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Abstract

We consider three combinatorial topics appearing in Gödel’s manu-
script Some considerations leading to the probable conclusion that the true
power of the continuum is ℵ2. These statements concern rectangular func-
tions, perfect set properties, and covering properties of sets of reals. We
consider these statements in light of more recent work on the set theory
of the reals.

1 Introduction

In 1970, Kurt Gödel circulated a manuscript in which he presented four ax-
ioms with the aim of bounding the size of the continuum. The history of this
manuscript and the argument it contains have been discussed by Moore [13]
and Solovay [14]. The work in this paper began by trying to understand these
axioms and the corresponding argument. We isolated three statements which
appear implicitly in his manuscript, and found that taken together these state-
ments do indeed put a bound on the continuum. These statements concern
dominating sequences for functions of the form f : κ+ → κ, perfect set axioms,
and decompositions of sets of reals. In the forms we consider here, these areas
are still not well understood. A special role is played by the Gℵ1 sets, those sets
which can be represented as an intersection of ℵ1 many open sets. In particular,
perhaps the most quotable result presented here is the fact that the perfect set
property for intersections of κ many open sets is equivalent to the statement
that d > κ for any cardinal κ (Theorem 5.6). Considerable attention is also
given to perfect set properties that hold in the model obtained after adding ω2

many Sacks reals to a model of CH (see Theorem 5.11).
As for the idea of settling the continuum from reasonable hypotheses, in

the thirty years since Gödel produced his argument several axioms have been
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studied which do imply c ≤ ℵ2. These include the Proper Forcing Axiom [8],
the Mapping Reflection Principle [24], Stationary Reflection at ω2 [8], Rado’s
Conjecture [29], Martin’s Maximum [15], ψAC [33], Bounded Martin’s Maximum
[31] and others. These statements are not independent of one another, but the
point is that several different proofs correspond to them. None of them is in
the spirit of Gödel’s approach, however. It remains to be seen whether Gödel’s
original idea, decomposing the reals into small, simple sets, can give us similar
evidence as to the size of the continuum.

2 Notation

Except where noted, the reals are considered to be the set 2ω. As usual, R+ and
Q+ are the sets of positive reals and rationals respectively. Lebesgue measure
is denoted by µ.

Modifying notation in [28], we let g(κ, λ) be the least η such that there
is a family of functions F ⊂ λκ such that every such function is everywhere
dominated by some member of F , and such that |{f¹γ | γ < κ ∧ f ∈ F}| = η.

For κ a cardinal and Γ ⊂ P(R), we let PSP(κ,Γ) denote the statement that
every member of Γ of cardinality κ or greater contains a perfect set. A set of
reals is in Gκ if it is the intersection of κ many open sets, and Fκ if it is the
union of κ many closed sets.

For Γ ⊂ P(R), Cov(Γ) is the least κ such that there exists a subset of Γ of
cardinality κ whose union is all the reals. Non(Γ) is the least κ such that there
exists a set of reals not in Γ of cardinality κ. We let N denote the collection
of subsets of the reals of measure zero, M the meager sets, and SN the sets of
strong measure zero.

The cardinal invariant d is the cardinality of the smallest set of functions
from ω to ω such that every such function is dominated mod finite by a member
of the set. The bounding number b is the cardinality of the smallest set of
functions from ω to ω such that no such function dominates mod finite every
member of the set. The cardinality of the continuum is denoted by c.

Given a function g : ω → R+, a g-set is a set of the form
⋂

i<ω

⋃
j>i Oi, where

each Oi is an interval of width g(i). We say that a set A ⊂ R can be g-covered
or is g-coverable if A is contained in a g-set. For sets A ⊂ B, g separates A from
B if A can be g-covered and B cannot. This induces the partial ordering ¢ on
sets of reals A ⊂ B defined by letting A ¢ B if there is a function separating A
from B.

3 A version of Gödel’s argument

Gödel began his paper by presenting the statements G1-G4 below. Axiom G4
says that there are no (ω1, ω1)-gaps in the scale from G3. Hausdorff showed
that the existence of such a scale implies that 2ω = 2ω1 . It is still not known,
however, whether the existence of such a scale is consistent with ZFC. Martin
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and Solovay showed [14] that that G1-G3 together do not put a bound in the
size of the continuum.

G1. There exists a scale of functions ωn → ωn of type ωn+1 majorizing by end
pieces every such function. It follows that there exists a set M of power
ℵn+1 majorizing everywhere every such function.

G2. The total number of initial segments of all the functions in this scale and
in M is ℵn.

G3. There exists a complete scale in Rω such that all increasing or decreasing
sequences in this scale have cofinality at most ω1.

G4. The Hausdorff continuity axiom for this scale.

We work with the following axioms, in addition to ZFC. Each of these ax-
ioms, or something stronger, appeared explicitly or implicitly in Gödel’s argu-
ment. In particular, Gödel claimed, incorrectly (see Sections 4 and 5), to derive
our Axioms 1 and 2 from G1 and G2. Axiom 3 below plays the role of G3.

Axiom 1. g(ω2, ω1) = ℵ2.

Axiom 2. PSP(ℵ3, Gℵ1).

Axiom 3. There exists a set H of functions from ω to R+ such that the following
hold.

(a) All sequences from H which are increasing or decreasing in the mod-
finite domination ordering have cofinality ω1 or less.

(b) For any set A ⊂ R not of strong measure zero there exists a sequence

〈(Bα, gα) ∈ P(R)×H : α < ω1〉

such that the Bα’s are nondecreasing under inclusion with union
containing A, each Bα is a gα-set, and each gα is mod-finite less than
each f ∈ H for which A is f -coverable.

Theorem 3.1 below is proved by Gödel’s argument. The main line of the
argument is showing that Axioms 1 and 3 together imply that the reals are the
union of ℵ2 many Gℵ1 sets of strong measure zero. By Axiom 2 these sets must
each have cardinality less than ℵ3.

Theorem 3.1. Axioms 1-3 together imply that c ≤ ℵ2.

Proof: Let F ⊂ ωω2
1 be as given by Axiom 1, and let

F = {f¹γ : f ∈ F ∧ γ < ω2}.

Fix a wellordering E : ω2 → F such that for all σ ⊂ τ ∈ F , E−1(σ) ≤ E−1(τ).
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Construct a matrix

〈(Aα,β , gα,β) ∈ P(R)×H : α < ω2, β < ω1〉

and a sequence
〈Bα ⊂ R : α < ω2〉

of Gℵ1 sets with the following properties.

• Each Aα,β is a gα,β-set.

• B0 = R, and for α ∈ ω2 \ {0},

Bα =
⋂
{AE−1(E(α)¹γ),E(α)(γ) : γ ∈ dom(E(α))}.

• For all α < ω2, 〈Aα,β : β < ω1〉 is nondecreasing in the subset order and
has union containing Bα.

• For all α < ω2, if Bα is not of strong measure zero, then for each β < ω1

and γ ∈ dom(E(α)), gα,β is mod-finite less than gE−1(E(α)¹γ),E(α)(γ).

The construction of the matrix is straightforward, using Axiom 3 to define
each column by induction.

Given such a matrix, c ≤ ℵ2 as follows. For each f ∈ F , consider the
sequence 〈BE−1(f¹γ) : γ < ω2〉. The sets in this sequence must eventually be of
strong measure zero, since otherwise one gets an ω2-sequence of members of H
which is decreasing in the mod-finite domination ordering. But by our perfect
set property for Gℵ1 sets, this strong measure zero set cannot be of cardinality
greater than ℵ2, since perfect sets cannot be of strong measure zero. Lastly,
each real defines a function from ω2 to ω1 by where it first appears in each
column (letting the value of the function at α be 0 if x 6∈ Bα). This function
is everywhere dominated by some f ∈ F . Since f everwhere dominates the
function determined by x, x is in all the Bα’s corresponding to f , and so x is
in the strong measure zero set corresponding to f restricted to some γ < ω2.
Thus R is the union of ω2-many sets of cardinality less than or equal to ℵ2, and
so c ≤ ℵ2.

Theorem 3.1 shows that a substantial part of Gödel’s argument is correct.
The rest of the paper analyzes Axioms 1-3.

4 Axiom 1 and Rectangles

In this section we consider variations of Axiom 1. We have not resolved whether
some weakening of Axiom 1 is sufficient for putting a bound on the continuum,
or even whether Axiom 1 can be removed altogether.

4.1 Question. Do axioms 2 and 3 together imply c ≤ ℵ2?
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4.2 Remark. A diagonal argument shows that if F is a set of functions from
ω2 to ω1 dominating every such function everywhere, then |F | ≥ ℵ3.

The cardinal invariant d1 is the natural generalization of d to ω1, that is,
the least κ such that there exists a set of functions from ω1 to ω1 of cardinality
κ dominating every such function mod countable. Likewise, b1 is the least κ
such that there exists a set of functions from ω1 to ω1 of cardinality κ such
that no such function dominates every member of the set mod countable. In
the definitions of d and d1, ‘mod finite’ and ‘mod countable’ can be replaced by
‘everywhere.’ This isn’t so for b and b1. The statement d1 = ℵ2 is a natural
weakening of Axiom 1. We shall see that is is properly weaker.

4.3 Remark. Another weakening of Axiom 1 results from letting F be an
eventually dominating scale. The existence of such an F with just ℵ2 many
initial segments is easily seen to imply Axiom 1, however, since it implies d1 =
ℵ2, and a witness for Axiom 1 can be constructed replacing the initial segments
of the functions in F with the rearranged members of the witness for d1 = ℵ2.

The following proof appears in [28] with a slightly different presentation. It
is essentially the same proof as Gödel’s for putting a bound on the continuum;
one could make the claim that this is the natural theorem for his argument.

Theorem 4.4. ([28]) If 2<κ < cof(λ) and g(λ, cof(κ)) = λ, then 2κ ≤ λ.

Proof: Let 2κ have the initial segment topology, and let F be as given by
the fact that g(λ, cof(κ)) = λ. Let F = {f¹β : f ∈ F ∧ β < λ} and fix a
wellordering E : λ → F such that for all σ ⊂ τ ∈ F , E−1(σ) ≤ E−1(τ).

Construct a matrix

〈Aα,β ⊂ 2κ : α < λ, β < cof(κ)〉

of closed sets and a sequence

〈Bα ⊂ 2κ : α < λ〉

of closed sets with the following properties.

1. B0 = 2κ, and for α ∈ λ \ {0},

Bα =
⋂
{AE−1(E(α)¹η),E(α)(η) : η ∈ dom(E(α))}.

