,R) |= AD+ and every set in P(R) ∩ L(A,R) is uB. Suppose T `Ω ψ
and T `Ω ϕ. If T ∪ {ψ, ϕ} ` θ, then T `Ω θ. Hence,

i) If T `Ω ϕ and T `Ω ψ, then T `Ω ϕ ∧ ψ.
ii) If T `Ω ϕ and T `Ω ϕ → ψ, then T `Ω ψ.

Proof: Let A and B be ΩT -proofs of ψ and ϕ, respectively. Let us see that
A × B is a ΩT -proof of θ. Let M be an A × B-closed model. Thus, M is
both A-closed and B-closed. Suppose α ∈ M ∩On and B ∈ M are such that
MB

α ² T . Since M is A-closed, MB
α ² ψ and since M is B-closed, MB

α ² ϕ.
So, MB

α ² θ. ¤
The notion of Ω-provability differs from the usual notions of provability,

e.g., in first-order logic, in that there is no deductive calculus involved. In Ω-
logic, the same uB set may witness the Ω-provability of different sentences.
For instance, all tautologies have the same proof in Ω-logic, namely, ∅. In
spite of this, it is possible to define a notion of length of proof in Ω-logic.
This can be accomplished in several ways. For instance: for A ⊆ R, let MA

be the model LκA(A,R), where κA is the least admissible ordinal for (A,R),
i.e., the least ordinal α > ω such that Lα(A,R) is a model of Kripke-Platek
set theory. The following result is due to Solovay:

Lemma 2.33. Assume AD. Then for every A,B ⊆ R, either A ∈ MB or
B ∈ MA.

Proof: Consider the two-player game in which both players play integers
so that at the end of the game player I has produced x and player II has
produced y. Player I wins the game iff x ∈ A ↔ y ∈ B. It τ is a winning
strategy for player I, then for every real z, z ∈ B iff τ ∗ z ∈ A, and so
B ∈ MA. And if σ is a winning strategy for player II, then for every real z,
z ∈ A iff z ∗ σ 6∈ B, and so A ∈ MB. ¤

Thus, under AD, for A,B ⊆ R, we have κA < κB iff A ∈ MB and
B 6∈ MA. It follows that κA = κB iff MA = MB.

If A is a uB set of reals that witnesses T `Ω ϕ, then we can say that κA

is the length of the ΩT -proof A. Using this notion of length of proof we can
find sentences, like the Gödel-Rosser sentences in first-order logic, that are
undecidable in Ω-logic. For instance, let ϕ(A, θ) be the formula:

∀M∀α((M is an A-closed c.t.m. of ZFC ∧
α ∈ M ∩On ∧ Mα |= ZFC) → Mα |= θ).

Using Gödel’s diagonalization, let θ ∈ Sent be such that:

ZFC ` “θ ↔ ∀A(ϕ(A, θ) → ∃B(ϕ(B,¬θ) ∧ κB < κA))”
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Assuming there is a proper class of Woodin cardinals, we have:

ZFC `Ω “θ ↔ ∀A(ϕ(A, θ) → ∃B(ϕ(B,¬θ) ∧ κB < κA))”

Suppose ZFC `Ω θ and C witnesses it. Then

ZFC `Ω “∀A(ϕ(A, θ) → ∃B(ϕ(B,¬θ) ∧ κB < κA))”

is witnessed by some D. Assuming there is an inaccessible limit of Woodin
cardinals, we can find a C × D-closed c.t.m. M of ZFC with a strongly
inaccessible cardinal α, such that M satisfies that for every uB set of reals
A, AD+ holds in L(A,R), and every set of reals in L(A,R) is uB (see 2.28).
By reflection, let α ∈ M ∩On be such that C ∩M ∈ Mα, Mα |= “C ∩M is
uB”, and

Mα |= ZFC + ∀A(A is uB → L(A,R) |= AD).
Then, Mα |= θ and

Mα |= “∀A(ϕ(A, θ) → ∃B(ϕ(B,¬θ) ∧ κB < κA)).”