2. For all α < λ, β < β′ < cof(κ), Aα,β ⊂ Aα,β′ .

3. For all α < λ,
⋃{Aα,β : β < cof(κ)} = Bα.

4. For all α < λ, if Bα has cardinality λ or greater, then for each β < κ Aα,β

is a proper subset of Bα.
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The construction is straightforward, using the fact that intersections of
closed sets are closed, and that since 2<κ < cof(λ), closed sets in 2κ of car-
dinality λ or more can be written as the union of an increasing cof(κ)-sequence
of closed sets, since there must be a point which is not <λ-isolated. Given
such a matrix, 2κ ≤ λ as follows. For each f ∈ F , consider the sequence
〈BE−1(f¹η) : η < λ〉. The sets in this sequence must eventually be of cardinality
less than λ, since 2κ has a basis with 2<κ < cof(λ) many members. Lastly, each
element x of 2κ defines a function from λ to cof(κ) by where it first appears
in each column (letting the value of the function at α be 0 if x 6∈ Bα). This
function is everywhere dominated by some f ∈ F . Since f everwhere dominates
the function determined by x, x is in all the Bα’s corresponding to f , and so x
is in the set of cardinality less than or equal to λ corresponding to f restricted
to some γ < λ. Thus 2κ is the union of λ-many sets of cardinality less than or
equal to λ, and so 2κ ≤ λ.

Corollary 4.5. ∀κ < γ(g(κ+, cof(κ)) = κ+) implies ∀κ < γ(2κ = κ+).

In particular, CH + Axiom 1 implies 2ω1 = ω2.

Theorem 4.6. If CH + 2ω1 = ω3 holds, then there is a forcing extension in
which Axiom 1 fails, but CH and d1 = ℵ2 hold.

4.7 Remark. Similar statements are true on other cardinals. For instance, one
can force d = ℵ1 + “if F ⊂ ωω

1 is such that for every g ∈ ωω
1 there exists f ∈ F

dominating g everywhere then for some α < ω1, |{f¹α : f ∈ F}| ≥ ℵ2”, since
the second statement follows from the failure of CH.

Theorem 4.6 follows from Lemma 4.8 below. Let Dω1 be Hechler forcing on
ω1. Conditions are of the form (s, f), where f ∈ ωω1

1 , s ∈ ω<ω1
1 and s ⊂ f .

(s, f) ≤ (t, g) iff t ⊂ s and for all α, f(α) ≥ g(α). This forcing is well known
and has been used for instance in [11].

Assuming CH, which will be true in the ground model in the proof of The-
orem 4.6, Dω1 is ω2-c.c. and σ-closed, so it preserves cardinals. Let Dω1

ω2
be the

countable support iteration of Dω1 of length ω2. The following are standard
facts about Dω1

ω2
.

Lemma 4.8. (CH)

1. Dω1
ω2

is σ-closed.

2. Dω1
ω2

is ω2-c.c.

3. Dω1
ω2

forces d1 = ℵ2.

Proof: Part 1 of the lemma is well known, and part 3 is trivial. We sketch
a proof of part 2. Let p ∈ Dω1

ω2
. For α ∈ supp(p), p(α) = (ṡp

α, ḟp
α). First, we

may assume that the ṡp
α are not names but partial functions sp

α in the ground
model. To see this, given p, construct conditions pn, finite sets An and partial
functions sn

α such that
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• An ⊂ An+1, An ⊂ supp(pn), ∪n<ωAn = ∪n<ωsupp(pn),

• ∀α ∈ An, pn¹α°ṡpn
α = sn

α,

• pn+1 ≤ pn ≤ p.

This is possible because Dω1
ω2

is σ-closed. For α ∈ ∪n<ωAn, let

sω
α = ∪{sn

α | α ∈ An}

and define a condition pω with support ∪n<ωAn such that

• for all α ∈ ∪n<ωAn pω¹α°“ṡpω
α = sω

α and ḟpω
α ≥ ḟpn

α everywhere.”

Then clearly pω ≤ pn < p for all n. Call such p decided.
Now the rest of the proof is standard. Given an ω2 sequence of decided

conditions, we can find a subset of size ω2 for which the supports form a ∆-
system with root r. By CH, there are just ω1 many decided conditions with
support r, and so our original sequence cannot have been an antichain.

5 Axiom 2 and Perfect Set Axioms

As shown in [17], [12] and Theorem 4.6, g(ω1, ω) = ω1 implies CH, and so does
not follow from axioms G1 and G2. At the time he produced his manuscript,
Gödel had not realized this implication, and the use of such a scale in his proof
is to derive that Gℵ1 = Fℵ1 .

1 Since an Fℵ1 set of cardinality ℵ2 must contain
an uncountable closed set, Gℵ1 = Fℵ1 implies PSP(ℵ2, Gℵ1).

The ℵ3 in Axiom 2 appears to be arbitrarily chosen to link the reals to ℵ2.
By contrast, Axiom 3 refers only to ω1, and Axiom 1 does not mention the reals
at all. As far as we know, replacing ℵ3 with κ+ in Axiom 2 gives only κ as an
upper bound on the continuum by the proof of Theorem 3.1. Further, Axioms
1-3 together imply that Axiom 2 is vacuously true. The weakest nonvacuous
version of the axiom is PSP(c, Gℵ1). Using this instead of Axiom 2, the proof
of Theorem 3.1 gives that the cofinality of the continuum is ω2 or less. We
haven’t resolved whether Axioms 1 and 3 plus PSP(c, Gℵ1) is consistent with
the continuum being ℵω1 or ℵω2 . Replacing Axiom 2 with PSP(cof(c), Gℵ1) or
∃κ < c(PSP(κ,Gℵ1)), the argument that c ≤ ℵ2 still goes through.

Axiom 2 fails after adding ℵ3 many random reals.

Theorem 5.1. PSP(ℵ1+κ,Gℵ1) is false after adding κ random reals to a model
of CH.

1Briefly, the argument is that given a Gℵ1 -representation we can write each open set as
an increasing ω-sequence of closed sets, and associate each function from ω1 to ω to the
corresponding intersection of closed sets. Each point in the intersection defines a function
from ω1 to ω, and each intersection is eventually constant. The Fℵ1 set then is the set of
intersections which are defined by initial segments of the dominating scale and contained in
the Gℵ1 set.
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We use a lemma from the proof of the Cichoń-Mokobodzki Theorem [3] to
prove Theorem 5.1. This theorem says that adding random reals does not add
a perfect set of random reals. During the proof the following is established.

Lemma 5.2. Let A ⊂ 2ω×2ω be a Borel set such that {x ∈ 2ω | Ax is perfect }
has measure 1. Then there exists an Fσ null set B such that

{x ∈ 2ω | ∃y ∈ B 〈x, y〉 ∈ A}
has measure 1.

Here Ax = {y | 〈x, y〉 ∈ A}. Except for B being Fσ, this is Lemma 3.2.20 of
[3]. However, it is clear from the proof of Lemma 3.2.19 there that B may be
taken to be Fσ.

Proof of Theorem 5.1 : The interesting case is when κ ≥ ω2. Let C be the
intersection of all Gδ measure one sets coded in the ground model. By CH,
C is a Gℵ1 set. Also |C| = c in the extension since each random real belongs
to C. Assume that P is a perfect set in the extension. Then P is added by
adjoining one random real r, and in fact there is a Borel set A ⊂ 2ω × 2ω in
the ground model such that P = Ar. Note that r ∈ {x | Ax is perfect} and
without loss of generality we may assume that {x | Ax is perfect } has measure
1. By Lemma 5.2, there is an Fσ null set B in the ground model such that
{x | ∃y ∈ B 〈x, y〉 ∈ A} has measure 1. Then r ∈ {x | ∃y ∈ B 〈x, y〉 ∈ A}, i.e.,
P ∩B = Ar ∩B 6= ∅. Thus P 6⊂ C.

Instead of CH, the proof of Theorem 5.1 requires just that Cof(M) = ℵ1,
where Cof(M) is the cardinality of the smallest basis for the meager ideal.
This is so because Cof(M) = Cof(E) in ZFC ([3], Theorem 2.6.17), where E
is the σ-ideal generated by the closed null sets. More generally, the proof gives
that PSP(cV [G], GCof(M)V ) fails after adding one or more random reals. Some
assumption is necessary, however, since if d > ℵ1 in the ground model then the
forcing will preserve this, and so by Theorem 5.6 PSP(ℵ1, Gℵ1) will hold.

5.1 Perfect set axioms and the dominating number

The following was pointed out to us by Hugh Woodin.

Proposition 5.3. There exists an ω1-sequence of Fσ sets whose intersection
has size ω1.

Proof: Fix a bijection b : ω → ω × ω, and for each i < ω let bi : ωω → ωω

be such that bi(x)(j) = x(b−1(i, j)). Let 〈aα : ω → α | α < ω1〉 be a set of
bijections. Let 〈xα : α < ω1〉 be such that for each infinite α < ω1,

{xβ : β < α} = {bi(xα) : i < ω}.
Now for α < ω1 and i < ω let Aα,i be the set of x ∈ ωω such that either
x ∈ {xβ : β < α} or there exists j < ω such that bj(x) = xaα(i). Note that each
Aα,i is an Fσ set, and that {xα : α < ω1} ⊂

⋂{Aα,i : α < ω1, i < ω}.
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Now say that x ∈ ⋂{Aα,i : α < ω1, i < ω}. We need to see that x is
equal to some xα. Since {bi(x) : i < ω} is countable, there is an α such that
{xβ : β < α} 6⊂ {bi(x) : i < ω}. Since x ∈ ⋂

i<ω Aα,i, then, x must be equal to
some xβ , β < α.

Corollary 5.4. There exists an ω1-sequence of Fσ sets whose intersection does
not contain a perfect set.

Another example is given in the first section of [32]. A sequence of functions
〈ρ0β : β < ω1〉 is presented, each ρ0β being an increasing function from β to
Q ∩ (0, 1). This sequence has the property that

T (ρ0) = {ρ0β¹α | α ≤ β < ω1}

under the extension ordering is a special Aronszajn tree. Each function ρ0β

induces the function xβ ∈ 2(Q∩(0,1)) given by the range of ρ0,β . Then the set
{xβ : β < ω1} is the intersection of ω1 many Fσ sets in 2(Q∩(0,1)) as follows. For
each t ∈ T (ρ0), let

Pt = {x ⊂ Q ∩ (0, 1) | x ∩ sup(range(t)) = range(t)}.

Each Pt is a perfect subset of 2(Q∩(0,1)). For each β < ω1, let

Gβ =
⋂
{P̄t | levT (t) = β} \ {xα : α < β},

where P̄t is the complement of Pt. Then 〈Gα : α < ω1〉 is an increasing sequence
of Gδ subsets of 2(Q∩(0,1)), and since there are no cofinal paths through T (ρ0),

⋃
α<ω1

Gα = 2(Q∩(0,1)) \ {xβ : β < ω1}.

Lastly, it is shown in [32] that {xβ : β < ω1} is of universal measure zero, and
so cannot contain a perfect set.

Lemma 5.5. Every analytic set of reals can be written as the union of a family
of compact sets of size at most d.

Proof: Let f : ωω → R be continuous with range(f) = A. For each x ∈ ωω,
let Cx = {y ∈ ωω | ∀n < ω y(n) ≤ x(n)}. Then each Cx is compact, and so
each Dx = f [Cx] is compact as well. If D ⊂ ωω is a dominating family of size d,
then {Dx : x ∈ D} is a family of d-many compact sets whose union is A.

The following theorem subsumes the well known fact that Cov(M) ≥ ℵ2

implies PSP(ℵ1, Gℵ1).

Theorem 5.6. For any cardinal κ, d > κ ⇔ PSP(ℵ1, Gκ).
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Proof: For the reverse direction, by Proposition 5.3, all we need to see is
that every Fσ set is in Gd. By Lemma 5.5, every co-analytic set is in Gd.

For the other direction, we work in 2ω. Define T ⊂ 2<ω by

s ∈ T ⇔ [s] ∩
⋂

α<κ

Uα 6= ∅,

where {Uα : α < κ} is a sequence of open sets such that
⋂

α<κ Uα is uncountable,
and [s] indicates the set of extensions of s. Note that each Uα is open dense
in T , i.e., for all α < κ, s ∈ T there is a t ∈ T such that s ⊂ t and [t] ⊂ Uα.
Also,

⋂
α<κ Uα ⊂ [T ] and

⋂
α<κ Uα = [T ]. Since

⋂
α<κ Uα is uncountable, [T ]

contains a perfect set, so we can assume that T is a perfect tree.
Choose recursively

{xσ ∈
⋂

α<κ

Uα : σ ∈ ω<ω}, {kσ,n ∈ ω : σ ∈ ω<ω, n ∈ ω}

such that

• each kσ,n is the largest integer k such that xσ_〈n〉¹k = xσ¹k,

• for each σ the kσ,n’s form an increasing sequence,

• for all σ, n, kσ_〈n〉,0 > kσ,n.

Then the sequences xσ_〈n〉¹(kσ,n +1) form a perfect tree. We now use d > κ to
find a perfect subtree all of whose branches are in

⋂
α<κ Uα.

For each α < κ, define φα : ω<ω → ω by

φα(σ) = min{k | [xσ¹k] ⊂ Uα}.

Now let M be a model of set theory of size κ containing everything so far, and
assume f ∈ ωω is unbounded over M , and that for all n, f(n + 1) ≥ f(n) + 2.

For α < κ, let gα(n) = max{φα(σ) | |σ| = n and ∀i < n σ(i) ≤ f(i) + 1}.
We claim that for all α there are infinitely many n such that f(n) > gα(n). To
see this, assume that for all n ≥ n0, f(n) ≤ gα(n). Define recursively ḡα ∈ ωω

by

• ḡα¹n0 = f¹n0,

• ḡα(n) = max{φα(σ) | |σ| = n and ∀i < n σ(i) ≤ ḡα(i) + 1}.
Note that ḡα(n0) = gα(n0). Then ḡα ∈ M , so there is a minimal n > n0 with
f(n) > ḡα(n). Since f(i) ≤ ḡα(i) for all i < n, we have gα(n) ≤ ḡα(n), a
contradiction. This proves the claim.

Next, define recursively

{st : t ∈ 2<ω} ⊂ T, {σt ∈ ω<ω : t ∈ 2<ω}

such that
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1. σ〈〉 = 〈〉, s〈〉 = 〈〉,
2. σt_〈0〉 = σ_

t 〈f(|t|)〉, σt_〈1〉 = σ_
t 〈f(|t|) + 1〉,

3. st_〈0〉 = xσt_〈0〉¹(kσt,f(|t|) + 1), st_〈1〉 = xσt_〈1〉¹(kσt,f(|t|)+1 + 1),

We have that st ⊂ st_〈i〉 and st_〈0〉 6= st_〈1〉. This means that

P = {
⋃

i<ω

sh¹i : h ∈ 2ω}

is a perfect subset of T . We check P ⊂ ⋂
α<κ Uα by showing that for all

i < ω, α < κ, if f(i) > gα(i) and t ∈ 2i, then [st_〈0〉], [st_〈1〉] ⊂ Uα. This
follows from the fact that for all j < i, σt(j) ≤ f(j) + 1. By the definition of
gα, then, f(i) > φα(σt), so we are done.

For the following, recall that a set of reals is dense in itself if it has no
isolated points.

Corollary 5.7. d is equal to each of the following.

1. The least κ such that there is an uncountable Gκ set which does not contain
a perfect set.

2. The least κ such that there is a Gκ set which is dense in itself and does
not contain a perfect set.

Proof: Call the first κ1 and the second κ2. Theorem 5.6 says just that
κ1 = d. Since every uncountable Gκ set contains a Gκ set which is dense in
itself, κ1 ≥ κ2. That κ2 ≥ d follows from a straightforward generalization of the
proof of Theorem 5.6.

5.8 Conjecture. PSP(d, Gd) is false.

If Conjecture 5.8 is correct, then the next step is to analyze the axioms
PSP(d+, Gd) and PSP(d++, Gd) (see [30]).

As we shall see, PSP(ℵ3, Gℵ1) does not follow from d1 = ℵ2 and d = ℵ1.
Furthermore, Axioms 1 and 3 together do not imply a bound on the continuum.
Theorem 5.9 also shows that Axioms 1-3 don’t imply CH.

Theorem 5.9. Forcing to add ω1 many Hechler reals with finite support pre-
serves Axiom 1 and makes d = Cov(SN ) = ℵ1, and so forces Axiom 3.

To see that Cov(SN ) = ℵ1 after adding ω1-many Hechler reals, note that
Hechler forcing makes the reals of the ground model f -coverable for every f :
ω → Q+ in the ground model. Actually, the Hechler reals are not needed; since
the iteration is by finite support, Cohen reals are added, and Cohen forcing
also makes the ground model reals f -coverable for every f in the ground model.
For Hechler reals, and many other kinds of reals, something stronger is true,
that finite support iterations of any length with uncountable cofinality force
Cov(SN ) = ℵ1. This argument is much more difficult, see [25] or Theorem
8.4.5 of [3].
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5.2 Perfect set axioms in the iterated Sacks model

Sacks forcing S is the set of perfect subtrees of 2<ω ordered by inclusion. We let
Sα be the α-length iteration of S with countable support. For p ∈ Sα, supp(p)
is the support of p.

We let Bℵ1 denote the sets which can be represented as an intersection of
ℵ1 many Borel sets.

Theorem 5.10. (CH) If G ⊂ Sω2 is V -generic, then V [G] |= PSP (ℵ2, Bℵ1).

It is well known (see [2]) that d = Non(M) = ℵ1 holds in V [G] as above,
and so PSP(ℵ1, Gℵ1) fails there - see Theorem 5.6.

Given a set of reals A in Bℵ1 and a forcing extension V [G], we let AV [G] be
the interpretation of A in V [G].

Theorem 5.11. Let A ⊂ 2ω be a Bℵ1 set in V . If G ⊂ Sω2 is V -generic, then
either AV [G] = A or there is a perfect set P ∈ V [G] such that P ⊂ AV [G].

The idea behind Theorem 5.11 is contained in the one-step argument.

Proposition 5.12. Let A ⊂ 2ω be a Bℵ1 set in V . If G is S-generic over V
then either AV [G] = A or there is a perfect set P ∈ V [G] such that P ⊂ AV [G].

Proof: Assume that the first alternative fails. Let ḟ be an S-name for a
member of 2ω such that 1S°ḟ ∈ AV [Ġ] \A. Given S ∈ S, it is straightforward to
construct T ≤ S, a perfect set P and a homeomorphism F : [T ] → P such that

T°ḟ = F (ṡ),

where ṡ is the canonical name for the S-generic real (see [27]). Now work in
V [G], assuming T ∈ G. From [27], we have that every new real is S-generic.
Also note that for each perfect tree coded in V , there is a perfect subtree coded
in V [G] all of whose branches are new reals; this is easy to see and always
true when new reals are added. So T contains a perfect subtree T ′, all of
whose branches are Sacks-generic. Now P ′ = F ′′[T ′] is a perfect subset of P
and we claim that P ′ ⊂ AV [G]. For indeed, if x ∈ P ′, then x = F (s) for
some Sacks generic real s ∈ [T ′]. Let G′ be the corresponding generic filter.
So x = F (s) = F (ṡG′) = ḟG′ . Since s ∈ [T ′] ⊂ [T ], T ∈ G′ follows. As
T°ḟ = F (ṡ) ∈ AV [Ġ], x ∈ AV [G] follows.

5.13 Remark. The pointclass Bℵ1 can be increased to the class of ω1-Borel
sets as defined in [33] in the statement of Proposition 5.12. We don’t know if
this is true for Theorems 5.10 and 5.11. Roughly, the ω1-Borel sets are those
sets of reals which have descriptions of size ℵ1. The issue is that unlike for
Bℵ1 sets, the statement that a perfect set is contained in a given ω1-Borel set
is not necessarily upwards absolute; if one real is added to a model of CH, for
example, then the reals of the ground model are an Fℵ1 set not containing a
perfect set, even though they trivially contain a perfect set in the ground model.
The absoluteness of the statement that a given perfect set is contained in a given
Bℵ1 set is key to the proofs in this section.
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Ciesielski and Pawlikowski have recently [10] produced a shorter proof of
Theorem 5.11, using their axiom CPAprism. In that paper they also prove the
following theorem, refuting a conjecture in an earlier version of this paper (and
negatively answering a question whose positive answer implied the conjecture).

Theorem 5.14. [10] If CH holds and G ⊂ Sω2 is V -generic, then Bℵ1 6= Fℵ1

in V [G].

It is easy to see that Bℵ1 = Fℵ1 is equivalent to the statement Gℵ1 = Fℵ1 ,
which Gödel mistakenly claimed to derive from G1 and G2. That Gℵ1 = Fℵ1

follows trivially from CH, and implies ¬PSP(ℵ1, Gℵ1) and PSP(ℵ2, Gℵ1). To see
¬PSP(ℵ1, Fℵ1), note that ZFC implies the existence of an Fℵ1 set of cardinality
ℵ1 which does not contain a perfect set. The statement PSP(ℵ2, Fℵ1) follows
from the fact that uncountable closed sets contain perfect sets.