Moreover, Mα |= ϕ(C ∩M, θ). Hence, in Mα there is B such that ϕ(B,¬θ)
and κB < κC∩M . But since Mα |= “L(B, C ∩ M,R) |= AD”, by Lemma
2.33, we have Mα |= B ∈ MC∩M . It follows that:

(1) MC∩M |= ϕ(C ∩M, θ)
(2) MC∩M |= ϕ(B,¬θ).

Let N ∈ MC∩M be a c.t.m. of ZFC that is both C ∩ M -closed and B-
closed (see Remark 2.30). Then, for any β, if Nβ |= ZFC, we would have
Nβ |= θ ∧ ¬θ, which is impossible.

An entirely symmetric argument would yield a contradiction under the
assumption that ZFC `Ω ¬θ, thereby showing that θ is undecidable from
ZFC in Ω-logic.

A much finer notion of length of proof in Ω-logic is provided by the Wadge
hierarchy of sets of reals (see [9] and [16]).

We shall now see that the relation `Ω is also invariant under forcing. In
the proof of this, we will use the following result (see [6], section 3.4).

Theorem 2.34. Suppose that there exists a proper class of Woodin cardi-
nals, δ is a Woodin cardinal and j : V → M [G] is an embedding derived
from forcing with P<δ. Then every universally Baire set of reals in V [G] is
universally Baire in M .

Theorem 2.35. ([17]) Suppose that there exists a proper class of Woodin
cardinals. Then for all P,

T `Ω ϕ iff V P ² “T `Ω ϕ”

Proof: ⇒) Let A be an ΩT -proof of ϕ.
Then L(A,R) ² ∀M∀α (M is a A-closed c.t.m. of ZFC ∧ α ∈ M ∩On ∧

Mα |= T → Mα ² ϕ).
Suppose G ⊆ P is V -generic. By Corollary 2.20, in V [G],
L(AG,RV [G]) ² ∀M∀α (M is a AG-closed c.t.m. of ZFC ∧α ∈ M ∩On∧

Mα |= T → Mα ² ϕ).
Since A is uB, by Remark 2.6, AG is uB in V [G]. Hence, AG is an ΩT -

proof of ϕ in V [G].
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⇐) Assume V P ² “T `Ω ϕ”. Let γ be a strongly inaccessible cardinal such
that P ∈ Vγ . Pick a Woodin cardinal δ > γ. Consider a = Pω1(Vγ) ∈ P<δ

(see Fact 1.4). Forcing with P<δ below a makes Vγ countable, so there is a
P-name τ for a partial order such that P<δ(a) is forcing-equivalent to P ∗ τ .
Fix G ⊆ P<δ(a) V -generic, and let j : V → M be the induced embedding.
Then j(δ) = δ and V [G] ² M<δ ⊆ M . We have V [G] = V [H0][H1], with
H0 ⊆ P, V -generic. Thus, V [H0] ² “T `Ω ϕ”, witnessed by some uB set A.
By the other direction of this theorem, V [G] ² “T `Ω ϕ”, witnessed by AG.
Hence,

V [G] ² “AG is uB ∧ ∀N∀α (N is a AG-closed c.t.m. of ZFC ∧ α ∈
N ∪On ∧Nα |= T → Nα ² ϕ)”.

By Theorem 2.34, AG is a uB set in M , and since M is closed under
countable sequences,

M ² “∀N∀α (N is a A-closed c.t.m. of ZFC ∧ α ∈ N ∩On ∧Nα |= T →
Nα ² ϕ)”. Thus, M ² “T `Ω ϕ”. By applying the induced elementary
embedding, we have V ² “T `Ω ϕ”. ¤

2.5. A-closure vs strong A-closure.

Recall (Definition 2.16) that for A ⊆ R, a transitive ∈-model M of (a
fragment of) ZFC is strongly A-closed if for all posets P ∈ M and all M -
generic G ⊆ P, M [G] ∩A ∈ M [G].

We shall see that the relation `Ω would not change if we were to use
strong A-closure in place of A-closure in its definition.