The following questions remain open for lack of models that would show
consistency.

5.15 Question. Does Gℵ1 = Fℵ1 imply CH?

5.16 Question. Does d = ℵ1∧ PSP(ℵ2, Gℵ1) imply c ≤ ℵ2?

Proof of Theorem 5.11: By Proposition 5.12, we need to consider only limit
stages α where α has cofinality ω. Given a condition p0 ∈ Sα and a name ḟ for
a member of 2ω, we shall construct:

Step 1. a condition p ≤ p0 and a perfect tree T such that p°αḟ ∈ [T ] in a canonical
way,

Step 2. a canonical name Ṡ such that p°α“Ṡ ⊂ T , Ṡ is a perfect tree, and

[Ṡ] ⊂ V [Ġα] \
⋃

β<α

V [Ġβ ], ”

i.e., all branches have the same constructibility degree as ḟ .

Then given a name ġ and a condition q0 ≤ p such that q0°αġ ∈ [Ṡ], we construct:

Step 3. a condition q ≤ q0 and a perfect tree U such that q°αġ ∈ [U ] in a canonical
way, and a condition r ≤ p such that canonically r°αḟ ∈ [U ], and further,
whenever Gα is generic, q ∈ Gα, then there is G′α generic, r ∈ G′α such
that

ġGα = ḟG′α .

More explicitly, there will be a canonical isomorphism π : Sα¹q → Sα¹r with
π(q) = r such that whenever Gα is generic, q ∈ Gα, then ġGα = ḟπ[Gα].

From Step 3 we then have that p forces that all branches of Ṡ are generic in
the same sense as ḟ , so whatever p forces about ḟ will be true about all members
of [Ṡ], so we will be done.

Step 1: We construct a fusion sequence 〈pn : n < ω〉. The given condition
is p0; p will be the result of the fusion. We also construct for each σ ∈ 2<ω a
sequence S|σ|,σ ∈ 2<ω and a condition p|σ|〈σ〉 ≤ p|σ| such that

13



• {S|σ|,σ | σ ∈ 2<ω} forms a perfect tree, with extension and incompatibility
in accordance with the corresponding σ’s,

• for each n, {pn〈σ〉 | σ ∈ 2n} forms a maximal antichain below pn,

• for each σ ∈ 2<ω, p|σ|〈σ〉°S|σ|,σ ⊂ ḟ .

Then
T = {s ∈ 2<ω | ∃σ ∈ 2<ω(s ⊂ S|σ|,σ)}

will be the desired tree.
Fix a function F : ω → ω such that

(*) F−1({n}) is infinite for all n.

(**) n < m ⇒ min(F−1(n)) < min(F−1(m)).

Note then that F (n) ≤ n for all n. Our construction will also fix ordinals αn

such that supp(p) = {αn : n ∈ ω}. We suppress the bookkeeping of which αn’s
arise when, except for the stipulation that αn ∈ supp(pn) for each n. The fusion
condition will be that for each αn and each m ≥ min{i | F (i) = n}, 1Sαn

forces
that the first |{i ≤ m | F (i) = n}| splitting levels of pm(αn) and pm+1(αn) will
be the same. We will use the following sets, where n ∈ ω and γ < α :

Aγ
n = {i < n | αF (i) ≤ γ}, Bγ

n = {i < n | αF (i) < γ}
(so Aγ

n \ Bγ
n = {i < n | αF (i) = γ}). During our construction, we will produce

sequences Sγ

n,σ¹Aγ
n
∈ 2<ω, where n ∈ ω, σ ∈ 2n and γ ∈ {αF (i) : i < n}, such

that

(a) for γ ∈ {αF (i) : i < n} and σ : Bγ
n → 2, there exists (pn¹γ)〈σ〉 ≤ pn¹γ

such that (pn¹γ)〈σ〉 forces

• {Sγ
n,τ | σ ⊂ τ ∧ dom(τ) = Aγ

n} ⊂ pn(γ),

• ∀S ∈ pn(γ)∃τ ∈ 2Aγ
n(σ ⊂ τ ∧ (S ⊂ Sγ

n,τ ∨ Sγ
n,τ ⊂ S)),

(b) fixing n ∈ ω and γ ∈ {αF (i) : i < n}, for all distinct σ, σ′ ∈ 2Aγ
n , Sγ

n,σ and
Sγ

n,σ′ are incompatible,

(c) fixing n ∈ ω and γ ∈ {αF (i) : i < n}, for all σ ∈ 2Aγ
n+1 ,

Sγ

n,σ¹Aγ
n
⊂ Sγ

n+1,σ.

Therefore, if (pn¹γ)〈σ〉 ∈ Gγ then the Sγ
n,τ with σ ⊂ τ canonically define the

|Aγ
n\Bγ

n|-th splitting level of pn(γ). Note that if αF (n) > γ, then for all σ ∈ 2n+1

we may choose
Sγ

n+1,σ¹Aγ
n+1

= Sγ

n,σ¹Aγ
n
.

The (pn¹γ)〈σ〉 will satisfy the following recursively defined conditions for
γ ∈ {αF (i) : i < n} and σ with dom(σ) = Bγ

n. The same construction will be
used in Step 3 (without repeating the details).
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• If γ = min{αF (i) : i < n}, then Bγ
n = ∅ and (pn¹γ)〈σ〉 = pn¹γ〈〉 = pn¹γ.

• Assume (pn¹γ)〈σ¹Bγ
n〉 is defined for some γ ∈ {αF (i) : i < n} and σ with

dom(σ) = Aγ
n. Let δ = min{αF (i) | i < n ∧ αF (i) > γ}. Note that

Bδ
n = Aγ

n. Then

(pn¹δ)〈σ〉 = (pn¹γ)〈σ¹Bγ
n〉_(pn(γ)Sγ

n,σ
)_pn¹[γ + 1, δ),

where as usual 1Sα
°ṗs = {ṫ ∈ ṗ | s ⊂ ṫ∨ ṫ ⊂ s}. This makes sense because

by (b) above we have indeed that (pn¹γ)〈σ¹Bγ
n〉°Sγ

n,σ ∈ pn(γ).

Similarly, pn〈σ〉 = (pn¹γ)〈σ¹Bγ
n〉_(pn(γ)Sγ

n,σ
)_pn¹[γ + 1, α), where

γ = max{αF (i) : i < n}.
Note that in this case Aγ

n = n. The key point is that

{(pn¹γ)〈σ〉 | σ ∈ 2Bγ
n}

forms a maximal antichain below pn¹γ, and the same holds for {pn〈σ〉 | σ ∈ 2n}
and pn. Further, if γ < δ and σ ∈ 2Bγ

n is a subfunction of τ ∈ 2Bδ
n (or 2n), then

(pn¹δ)〈τ〉 (or pn〈τ〉) ≤ (pn¹γ)〈σ〉.
Now for the details of the construction. In the case n = 0, put Sn,σ = σ = 〈〉,

and let all (p0¹γ)〈〉 = p0¹γ, p0〈〉 = p0. Then all the conditions are satisfied
trivially. Given the construction for n, construct for n + 1 as follows. Let
δ = αF (n); since for all i < n αi ∈ supp(pi) this is defined (not all αi have been).
Choose, for each σ ∈ 2Bδ

n+1 , p∗∗σ ≤ (pn¹δ)〈σ〉 and Sδ
n+1,τ for τ ⊃ σ, τ ∈ 2Aδ

n+1

such that p∗∗σ °Sδ
n+1,τ ∈ pn(δ), and such that

• for distinct τ , the Sδ
n+1,τ are incompatible,

• in case δ ∈ {αF (i) : i < n}, p∗∗σ °Sδ
n,τ¹Aδ

n

⊂ Sδ
n+1,τ .

Now recursively for each

γ ∈ {αF (i) > δ | i < n},
we produce

Sγ
n+1,σ

for σ ∈ 2Aγ
n+1 , as follows.

Say that we have chosen for γ, and want to choose for

γ′ = min({αF (i) : i < n} \ γ + 1).

For j ∈ {0, 1} fix Gj
γ′ generic such that (pn¹γ′)〈ϑ_〈j〉〉 ∈ Gj

γ′ , where dom(ϑ) =
Bγ′

n = Aγ
n, τ ⊂ ϑ. Then look at Sγ′

n,χ, χ ⊃ ϑ, dom(χ) = Aγ′
n . These form a finite

maximal antichain in pn(γ′). So, in the models V [G0
γ′ ] and V [G1

γ′ ] we may find

Sγ′

n+1,χ_〈0〉, Sγ′

n+1,χ_〈1〉
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which are incompatible such that Sγ′
n,χ ⊂ Sγ′

n+1,χ_〈j〉 ∈ pn(γ′) holds in V [Gj
γ′ ].

Having chosen the
Sγ

n+1,ϑ¹Aγ
n+1

we now choose pn+1. This choice induces our choices of the (pn+1¹γ)〈σ〉 and
pn+1〈σ〉. For σ ∈ 2<ω, and q ∈ Sα, let φ(σ, q) be the statement that for each
γ ∈ {αF (i) : i < |σ|}, q¹γ is consistent with

Sγ

|σ|,σ¹Aγ
|σ|

being an initial segment of the stem of q(γ). The fusion requirement is main-
tained by requiring that φ(σ, pn+1) holds for each σ ∈ 2n+1. We have chosen
the

Sγ

n+1,σ¹Aγ
n+1

so that φ(σ, pn) always holds. Further, these statements are mutually incom-
patible. Let qσ ≤ pn force that

Sγ

n+1,σ¹Aγ
n+1

is an initial segment of the stem of pn(γ), and furthermore extend the qσ so
that they decide incompatible initial segments Sn+1,σ of ḟ . Then by the same
recursive procedure as for choosing the

Sγ

n+1,σ¹Aγ
n+1

we can choose pn+1 so that the qσ (= pn+1〈σ〉) form a maximal antichain below
pn+1 as desired. This completes the standard argument and the construction
for n + 1.

This completes Step 1.
For Step 2, we first give a definition of S = ṠGα in the generic extension.

That is, suppose Gα is Sα-generic, with p ∈ Gα. Then f = ḟGα ∈ T , and there
is a unique y ∈ 2ω such that f = ḟGα ⊃ Sn,y¹n for all n. Let {ln : n < ω} be
such that {αln : n ∈ ω} is strictly increasing and converges to α. Choose the
ln’s so that αln > αi for all i < ln - this will be useful in Step 3. Let Z be the
set of z ∈ 2ω such that

• ∀n∀j ∈ F−1({ln}) z(min(F−1({ln}) \ (j + 1))) = y(j),

• ∀j 6∈ F−1({ln : n ∈ ω}) z(j) = y(j).

Note that for each n, z can take any value at min{i | F (i) = ln}. Let

S = {g | ∃z ∈ Z∀n Sn,z¹n ⊂ g}.

S is a perfect subset of T , so there a name Ṡ such that ṠGα = S. Also note the
following (still in V [Gα]): if g ∈ S then in V [g] we can reconstruct z ∈ Z such
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that ∀nSn,z¹n ⊂ g. From z we can reconstruct y, and from y we can reconstruct
f . So f ∈ V [g]. This means that all branches of S are reals which arise only in
V [Gα].

On the other hand, by [23] we have that exactly one new constructibility
degree, above all the previous degrees, arises in V [Gα]. So f, S and all the
branches of S have the same constructibility degree. This completes Step 2.

Step 3: First, fix a name ġ and a condition q0 ≤ p such that q0°ġ ∈ [Ṡ]. As
above, we have a name ẏ such that p°ḟ =

⋃
n∈ω Sn,ẏ¹n. This gives us a name

ż such that q0°ġ =
⋃

n∈ω Sn,ż¹n, where ż is forced to be in the set Z defined
from ẏ as above.

We construct a fusion sequence 〈qn : n < ω〉, where q0 is the given condition.
The result of the fusion will be q. The construction of the tree U will be induced
by the construction, for each σ ∈ 2<ω, of a sequence T|σ|,σ ∈ 2<ω and a condition
q|σ|〈σ〉 ≤ q|σ| such that

• {T|σ|,σ | σ ∈ 2<ω} forms a perfect tree, with extension and incompatibility
in accordance with the corresponding σ’s,

• each q|σ|〈σ〉°T|σ|,σ ⊂ ż,

• for each n, {qn〈σ〉 | σ ∈ 2n} forms a maximal antichain below qn.

• the length of T|σ|,σ depends only on n (and will denoted by kn).

Then U = {t ∈ 2<ω | ∃n ∈ ω, σ ∈ 2n(t ⊂ Skn,Tn,σ )} will be as desired. Along
the way we also fix ordinals βn (n ∈ ω) such that supp(q) = {βn : n ∈ ω}. Note
that {αn : n ∈ ω} ⊂ {βn : n ∈ ω}. We stipulate that βn ≤ αn for all n, and also
that if βn ∈ {αi : i ∈ ω} then there exists i ≤ n such that βn = αi. We will use
the following sets, where γ < α and n ∈ ω:

Cγ
n = {i < n | βF (i) ≤ γ}, Dγ

n = {i < n | βF (i) < γ},

(so Cγ
n \Dγ

n = {i < n | βF (i) = γ}).
Additionally, we produce

i. sequences T γ

n,σ¹Cγ
n
∈ 2<ω (of length ≥ |Cγ

n |), where n ∈ ω, σ ∈ 2n, and

γ ∈ {βF (i) : i < n}
ii. Uγ

n,σ¹Cγ
n
∈ 2<ω, where n ∈ ω, σ ∈ 2n, and γ ∈ {βF (i) : i < n}

such that

a. for all n ∈ ω, γ ∈ {βF (i) : i < n},

• for all distinct σ ∈ 2Cγ
n , the T γ

n,σ are all pairwise incompatible,

• for all σ ∈ 2Cγ
n+1 , T γ

n,σ¹Cγ
n
⊂ T γ

n+1,σ,

b. for all n ∈ ω and γ ∈ {βF (i) : i < n},
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• for all distinct σ ∈ 2Cγ
n , the Uγ

n,σ are all pairwise incompatible,

• for all σ ∈ 2Cγ
n+1 , Uγ

n,σ¹Cγ
n
⊂ Uγ

n+1,σ,

c. for all n ∈ ω, σ ∈ 2n and γ ∈ {βF (i) : i < n} ∩ {αi : i ∈ ω},
Uγ

n,σ¹Cγ
n

= Sγ

kn,Tn,σ¹Aγ
kn

.

d. for all n ∈ ω, γ ∈ {βF (i) : i < n} and σ ∈ 2Dγ
n , there exists (qn¹γ)〈σ〉 ≤ qn

such that (qn¹γ)〈σ〉 forces

• {T γ
n,τ | σ ⊂ τ ∧ dom(τ) = Cγ

n} ⊂ qn(γ),

• ∀T ∈ qn(γ)∃τ ∈ 2Cγ
n (σ ⊂ τ ∧ (T ⊂ T γ

n,τ ∨ T γ
n,τ ⊂ T )),

i.e., each T γ
n,τ canonically defines the |Cγ

n \ Dγ
n|-th splitting level of qn(γ), so

together they define a finite maximal antichain in qn(γ). In particular, if βF (n) >
γ, then for all σ ∈ 2n+1

T γ

n+1,σ¹Cγ
n+1

= T γ

n,σ¹Cγ
n
.

As specified by (d), the sets qn¹γ〈σ〉 and qn〈σ〉 are built up from the T γ
n,σ’s

in the same way that the sets pn¹γ〈σ〉 and pn〈σ〉 were built from the Sγ
n,σ’s in

Step 1, using {βi : i < ω} in place of {αi : i < ω}. Furthermore, the condition
r is constructed in the same way from sets rn¹γ〈σ〉 and rn〈σ〉 built in the same
way from the Uγ

n,σ’s. Conditions (a) and (b) then induce the isomorphism
π between Sα¹q and Sα¹r. The remaining point, that ġGα = ḟG′α whenever
Gα ⊂ Sα is generic with q ∈ Gα, follows from condition (c) and the fact that
each qn〈σ〉°T|σ|,σ ⊂ ż.

The construction requires one more condition:

e. if n ∈ ω, σ, σ̄ ∈ 2n, γ ≥ βF (i) is the minimal ordinal in

{βF (i) : i ≤ n} ∩ {αj : j < ω},
and σ¹Cγ

n = σ̄¹Cγ
n , then there is a j ∈ Aγ

kn+1
\ (Aγ

kn
∪ Bγ

kn+1
) such that

Tn+1,σ_〈0〉(j) 6= Tn+1,σ̄_〈1〉(j).

Now for the details. By the argument for Step 1, we can construct the
T γ

n,σ¹Cγ
n
’s to satisfy (a) and (d). We may further assume by augmenting the

previous argument that the sequences Tn,σ (σ ∈ 2n) all have the same length
kn. To satisfy (e), we add another condition to the step n → n + 1 of the
construction. Fix n ∈ ω, σ, σ̄ ∈ 2n. Let δ = βF (n) and let γ ≥ βF (i) be the least
ordinal in {βF (i) : i ≤ n} ∩ {αj : j < ω}, if such an ordinal exists. Let Gγ be
generic, with

(qn¹γ)〈σ¹Dγ
n〉 = (qn¹γ)〈σ̄¹Dγ

n〉 ∈ Gγ .

Now consider
(qn(γ))T γ

n,σ¹C
γ
n
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in V [Gγ ]. Since qn ≤ p,
(qn(γ))T γ

n,σ¹C
γ
n

≤ p(γ).

By the construction of p, p(γ) is the set of s for which there exists k, τ such that

• dom(τ) = Aγ
k ,

• s ⊂ Sγ
k,τ ,

• ∀j ∈ ω(αF (j) < γ ⇒ τ(j) = H(j)),

where the function H : {i ∈ ω | αF (i) < γ} → 2 is canonically given by the
generic Gγ as in Step 1, i.e.,

H =
⋃
{ρ : Bγ

m → 2 | m ∈ ω, (pm¹γ)〈ρ〉 ∈ Gγ}.

Fix ı̄ ∈ ω such that γ = αF (ı̄). Still arguing in V [Gγ ], we can find extensions
q̄, ¯̄q of

(qn(γ))T γ

n,σ¹C
γ
n

such that for some j ∈ F−1({F (̄ı)})\kn and some τ̄ , ¯̄τ ∈ 2Aγ
kn+1 (assuming that

we have chosen kn+1 to be large enough) we have τ̄(j) 6= ¯̄τ(j) and stem(q̄) =
Sγ

kn+1,τ̄ , stem(¯̄q) = Sγ
kn+1,¯̄τ . By the definitions of ẏ in Step 2 and (b) in Step 1,

this means q̄ and ¯̄q force different values to ẏ(j), so they force different values
to ż(j) or to ż(min(F−1({F (̄ı)}) \ (j + 1))). In either case, by letting

T γ

n+1,σ_〈0〉¹Dγ
n+1

, T γ

n+1,σ̄_〈1〉¹Dγ
n+1

extend the sequences Sγ
kn+1,τ̄ and Sγ

kn+1,¯̄τ respectively, we ensure that Tn+1,σ_〈0〉
and Tn+1,σ̄_〈1〉 are distinct at some

j ∈ Aγ
kn+1

\ (Aγ
kn
∪Bγ

kn+1
).

The construction for Step 3 is essentially finished. We just need to see
that conditions (b) and (c) worked out. First note that in the case where
γ 6∈ {αi : i ∈ ω} we can arbitrarily choose Uγ

n,σ¹Cγ
n

to satisfy (b) because

clause (c) is void. So assume γ ∈ {αi : i ∈ ω}. We first check for each
n that the requirement in (c) is well-defined. That is, we show that for all
γ ∈ {βF (i) : i < n} ∩ {αi : i ∈ ω}, if σ, σ̄ ∈ 2n satisfy σ¹Cγ

n = σ̄¹Cγ
n , then

Tn,σ¹Aγ
kn

= Tn,σ̄¹Aγ
kn

.
For n = 0 there is nothing to show. For n + 1 ∈ ω, fix

γ ∈ {βF (i) : i < n + 1} ∩ {αi : i ∈ ω}.
Say γ = βF (i0). Assume that σ, σ̄ ∈ 2n+1 are such that σ¹Cγ

n+1 = σ̄¹Cγ
n+1. Let

j ∈ Aγ
kn+1

. Then αF (j) ≤ γ. Also note (trivially) that

(qn+1¹γ + 1)〈σ¹Cγ
n+1〉 = (qn+1¹γ + 1)〈σ̄¹Cγ

n+1〉
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and that
qn+1〈σ〉°Tn+1,σ ⊂ ż, qn+1〈σ̄〉°Tn+1,σ̄ ⊂ ż,

so they decide ż(j). However, by Steps 1 and 2, if two conditions below p force
different values to ż(j), then

• in case j ∈ F−1({m}), where m 6∈ {ln̄ : n̄ ∈ ω}, they force different
values to ẏ(j), which means the conditions are forced by 1SαF (j)

to take
different values at the αF (j)th stage of the iteration, which is not the case
for qn+1〈σ〉 and qn+1〈σ̄〉

• in case j ∈ F−1({ln̄}) for some n̄, if j 6= min(F−1({ln̄})), they still force
different values to some ẏ(̄), where ̄ < j and F (̄) = ln̄ = F (j), so the
argument reduces to the previous case

• in case j = min(F−1({ln̄})) for some n̄, we have βF (j) ≤ αF (j) ≤ γ =
βF (i0), so j ≤ i0 by (**) in Step 1, and the choice of the ln’s in Step 2.
Let i1 ≤ i0 be minimal such that βF (i1) ≥ αF (j). We still have j ≤ i1,

for the same reason, and also that C
βF (i1)

i1+1 = i1 + 1. Also, C
βF (i1)

i1+1 ⊂ Cγ
n+1

because βF (i1) ≤ γ. Let τ = σ¹(i1 + 1) = σ̄¹(i1 + 1). Then

Ti1+1,τ = Tn+1,σ¹ki1+1 = Tn+1,σ̄¹ki1+1,

and since j ≤ i1 ≤ ki1 < ki1+1, they agree at j.