Recall the definition of scale on a set of reals (see [9]):

Definition 2.36. If A is a set of reals, then a scale on A is a sequence
〈≤i: i < ω〉 of prewellorderings of A satisfying the property that whenever
〈xi : i < ω〉 is a sequence contained in A converging to a real x and f : ω → ω
is a function such that

∀i < ω ∀j ∈ [f(i), ω) (xf(i) ≤i xj ∧ xj ≤i xf(i)),

then x is in A, and for all i < ω we have x ≤i xf(i).

If Γ is a pointclass that is closed under continuous preimages, A ∈ Γ,
and 〈≤i: i < ω〉 is a scale on A, then 〈≤i: i < ω〉 is called a Γ-scale if
there are sets X,Y ⊂ ω × ωω × ωω in Γ (identifying each integer with the
corresponding constant function) such that

X = {(i, x, y) | x ≤i y} = (ω × ωω × ωω) \ Y ∩ (ω × ωω ×A).

We say that Γ has the scale property if for every A ∈ Γ there is a Γ-scale
on A. If there exists a proper class of Woodin cardinals, then the class of
uB sets has the scale property (this fact is due to Steel; see, for instance,
Section 3.3 of [6]).

If 〈≤i: i < ω〉 is a scale on a set of reals A, and for each i ∈ ω and x ∈ A
we let ρi(x) denote the ≤i-rank of x, then the tree

S = {(s, σ) ∈ ω<ω ×Ord<ω | ∃x ∈ A x¹|s| = s ∧ 〈ρi(x) : i < |s|〉 = σ}
projects to A. We call this the tree corresponding to the scale.

The argument below comes from [11].
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Theorem 2.37. Let A be a universally Baire set of reals and suppose that
M is an A-closed c.t.m. of ZFC. Let B denote the complement of A. Let
〈≤A

i : i < ω〉 be a uB scale on A as witnessed by uB sets X and Y , let
〈≤B

i : i < ω〉 be a uB scale on B as witnessed by uB sets W and Z, and
suppose that M is X × Y ×W × Z-closed. Then M is strongly A-closed.

Proof: First note that for any wellfounded model N , if {N ∩X, N ∩ Y,N ∩
A} ∈ N , then 〈≤A

i ∩N : i < ω〉 is in N and is a scale for A ∩N in N (and
similarly, for W , Z and B). Furthermore, if N is X × Y × A-closed, then
for every partial order P in N there are P-names χP, υP and αP such that
for comeagerly-many N -generic filters g ⊂ P, X ∩N [g] = χg, Y ∩N [g] = υg

and A ∩ N [g] = αg (the proof of this is similar to the second parts of the
proofs of Lemmas 2.11 and 2.13).

Let γ be an ordinal in M . Since Coll(ω, γ) is homogeneous and M is
X × Y ×A-closed, for every pair of conditions p, q in Coll(ω, γ) there exist
M -generic filters gp and gq contained in Coll(ω, γ) such that p ∈ gp, q ∈ gq,
M [gp] = M [gq],

igp [χColl(ω,γ)]igq [χColl(ω,γ)] = M [gp] ∩X,

igp [υColl(ω,γ)]igq [υColl(ω,γ)] = M [gp] ∩ Y,

and
igp [αColl(ω,γ)]igq [αColl(ω,γ)] = M [gp] ∩A.

Therefore, for every pair (a, b) ∈ ω<ω × Ord<ω, the empty condition in
Coll(ω, γ) decides whether (a, b) is in the tree corresponding to the scale
associated to χColl(ω,γ) and υColl(ω,γ), and therefore the tree Tγ corresponding
to this scale in any M -generic extension by Coll(ω, γ) exists already in M .
Since there exists a model N such that {N ∩A,N ∩X, N ∩ Y } ∈ N and Tγ

is the tree of the scale corresponding to N ∩X and N ∩Y in N , p[Tγ ]V ⊂ A
(since X and Y define a scale on A). The remarks above apply to B, W and
Z, as well, and so there is a tree Sγ in M which projects in V to a subset
of B, and furthermore, Tγ and Sγ project to complements in all forcing
extensions of M by Coll(ω, γ).