This verifies (c). Finally, we check (b). The inclusion relation is immediate.
We need to check incompatibility, that is, that if σ¹Cγ

n = σ̄¹Cγ
n and n ∈ Cγ

n+1 (so
that σ_〈0〉¹Cγ

n+1 6= σ̄_〈1〉¹Cγ
n+1), then Uγ

n+1,σ_〈0〉¹Cγ
n+1

and Uγ

n+1,σ̄_〈1〉¹Cγ
n+1

are incompatible. By (c) it suffices to show that

Tn+1,σ_〈0〉¹Aγ
kn+1

6= Tn+1,σ̄_〈1〉¹Aγ
kn+1

.

This follows by induction.
For T0,〈〉¹Aγ

k0
(the case n = −1) there is nothing to show. Given that this

holds for n, we argue for n + 1. Now βF (n) ≤ γ, since n ∈ Cγ
n+1. Also, by the

assumption in (b), γ = βF (i), for some i ≤ n. Let γ′ be the least member of
{βF (i) : i ≤ n} ∩ {αj : j ∈ ω} (recall that γ is in this intersection). By (e) there
is j ∈ Aγ′

kn+1
\Aγ′

kn
such that

Tn+1,σ_〈0〉(j) 6= Tn+1,σ̄_〈1〉(j),

so we are done.
This finishes Step 3, and the proof.

20



6 Axiom 3

It is easy to see that Axiom 3 holds if d = Cov(SN ) = ℵ1. We show here that
Axiom 3 implies d = ℵ1. Axiom 3 as stated trivially implies Cov(N ) = ℵ1, and
in the second subsection we show that this would still hold even if we restricted
Axiom 3 to sets of measure zero.

6.1 Remark. As pointed out in [30], Axiom 2 + d = ℵ1 + Cov(SN ) ≤ ℵ2

trivially implies that c ≤ ℵ2. This follows from the fact that each strong measure
zero set is contained in a Gd set of strong measure zero, and so by Axiom 2 must
have cardinality less than or equal to ℵ2 since it can’t contain a perfect set. By
the same reasoning, d = ℵ1, Cov(SN ) = ℵ1 and PSP(ℵ2, Gℵ1) together imply
CH.

Axiom 3 implies that there exists an ω1-sequence of functions from ω to R+

such that no Gℵ1 set which is f -coverable for every f in the sequence contains
a perfect set. This follows from the fact that H has no decreasing ω2 sequences,
and so there is an ω1 sequence of elements of H with no lower bound in H.
Any perfect set coverable by every function in the sequence would be a coun-
terexample to Axiom 3. Since perfect sets cannot have strong measure zero, the
existence of such a sequence follows from d = ℵ1. The converse also holds.

Theorem 6.2. If there exists a κ-sequence of functions from ω to R+ such that
no Gκ set which is f -coverable for every f in the sequence contains a perfect set
then d ≤ κ.

Proof: We prove the contrapositive. Assume that d > κ. Given a sequence
〈fα : α < κ〉 of functions from ω to R+, for each α < κ define f ′α : ω → R+ by
letting

f ′α(n) = min{fα(m) : m ∈ [2n+1 − 2, 2n+2 − 3]}.
Using d > κ, let g : ω → R+ be such that for all α < κ {n ∈ ω | g(n) < f ′α(n)} is
infinite. Now build a binary tree of intervals such that the members of the nth
level (not counting the root as a node these are the (2n+1−2)th to (2n+2−3)th
nodes of the tree) are disjoint and of diameter less than g(n). Let P be the set
of reals arising from paths through this tree, and note that P is a perfect set.
For each α, then, we have infinitely many n such that P can be covered by a
sequence of intervals of diameters as prescribed by fα¹[2n+1 − 2, 2n+2 − 3], so
P is fα-coverable.

In certain cirumstances the requirement that we decompose into an increas-
ing sequence of smaller sets is not restrictive. These circumstances do not always
hold, though, see Theorem 6.37.

Lemma 6.3. Assume d = ℵ1 and let A be a set of reals such that for any
countable set G of functions g : ω → R+ for which A is not g-coverable there
is an h : ω → R+ such that A is not h-coverable and h ≥ g mod-finite for all
g ∈ G. If A =

⋃
α<ω1

Bα, where each Bα ¢ A, then there is an increasing
sequence 〈Dα : α < ω1〉 such that A =

⋃
α<ω1

Dα and each Dα ¢ A.
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Proof: We want to write the union of the Bα’s as an increasing union of sets
smaller than A. We may assume that each Bα is a Gδ-set, and so by Lemma 5.5
each Bα is a union of compact sets 〈Cαζ : ζ < ω1〉. We show that each Dβ ¢ A,
where Dβ =

⋃{Cαζ : α, ζ < β}. Since the Cαζ ’s are compact, it suffices to find
for each β < ω1 a function hβ : ω → ω such that A is not hβ-coverable but each
Cαζ , α, ζ < β, is. Our assumption on A gives us such an hβ .

6.1 Cardinal invariants and Axiom 3

For f : ω → R+, Cov(f) is the least κ such that there is a κ-sequence of f -sets
whose union is the reals. In this context we say that f is nontrivial if

∑
n∈ω f(n)

is finite, since otherwise Cov(f) = 1. We define two more cardinal invariants.

6.4 Definition. The least cardinal κ such that for some nontrivial f ∈ (R+)ω,
Cov(f) = κ is denoted mc (minCov). The least cardinal κ such that for all
nontrivial f ∈ (R+)ω, Cov(f) ≤ κ is denoted sc (supCov).

Note that sc ≥ mc ≥ Cov(N ) trivially.

6.5 Remark. If sc = ℵ1, the ω1-many f -coverable sets can be taken to be an
increasing sequence (even if d > ℵ1). This follows from the fact that for any
f : ω → R+ there is a g : ω → R+ such that any countable union of g-coverable
sets is f -coverable. Assuming that f is strictly decreasing, any g such that

g(n) ≤ f

(
(n + 1)(n + 2)

2

)

for all n suffices.

Axiom 3 then follows from d = sc = ℵ1.

6.6 Remark. Unlike the case for d = Cov(SN ) = ℵ1, we know of no argument
other than our version of Gödel’s argument which proves c ≤ ℵ2 from our first
two axioms plus d = sc = ℵ1. However, if we replace Axiom 3 by d = sc = ℵ1 in
Theorem 3.1, then we can replace Axiom 1 with d1 = ℵ2, which unlike Axiom
1 does follow from G1+G2. The point is that using d = Cov(SN ) = ℵ1 we
can carry out Gödel’s construction so that each descending sequence of Bα’s
becomes strong measure zero in at most ω1 many steps, so each real is in a
strong measure zero set corresponding to some member of a given witness to
the value of d1.

In this section, we show the following, among other things.

• mc and sc can be characterized in terms of covering numbers for trees.

• Cov(N ) = ℵ1 does not imply sc = ℵ1.

• b > Cov(N ) implies mc = Cov(N ).
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• sc = ℵ1 does not imply (Non(M) = ℵ1 ∨ Cov(SN ) = ℵ1).

• d = sc = ℵ1 does not imply Cov(SN ) ≤ ℵ2.

We also leave several questions open.
Many arguments about mc and sc are easier to carry out in terms of covering

numbers for trees. First, we need to relate the two types of covering. Given
s ∈ 2<ω, let xs = Σi<|s|

s(i)
2i , and let Is = (xs_〈0〉, xs_〈1〉). Then, minus the

countable dense set

D = {xs : s ∈ 2<ω} = {m

2n
: m < 2n ∈ ω},

we can identify the unit interval with 2ω by identifying each real a with the
unique f ∈ 2ω such that a ∈ If¹n for all n < ω, and thus [s] with Is. The key
point is the following.

Lemma 6.7. Let I be an interval contained in (0, 1) of width r. Let n be
the largest integer such that 2−n ≥ r. Then there exist s0, s1 ∈ 2n such that
I ⊂ [s0] ∪ [s1].

Proof: Given I, let n0 < ω be least such that there exists d = m
2n0 ∈ D ∩ I.

Note that 2−n0 ≥ r and that d is unique. Let s ∈ 2<ω be such that d = xs. If
n0 = n, then we can let s0 = s1 = s. Otherwise, d splits I into two pieces. Let
s0 be the extension of s_〈0〉 of length n which takes value 1 on every integer
in the extension of the domain, and let s1 be the extension of s_〈1〉 of length
n which takes value 0 on every integer in the extension of the domain. Then
I ⊂ [s0] ∪ [s1].

6.8 Definition. Given a function g : ω → ω, say that A ⊂ 2ω is a g-selection
if A is of the form

⋂
m<ω

⋃{[sn] : m < n < ω} where each sn ∈ 2g(n). We let
TCov(g) be the least κ such that there is a set of g-selections of size κ with
union 2ω.

In this context, g is nontrivial if
∑

n∈ω
g(n)
2n is finite.

Lemma 6.9. For every g : ω → ω there is an f : ω → R+ such that every g-
selection is coverable by two f -sets and every f -set is coverable by a g-selection.

For every f : ω → R+ there is a g : ω → ω such that every f -set is coverable
by two g-selections and every g-selection is coverable by two f-sets.

Proof: For the first part, we may assume that g is nondecreasing. Then we
define f by letting f(n) = 2−g(2n+1). Then given any g-selection, for each n
we can cover the (2n + 1)th interval by one of size f(n), and the (2n)th (for
n > 0) interval by one of size f(n − 1). Since every point of the g-selection
appears infinitely often in either the odd intevervals or the even ones, these two
f -sets cover the given g-selection. That every f -set is coverable by a g-selection
follows from Lemma 6.7.
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For the second part, given f : ω → R+, define g by letting g(n) be the
greatest m such that 2−m ≥ f(n). Then every f -set can be covered by two
g-selections by Lemma 6.7, and every g-selection can be covered by two f -sets
since g(n) ≤ 2f(n). .

Corollary 6.10. Let Q ⊂ P ⊂ (0, 1). Then there is a f : ω → R+ such that Q
is f -coverable but P is not contained in a countable union of f -sets if and only
if there is a g : ω → ω such that Q is contained in a g-selection but P is not
contained in a countable union of f-selections.

This shows that the spectrum of values Cov(f) for nontrivial f : ω → R+ is
the same as the spectrum of values TCov(g) for g : ω → ω. In particular, we
have

Corollary 6.11.

mc = inf{TCov(g) | g ∈ ωω nontrivial}.

sc = sup{TCov(g) | g ∈ ωω nontrivial}.
It is a standard fact that every continuous map between metric compacta is

uniformly continuous. This leads to the following observations.

Lemma 6.12. If P ⊂ 2ω is a perfect set, then for any continuous 1-1, onto
function g : 2ω → P there is a nondecreasing function h : R → R such that for
all f : ω → R and A ⊂ P , if A is (h ◦ f)-coverable then g−1[A] is f -coverable.

Corollary 6.13. If there exists a perfect set P such that for every f : ω → ω
P is a union of ℵ1 many f -coverable sets, then sc = ℵ1.

To see that Cov(N ) = ℵ1 does not imply sc = ℵ1 we use the following
characterization of Non(M).

Theorem 6.14. ([3], Theorem 2.4.7) Non(M) is equal to the least κ such that
there is a set F ⊂ ωω of cardinality κ such that for every g ∈ ωω there is an
f ∈ F such that f(n) = g(n) for infinitely many n.

Theorem 6.15. sc ≤ Non(M).

Proof: Applying Theorem 6.14, let F ⊂ ωω of cardinality Non(M) be such
that for all g ∈ ωω there is an f ∈ F such that g and f agree on an infinite set.
Let h : ω → Q+, and let {Ai : i < ω} be a basis of intervals for R. For f ∈ F ,
let Xf be the h-set defined by letting Of

n be Af(n) if the diameter of Af(n) is
less than h(n), and ∅ otherwise.

Given a real x, define a function gx ∈ ωω by letting gx(n) be the least m
such that the diameter of Am is less than h(n) and x ∈ Am. Then letting f ∈ F
agree with gx on an infinite set, we have that x ∈ Xf .
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Theorem 6.16. If d < Non(M) then Non(M) = sc.

Proof: By Theorem 6.15 we have that sc ≤ Non(M).
Let µ be the Lebesgue measure on ωω. Assume that d, sc < Non(M). Let

M be an elementary substructure of a sufficiently large H(θ) of cardinality
max{d, sc}. By Theorem 6.14 there is a function g ∈ ωω such that for all
f ∈ ωω ∩ M , f(n) = g(n) for only finitely many n. By the elementarity and
cardinality of M , there is an f ∈ ωω ∩M such that for all n f(n) > g(n). For
each n ∈ ω, let h(n) ∈ Q+ be smaller than

min{µ(σ∗f, τ∗0) | σ 6= τ ∈ ωn ∧ ∀i < n σ(i) ≤ τ(i) < f(i)},

where σ∗f and τ∗0 are the members of ωω extending σ and τ such that for i ≥ n,
σ∗f(i) = f(i) and τ∗0(i) = 0. Then since |M | ≥ sc, there is an h-set defined by
a sequence of intervals 〈Oi : i < ω〉 in M such that g ∈ ⋂

n<ω

⋃
i≥n Oi. By the

definition of h, though, each Oi can intersect at most one set of the form

{r ∈ ωω | r¹i = σ ∧ ∀j < ω r(j) < σ∗f(j)}

for some σ ∈ ωi. Then letting σi be the unique such σ ∈ ωi if it exists, and
letting t(i) = σi+1(i), we have that t and g agree on an infinite set, which is a
contradiction since t ∈ M .

The following theorem is an improvement of a result in [4].

Theorem 6.17. ([9]) If GCH holds, then for any regular cardinal κ, there is a
forcing which preserves cardinals and makes the following hold.

1. d = Cov(N ) = ℵ1.

2. Non(M) = κ.

Theorems 6.16 and 6.17 give us the following.

Corollary 6.18. Cov(N ) = ω1 does not imply sc = ℵ1.

Theorem 6.19. If b > Cov(N ), then mc = Cov(N ).

Theorem 6.19 follows from Lemmas 6.23 and 6.24 below. We will use the
following definitions from [3], relating mc to another type of covering number
for trees. Assume that H ∈ ωω is such that

∑
n<ω

1
H(n) is finite - we will call

such H nontrivial as well. Let

CH = {s ∈ ([ω]<ω)ω |
∑
n<ω

|s(n)|
H(n)

< ∞}

and
XH =

∏
n<ω

H(n) = {x ∈ ωω | ∀n < ω x(n) < H(n)}.
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Then

Cov(CH) = min{|A| | A ⊂ CH ∧ ∀x ∈ XH∃s ∈ A∃∞n(x(n) ∈ s(n))}.

Note that we can identity XH with the interval [0, 1] (minus countably many
points) by first diving [0, 1] into H(0) many equal intervals, then dividing ech
of these into H(1) many, and so on. As a consequence, Cov(CH) ≥ Cov(N ).
Bartoszyński has shown the following.

Theorem 6.20. ([3], Theorem 2.5.12) If Cov(N ) < b then

Cov(N ) = min{Cov(CH) : H ∈ ωω nontrivial }.

6.21 Question. Is it consistent that Cov(N ) < Cov(CH) for all nontrivial
H ∈ ωω?

6.22 Conjecture. It is consistent to have Cov(N ) = d = ℵ1 and mc = sc = ℵ2.

The proof of the following is essentially the same as the proof of Theorem
2.5.12 in [3]

Lemma 6.23. For every nontrivial f ∈ (R+)ω there is a nontrivial H ∈ ωω

such that Cov(CH) ≤ Cov(f).

Lemma 6.24. Assume that b > Cov(CH). Then there is a nontrivial f ∈ (R+)ω

such that Cov(CH) ≥ Cov(f).

Proof: Let A ⊂ CH witness b > Cov(CH), and canonically identify XH with
[0, 1]. For s ∈ A, let gs ∈ ωω be such that gs(k) is least such that

∑

n≥gs(k)

|s(n)|
H(n)

<
1
2k

.

Fix g such that for all s ∈ A {n | gs(n) ≥ g(n)} is finite. For each k < ω, let

lk =
1∏

i<g(k+1) H(i)

and let

tk =

∏
i<g(k+1) H(i)

2k
.

Now define f ∈ (Q+)ω so that for each k, f takes the value lk exactly tk times.
Then f is nontrivial. It remains to see that each of the sets represented by a
member of A is f -coverable.

For each s ∈ A, for cofinitely many k ∈ ω,

(∗∗)
g(k+1)−1∑

n=g(k)

|s(n)|
H(n)

<
1
2k

.
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For such s and k, we can think of
⋃g(k+1)−1

n=g(k) s(n) as representing

g(k+1)−1∑

n=g(k)


|s(n)| ·

∏

i∈(g(k+1)\{n})
H(i)




many pairwise disjoint (or identical) intervals, all of which have length lk. By
(∗∗), the collection of these intervals must have size less than tk.

A set of reals X is strongly meager [2] if for each null set Y ,

{x + y | ∃x ∈ X, y ∈ Y } 6= R.

We let SM denote the class of strongly meager sets. These sets are in fact
meager [3].

Theorem 6.25. There exists a nontrivial f : ω → Q+ such that Cov(f) ≤
Non(SM).

Proof: Let X be not strongly meager, and Y a null set such that X +Y = R.
Then there is a nontrivial f ∈ (Q+)ω such that Y is f -coverable. For any real
x, x + Y = {x + y | y ∈ Y } is also f -coverable.

The following chart, where larger (≥, since if CH holds they are all equal)
invariants point to smaller ones, summarizes the relationships between some of
the invariants mentioned in this section.

Cov(N )

mc

sc

Non(SM)

Cov(SN )

Non(M)

?

¾

HHHHHHHHHY

¾
©©©©©©©©¼

¾

6.26 Question. Is it consistent to have, with c arbitrarily large, for each car-
dinal κ ≤ c a nontrivial f such that Cov(f) = κ?

Although sc = ℵ1 follows from each of Non(M) = ℵ1 and Cov(SN ) = ℵ1,
the following shows that it implies neither, as b = ℵ2 implies Non(M) = ℵ2

and the Borel Conjecture implies that Cov(SN ) = c.

Theorem 6.27. After adding ω2 many Mathias (or Laver) reals to a model of
CH, the following hold.

1. b = ℵ2.

2. The Borel Conjecture.

3. sc = ℵ1,
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Proof: The first two consequences are well known ([7], [22]). For the third,
the key property is the following standard fact. Let M be an intermediate model
in the iteration, and τ ∈ M a name in the rest of the iteration for a function
from ω to ω. Let 〈xn : n ∈ ω〉 ∈ M be a sequence of finite subsets of ω and p
a condition forcing that each τ(n) will be in xn. Then there exists q ≤ p and a

sequence of finite sets 〈yn ∈ [xn]2
n2

: n < ω〉 such that for all n q°τ(n) ∈ yn.
Now, given a name σ for a subset of ω, and a decreasing function g : ω → R+

in an intermediate model M , for each n ∈ ω let mn be such that

1
2mn

< g

(
n∑

i=0

2i2

)
,

and let τ be a name for a function from ω to ω such that τ(n) is a code for
σ¹mn. Let xn be the set of codes for the members of P(mn). Then applying
the key fact, we can shrink to a condition allowing just 2n2

possibilities for each
σ¹mn. Listing the decoded versions of these possibilities, we get a description
of a g-set which has the realization of σ as a member. Since CH holds in each
intermediate model, then, there is an ω1-sequence of g-sets covering the reals in
the final model, and so sc = ℵ1 holds there.

Gödel’s proof shows that Axioms 1 and 3 together imply that Cov(SN ) ≤
ℵ2. By the theorem below, Cov(SN ) ≤ ℵ2 does not follow from sc = ℵ1 plus
d = ℵ1.