Let P be a partial order in M . Then P regularly embeds into some partial
order of the form Coll(ω, γ), γ ∈ On∩M . Fixing such a γ, we have that for
any P-generic extension N of M , p[Tγ ]N = A ∩N and p[Sγ ]N = B ∩N . ¤

Let the relation `−Ω be defined as `Ω (Definition 2.29) but requiring strong
A-closure instead of A-closure. i.e.,

T `−Ω ϕ if there exists a uB set A ⊆ R such that:
1) L(A,R) |= AD+,
2) Every set in P(R) ∩ L(A,R) is uB,
3) For all strongly A-closed c.t.m. M of ZFC and for all α ∈ M ∩On,

if Mα |= T , then Mα |= ϕ.
Since for any uB set A and any c.t.m. M strong A-closure implies A-

closure (see Lemma 2.11), clearly T `Ω ϕ implies T `−Ω ϕ.
Now suppose T `−Ω ϕ, witnessed by a uB set A. We would like to see

that there is a uB set B such that all B-closed models are strongly A-closed.
Theorem 2.37 gives us this, under the assumption that the collection of
universally Baire sets has the scale property, which, as we mentioned above,
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it does when there exist proper class many Woodin cardinals. Even without
this assumption one can show that such a B exists, though the proof of this
is beyond the scope of this paper. Here is a sketch. Note first that M is a
strongly A-closed c.t.m. iff L(A,R) |= “M is a strongly A-closed c.t.m.” So,
in L(A,R), A satisfies the following predicate P (X) on sets X ⊆ R:

∀M∀α(M a strongly X-closed c.t.m. of ZFC ∧
α ∈ M ∩On ∧ Mα |= T → Mα |= ϕ).

We now apply Woodin’s generalizations of the Martin-Steel theorem on
scales in L(R) [8] and the Solovay Basis Theorem (see [3]) to the context of
AD+, stated as follows.

Theorem 2.38. (ZF + DCR) If AD+ holds and V L(P(R)) then
• the pointclass Σ2

1 has the scale property,
• every true Σ1-sentence is witnessed by a ∆∼

2
1 set of reals.

We may then let B be a ∆∼
2
1 (in L(A,R)) solution to P (X). Note that by

(2) above, B is uB and, by Theorem 2.27, it is also a witness to T `−Ω ϕ. Since
L(A,R) |= AD+, both B and its complement have Σ∼

2
1 scales in L(A,R).

Those scales are uB (again, by (2) above). So, as in Theorem 2.37, we can
find C ∈ L(A,R) such that if M is a C-closed c.t.m., then M is strongly
B-closed. Thus, C witnesses T `Ω ϕ.

One can formulate a property which roughly captures the difference be-
tween A-closure and strong A-closure. We will call this property A-comple-
teness, though that term is not standard.

Definition 2.39. Let A be a set of reals. Let us call a c.t.m. M of ZFC
A-complete if for every forcing notion P ∈ M , every name for a real τ ∈ MP,
and every p ∈ P:

(1) If for comeagerly-many M -generic G ⊆ P, p ∈ G implies iG[τ ] ∈ A,
then for every M -generic G ⊆ P, p ∈ G implies iG[τ ] ∈ A.

(2) If for comeagerly-many M -generic G ⊆ P, p ∈ G implies iG[τ ] 6∈ A,
then for every M -generic G ⊆ P, p ∈ G implies iG[τ ] 6∈ A.

The conjunction of A-closure and A-completeness implies strong-A-closure.

Lemma 2.40. Let M be a c.t.m. and A a uB set. If M is both A-closed
and A-complete, then it is strongly-A-closed.

Proof: Fix M and A and suppose M is A-closed and A-complete.
Let

σ = {(τ, p) | τ ∈ M a simple P-name for a real , p ∈ P and p °V
P τ ∈ AĠ}.

By Proposition 2.9, σ is a P-name that belongs to M .
We claim that for every M -generic G ⊆ P, iG[σ] = M [G] ∩A.
So, suppose G ⊆ P is an M -generic filter. If τ ∈ M is a simple P-name

for a real and iG[τ ] ∈ A, then for some p ∈ P, for a comeager set of M -
generic filters g, if p ∈ g, then ig[τ ] ∈ A. By 2.13, p °V τ ∈ AĠ. Hence,
iG[τ ] ∈ iG[σ].

Now suppose iG[τ ] ∈ iG[σ]. So, for some p ∈ G, p °V τ ∈ AĠ. By
2.13, the set of M -generic filters g ⊆ P such that p ∈ g and ig[τ ] ∈ A is
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comeager. But since M is A-complete, for all M -generic g ⊆ P such that
p ∈ g, ig[τ ] ∈ A. In particular, iG[τ ] ∈ A. ¤

Strong A-closure does not imply A-completeness, however. To see this,
note that if x is a real and A = {x}, then every c.t.m. M is strongly-
A-closed. But if x is Cohen-generic over M , then M is not A-complete,
for if P is the Cohen forcing, and τ ∈ MP is a name for x, then the set
D = {p ∈ P : p ° τ 6= x} is a dense subset of P (although D 6∈ M !). So,
there is a comeager set of P-generic filters over M such that for each G in
the set, iG[τ ] 6= x. i.e., iG[τ ] 6∈ A. But for some M -generic G, iG[τ ] = x ∈ A.

Similarly, A-completeness does not imply strong A-closure (and so it does
not imply A-closure, either). As an example, let M satisfy ZFC + “0] does
not exist,” and let A = 0] (i.e., {n | n ∈ 0]}). Then M is clearly not A-closed,
since M [G]∩A = A for all M -generic G ⊆ P, all P. But M is A-complete. To
see this, fix P, p, and τ , and suppose that for comeagerly-many M -generic G,
if p ∈ G, then iG[τ ] ∈ A. It follows then that X = {n : ∃p′ ≤ p (p′ ° τ = n)}
is contained in A, which in turn implies that iG[τ ] ∈ A for all M -generic
filters G ⊆ P that contain p.

3. The Ω-conjecture

Definition 3.1.
i) A sentence ϕ is ΩT -satisfiable if T 2Ω ¬ϕ, i.e., there exists α and B

such that V Bα ² T + ϕ.
ii) A set of sentences T is Ω-satisfiable if there exists a c.B.a. B and an

ordinal α for which V Bα ² T .
iii) A sentence ϕ is ΩT -consistent if T 0Ω ¬ϕ, i.e., for all uB set A ⊆

R satisfying 1) and 2) of Definition 2.29, there exists a countable
transitive A-closed set M such that M ² ZFC, and there exists
α ∈ M ∩On such that Mα ² T + ϕ.

iv) A set of sentences T is Ω-consistent if T 0Ω ⊥, where ⊥ is any con-
tradiction, i.e., if for all A ⊆ R uB satisfying 1) and 2) of Definition
2.29, there exists a c.t.m. A-closed M ² ZFC and α ∈ M such that
Mα ² T .

v) T is Ω-inconsistent if it is not Ω-consistent.

Observe that if AD+ holds in L(R) and every set of reals in L(R) is uB,
then every ΩT -consistent sentence is consistent with T .

Fact 3.2. The following are equivalent for a set of sentences T :
i) T is Ω-consistent.
ii) T 0Ω ϕ for some ϕ.
iii) T 0Ω ¬ϕ for all ϕ ∈ T , i.e., for all ϕ ∈ T , ϕ is ΩT -consistent.

Proof: i) ⇒ ii) Trivial.
ii) ⇒ iii) Without loss of generality, we may assume that for some uB set
A, 1) and 2) of Definition 2.29 hold. Given such an A, by hypothesis there
exist an A-closed c.t.m. M and α ∈ M ∩On such that Mα ² T +¬ϕ. Since
Mα ² ψ for all ψ ∈ T , the same M and α witness that T 0Ω ¬ψ, for all
ψ ∈ T .
iii ⇒ i) W.l.o.g., we may assume 1) and 2) of Definition 2.29 hold for some
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uB set A. Moreover, we may also assume that T 6= ∅. So, let ϕ ∈ T . By
hypothesis there exist an A-closed c.t.m. M and α ∈ M ∩ On such that
Mα ² T + ϕ. Since Mα ² T +¬⊥, the same M and α witness that T 0Ω ⊥.
¤

Theorem 3.3 (Soundness). ([12]) Assume there is a proper class of strongly
inaccessible cardinals. For every T ∪ {ϕ} ∈ Sent, T `Ω ϕ implies T ²Ω ϕ.