Theorem 6.28. Let κ ≥ ℵ2 have uncountable cofinality. After forcing to add
κ many simultaneous Sacks reals to a model of CH with countable support,
sc = d = ℵ1 and Cov(SN ) = κ.

Proof: We give a proof that Cov(SN ) = κ. The other parts are standard.
For A ⊂ κ, let SA be the countable support product of the copies of Sacks
forcing (S) with index in A. Since Sκ is ωω-bounding, d = ℵ1, and so every
strong measure zero set is contained in a Gℵ1 strong measure zero set. So it
suffices to consider such sets C. Every such C is coded in some extension via
SAC

, where AC ⊂ κ, |AC | ≤ ℵ1. Hence it suffices to prove that if α 6∈ AC , then
sα, the Sacks real added by S{α}, does not belong to C.

This, however, is easy. Working in the ground model, let p ∈ Sκ be any
condition. Let pα be its αth coordinate. Let f ∈ (R+)ω be a function such that
whenever {Ii

n : n ∈ ω, i < n} is a set of intervals in 2ω such that each Ii
n has

length ≤ f(n), then [pα] \ {y ∈ 2ω | ∃∞〈n, i〉(y ∈ Ii
n)} contains a perfect set.

Let Ċ be the SAC
-name for C. It is forced to be contained in an f -coverable

Gδ set, say Ḋ. By the Sacks property of SAC , there are q ≤ p¹AC and a set of
intervals {Ii

n : n ∈ ω, i < n} such that Ii
n has length less than or equal f(n),

and such that
q°Ḋ ⊂ {y ∈ 2ω | ∃∞〈n, i〉(y ∈ Ii

n)}.
Now find qα ≤ pα such that [qα] ∩ {y ∈ 2ω | ∃∞〈n, i〉(y ∈ Ii

n)} = ∅. Then the
condition r defined by
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• rα = qα

• r¹AC = q

• r¹κ \ ({α} ∪AC) = p¹κ \ ({α} ∪AC)

clearly forces that ṡα 6∈ Ḋ. Hence r°ṡα 6∈ Ċ, as required.

6.29 Question. After adding κ ≥ ω2 many simultaneous Sacks reals to a model
of CH, does PSP(ℵ2, Gℵ1) hold? Is every strong measure zero set of cardinality
ℵ1 or less?

6.30 Remark. For many ωω-bounding forcings, every strong measure zero set
has cardinality ℵ1 or less after an iteration of length ω2. This holds for the
‘infinitely often equal reals’ forcing, but fails after the corresponding product
forcing (see [3]).

6.31 Remark. It is also shown in [2] that after adding an arbitrary number of
random reals to a model of CH, d = ℵ1 but all strong measure zero sets have
cardinality ℵ1 or less. In this model, sc > ℵ1.

6.32 Remark. Adding uncountably many Cohen reals preserves Axioms 1 and
2 and forces sc = ℵ1, so together they do not imply a bound on the continuum.

6.2 Axiom 3 and decompositions

Axiom 3 clearly follows from d = sc = ℵ1, but we would like to see whether it is
in fact weaker. As we have defined it, Axiom 3 implies Cov(N ) = ℵ1. Theorem
6.36 below shows that for a certain class of perfect sets, if some P in this class
can be written as a union of d many sets Q ¢ P , then Cov(N ) ≤ d. Therefore,
Cov(N ) = ℵ1 is a consequence of any decomposition scheme along the lines of
Gödel’s orignal proof.

6.33 Definition. A perfect set P is uniformly perfect if P is the set of paths
through a tree T ⊂ 2<ω such that on each level of T either all or none of the
nodes split.

6.34 Remark. If T is the subset of 2<ω whose members take the value 0 on
every even member of their domains, then T represents a uniformly perfect set
P of measure 0.

For a finite branching tree T , a subtree S of T has measure 0 in T if
limn→∞

|An∩S|
2n = 0, where An is the set of nth splitting nodes of T . The

idea behind this definition is that if a tree T ⊂ 2<ω represents a perfect set P ,
then P has measure zero if and only if limn→∞

|2n∩T|
2n = 0.

Lemma 6.35. Let Q ¢ P be perfect sets, with P uniformly perfect. Then the
image of Q under the canonical bijection between P and 2ω has measure 0.
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Proof: Citing Corollary 6.10, we work in terms of coverings of the trees
representing Q and P . Let S, T ⊂ 2<ω represent Q and P respectively, and
let g ∈ ωω be such that some g-selection covers T , but S cannot be covered by
inifinitely many g-selections. We want to see that limn→∞

|2n∩S|
|2n∩T| = 0. Notice

that the limit exists since the values are nonincreasing.
Say that there is some m such that for all n |2n∩S|

|2n∩T| ≥ 2−m. For each n < ω,
let An indicate the first level of T to have size 2n. Fix t̄ ∈ Am. We will show
that for any set of finite sequences 〈si : i < ω〉 defining a g-selection covering S,
there is a g-selection 〈ti : i < ω〉 covering T ∩ [t̄], where [t] denotes the set of all
extensions in T of the sequence [t].

Since P is compact, we can choose integers {ni, ji : i < ω} such that for all i

2ni ∩ S ⊂
⋃
{[sj ] : ji ≤ j < ji+1}.

For each i < ω we will pick ti of the same length as si, in such a way that
for all i < ω,

[t̄] ∩ 2ni ∩ T ⊂
⋃
{[tj ] : ji ≤ j < ji+1}.

We have the following by induction on n: if 〈pi : i < k〉 is a set of finite
sequences such that ∑

i<k

|{t ∈ An | pi ⊂ t}| ≥ 2r

for some integer r ≤ n, then for any t∗ ∈ An−r there is a set 〈qi : i < k〉 of
sequences such that length(pi) = length(qi) for all i < k, and such that

{t ∈ An | ∃i < k qi ⊂ t} = {t ∈ An | t∗ ⊂ t}.

For the induction step to n, note that either the number of pi’s in An is even,
or ∑

i<k

|{t ∈ An | pi ⊂ t}| ≥ 2r

holds even if we remove one such pi. Then by pairing off the pi’s in An−1 we
can replace them with shorter sequences and apply the induction hypothesis.

So by the fact that |2n∩S|
|2n∩T| ≥ 2−m for all n, we can choose the ti’s as desired.

Lemmas 5.5, 6.12 and 6.35 give the following.

Theorem 6.36. (d = ℵ1) If there exists a uniformly perfect set P contained in
a set

⋃
α<ω1

Qα, where each Qα ¢ P then Cov(N ) = ℵ1.

Proof: Say that P and Qα (α < ω1) are as in the statement of the theorem.
Since each Qα ¢ P as witnessed by a Gδ set covering Qα, we may assume that
each Qα is Gδ. By Lemma 5.5, each Qα is a union of ω1-many perfect sets, so
by Lemmas 6.35 and 6.12 Cov(N ) = ℵ1.
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We would like to know whether the condition in Lemma 6.35 that P is
uniformly perfect is necessary.

Certain strenghtenings of Axiom 3 do imply that mc = ℵ1.

Theorem 6.37. If the set of functions H in Axiom 3 is required to be linearly
ordered under mod-finite domination, then this strengthened version of the axiom
implies mc = ℵ1.

Proof: Fix H as in the statement of Axiom 3. If mc > ℵ1, then there is a
sequence 〈(Ai, fi) ∈ P(R) × H : i < ω〉 such that each Ai is fi-coverable but
not fj-coverable for any j < i. To construct such a sequence, using Theorem
6.36, let 〈(Bα, gα) ∈ P(R) × H : α < ω1〉 be such that each gα is nontrivial,
each Bα is a gα-set and

⋃
α<ω1

Bα = R. Let A0 = B0 and f0 = g0. Then given
(Aj , fj) ∈ P(R) (j < i), define h : ω → R+ by letting h(ai+b) = fb(a) whenever
a, b ∈ ω with b < i. Using mc > ℵ1, some Bα is not h-coverable, so we can let
Ai = Bα and fi = gα.

Now by Lemma 5.5, by shrinking the Ai’s if necessary, we can assume that
they are all compact, and that there are disjoint intervals Ii (i ∈ ω) such that
Ai ⊂ Ii.

Let D =
⋃

i<ω Ai. Now if H is linearly ordered by mod-finite domination,
then D is h-coverable for all h ∈ H not dominated mod-finite by some fi. But
if D can be written as an increasing union of ω1 many sets which are each fi

for some integer i, then there is a fixed integer i such that D can be covered
by ω1-many fi-coverable sets. But D was constructed to make this impossible.

There are many other questions one could ask in this area, especially : does
Axiom 3 imply sc = ω1?
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7 Appendix : Chart of Models

Model: 1 2 3 4 5 6 7
Axiom 1 t t t t t t F
Axiom 2 t T F F T T ?
Axiom 3 t F F T F T T

PSP(ℵ1, Gℵ1) F T f F T F F
PSP(ℵ2, Gℵ1) t T F F T T ?

d = ℵ1 t F T T F T T
Cov(SN ) = ℵ1 t T F T F F F

sc = ℵ1 t T F T T T T
SN ⊂ [R]ℵ1 t F T F T T T?

T and F correspond to true and false, t and f to trivially true and trivially
false. Question marks indicate open questions or, if accompanied by T or F,
conjectures. The models listed are as follows, where each forcing is conducted
over a model of GCH, and ‘many’ means ≥ ℵ3, so models 2, 3, 4 and 7 do not
satisfy c ≤ ℵ2.

1. Ground model.

2. Adding many Cohen reals.

3. Adding many random reals.

4. Adding many reals by c.c.c. forcing, followed by ω1 Hechler reals.

5. Adding ω2 Mathias reals.

6. Adding ω2 Sacks reals.

7. Adding many Sacks reals simultaneously.
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[6] T. Bartoszyński, S. Shelah, Strongly meager sets and strong measure zero
sets, preprint

[7] J. Baumgartner, Iterated Forcing, in : Surveys in Set Theory, A.R.D. Math-
ias (ed.), London Math. Soc. Lecture Note Series 87, 1983

[8] M. Bekkali, Topics in Set Theory, Lecture Notes in Mathematics, Vol 1476,
Springer-Verlag, New York/Berlin, 1991

[9] J. Brendle, Combinatorial properties of classical forcing notions, Annals of
Pure and Applied Logic 73 (1995), 143-170

[10] K. Ciesielski, J. Pawlikowski, Uncountable intersections of open sets under
CPAprism, preprint

[11] J. Cummings and S. Shelah, Cardinal invariants above the continuum, An-
nals of Pure and Applied Logic 75 (1995), 251-268
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