Proof: Let A be a uB set A witnessing T `Ω ϕ. Fix α and B, and suppose
V Bα |= T . Let λ > α be a strongly inaccessible cardinal such that A,B, T ∈ Vλ

and Vλ |= “B is a c.B.a.”. Take X ≺ Vλ countable with A,B, T ∈ X. Let
M be the transitive collapse of X, and let B̄ be the transitive collapse of B.
By Lemma 2.18 M is A-closed. Hence, if M B̄

α |= T , then M B̄
α |= ϕ. Since

Vλ |= “V Bα |= T”, by elementarity, M |= “M B̄
α |= T”. Hence, M |= “M B̄

α |=
ϕ”. So, again by elementarity, Vλ |= “V Bα |= ϕ”. Hence, V Bα |= ϕ. ¤

The assumption of the existence of a proper class of inaccessible cardinals
in the Theorem above is not necessary. However, the proof without this
assumption is no longer elementary and would take us beyond the scope of
this paper.

Thus, if there exists κ such that Vκ ² ZFC + ϕ, then ZFC 0Ω ¬ϕ. i.e.,
ϕ is ΩZFC-consistent.

Another consequence of Soundness is that for every finite fragment T of
ZFC, an ΩT -provable sentence cannot be made false by forcing over V .

The following equivalence can be proved without using Theorem 3.3.

Fact 3.4. For every T ⊆ Sent, the following are equivalent:
i) For all ϕ ∈ Sent, T `Ω ϕ implies T ²Ω ϕ.
ii) T is Ω-satisfiable implies T is Ω-consistent.

Proof: i) ⇒ ii) Suppose T is not Ω-consistent, i.e., T `Ω ⊥. By hypothesis,
T ²Ω ⊥ and so for all c.B.a. B and for all α ∈ On, V Bα 2 T , and therefore T
is not Ω-satisfiable.
ii) ⇒ i) Suppose T 2Ω ϕ. Let B and α be such that V Bα ² T and V Bα ² ¬ϕ.
Then T ∪ {¬ϕ} is Ω-satisfiable and therefore Ω-consistent. If T `Ω ϕ, then
T ∪ {¬ϕ} `Ω ϕ. But then T ∪ {¬ϕ} `Ω ϕ ∧ ¬ϕ, a contradiction. ¤

Thus, by Theorem 3.3 and Fact 3.4, if T is Ω-satisfiable then T is Ω-
consistent, i.e., if there exist α and B such that V Bα ² T , then for every uB
set A there exist an A-closed c.t.m. M of ZFC and α in On∩M such that
Mα ² T .

Corollary 3.5 (Non-Compactness of `Ω). Suppose L(R) |= AD and every
set of reals in L(R) is universally Baire. Then there is a sentence ϕ such
that ZFC `Ω ϕ and for all S ⊆ ZFC finite, S 0Ω ϕ.

Proof: Take the sentence ϕ of Theorem 1.12. Suppose ZFC 0Ω ϕ. Then
for each uB set A there is an A-closed c.t.m. M and α ∈ M ∩On such that
Mα ² ZFC +¬ϕ. With the same argument as in the proof of Theorem 1.12
applied to Mα we arrive to a contradiction.

Suppose now there is S finite such that S `Ω ϕ. Then by Soundness,
S ²Ω ϕ, and this yields a contradiction as in the proof of Theorem 1.12. ¤
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The Ω-conjecture says: If there exists a proper class of Woodin cardinals,
then for each sentence of the language of set theory ϕ,

∅ ²Ω ϕ iff ∅ `Ω ϕ.

The “if” direction is given by Soundness. So, the Ω-conjecture is just
Completeness for Ω-logic, i.e., if ∅ ²Ω ϕ, then ∅ `Ω ϕ, for every ϕ ∈ Sent.

Lemma 3.6. The following are equivalent:
i) For all ϕ ∈ Sent, ∅ ²Ω ϕ implies ∅ `Ω ϕ.
ii) For every r.e. set T ∪ {ϕ} ⊆ Sent, T ²Ω ϕ implies T `Ω ϕ.

Proof: i) ⇒ ii) Fix T r.e. and ϕ such that T ²Ω ϕ. Let ϕ∗ := “T ²Ω ϕ”.
By Lemma 1.9, ∅ ²Ω ϕ∗, and so by i), ∅ `Ω ϕ∗. Hence, there is a uB set A
such that for every A-closed c.t.m. M |= ZFC, M ² “∅ ²Ω ϕ∗”. Then for
all α ∈ M , Mα ² “T ²Ω ϕ”. Since M ² ZFC, by reflection, M ² “T ²Ω ϕ”.
This shows that A witnesses T `Ω ϕ. ¤

The Ω-conjecture is absolute under forcing:

Theorem 3.7. Suppose that there exists a proper class of Woodin cardinals.
Then for every c.B.a. B,

V B ² Ω-Conjecture iff V ² Ω-Conjecture.

Proof: By Theorems 1.8 and 2.35, for every c.B.a. B, ∅ ²Ω ϕ if and only
if V B ² “∅ ²Ω ϕ” and ∅ `Ω ϕ if and only if V B ² “∅ `Ω ϕ”. Hence if
V B ² Ω-Conjecture, then V ² “∅ ²Ω ϕ” iff V B ² “∅ ²Ω ϕ” iff V B ² “∅ `Ω ϕ”
iff V ² “∅ `Ω ϕ”. Similarly for the converse. ¤
Remarks 3.8. i) Assume L(R) ² AD+ and every set of reals in L(R) is
uB. If T is r.e. and ZFC ² “T ²Ω ϕ”, then T `Ω ϕ, witnessed by ∅.

ii) Suppose that ZFC + there exists a strongly inaccessible cardinal is
consistent. Let ϕ = “There is a non-constructible real”. Then,

ZFC 6` ((ZFC ²Ω ϕ) → (ZFC ² “ZFC ²Ω ϕ”)).

For suppose V ² ZFC + “There is a non-constructible real” + ∃α(Vα |=
ZFC). Then ZFC ²Ω ϕ holds in V . For if γ is an ordinal and V Bγ ² ZFC,
then V Bγ ² ϕ, since V Bγ contains all the reals of V . But, since ZFC plus the
existence of a strongly inaccessible cardinal is consistent, there exists in V
a model of ZFC + “there exists a strongly inaccessible cardinal” + V = L.
This model satisfies ZFC 6|=Ω φ.

iii) Suppose that ZFC is consistent. Then, for any sentence ϕ,
ZFC 6` ¬((ZFC ²Ω ϕ) → (ZFC ² “ZFC ²Ω ϕ”)).

Since there is a model of ZFC + “There are no models of ZFC”.

Recall that:
i) T is Ω-satisfiable iff there exists a c.B.a. B and an ordinal α such

that V Bα ² T .
ii) T is Ω-consistent iff T 0Ω⊥.

The following gives a restatement of the Ω-conjecture.

Fact 3.9. The following are equivalent for every T ⊆ Sent:
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i) For all ϕ ∈ Sent, T ²Ω ϕ implies T `Ω ϕ
ii) T is Ω-consistent implies T is Ω-satisfiable.

Proof: i)⇒ii) Suppose T is not Ω-satisfiable. Then for all c.B.a. B and
all α, V Bα 2 T . So, for all B and all α, if V Bα ² T , then V Bα ² ⊥, vacu-
ously. Hence, T ²Ω ⊥. By hypothesis, T `Ω ⊥, and we have that T is
Ω-inconsistent.
ii)⇒i) Suppose T 0Ω ϕ. Then T∪{¬ϕ} 0Ω ϕ, since otherwise T `Ω ¬ϕ → ϕ,
and then T `Ω ϕ ∨ ϕ, giving a contradiction. So, T ∪ {¬ϕ} is Ω-consistent.
Since by hypothesis, T ∪ {¬ϕ} is Ω-satisfiable, there are B and α such that
V Bα ² T ∪ {¬ϕ}. Therefore T 2Ω ϕ. ¤

Finally, we note that it is consistent that Ω-conjecture is true, as Woodin
has shown that it holds in fine structural models with a proper class of
Woodin cardinals.
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