D-spaces, irreducibility and trees

Leandro F. Aurichi

Lúcia R. Junqueira

Paul B. Larson^{*}

August 14, 2008

Abstract

We show that the removal of one point from 2^{ω_1} gives a counterexample to a conjecture of Ishiu on *D*-spaces. We also show that Martin's Axiom implies that there are no Lindelöf non-*D*-spaces that can be written as union of less than continuum many compact subspaces. Finally we show that the property of being a *D*-space is preserved by forcing with trees of height ω .

An open neighborhood assignment (ONA) on a topological space X is a function N which assigns to each point $x \in X$ an open set N(x) containing x. Given an ONA N on a space X, and subset Y of X, we let N[Y] denote $\bigcup\{N(x) \mid x \in Y\}$. A space X is a D-space [11] if for every ONA N on X there is a closed discrete $C \subseteq X$ such that N[C] = X. These spaces were introduced by van Dowen in 1979[11], and while they have attracted a lot of attention in recent years[2, 3, 4, 6, 7, 8, 9, 10, 13, 14], many basic questions remain open [12]. Probably the best known is whether every regular Lindelöf space is a D-space (see [16]).

In the first section we prove that removing one point from 2^{ω_1} gives a counterexample to a conjecture of Tetsuya Ishiu, as the resulting space is irreducible but not a *D*-space. In the second section, we prove that, assuming Martin's Axiom, there are no "small" Lindelöf non-*D*-spaces, where "small" means a union of less than continuum many compact subspaces. Finally, in the third section we consider the effects of forcing with trees of height ω . For instance, we show that if *T* is such a tree and *X* is a *D*-space, then *X* remains a *D*-space after forcing with *T*.

1 Irreducibility and the Revised Range Conjecture

Tetsuya Ishiu proposed what he called the *Revised Range Conjecture*, asserting that every topological space X has a basis \mathcal{B} such that for any two ONA's N_0 ,

 $^{^*}$ The work in this paper was supported in part by NSF Grant DMS-0401603 (third author), FAPESP Grant 2005/60183-5 (second and third authors) and CNPq (first author)

 N_1 (on X) with the same range $R \subseteq \mathcal{B}$, there is a closed discrete set C_0 such that $N_0[C_0] = X$ if and only if there is a closed discrete set C_1 such that $N_1[C_1] = X$. We will see in this section that this conjecture is false.

A topological space X is said to be *irreducible* [1] if for every open cover \mathcal{O} of X there is an open cover \mathcal{O}' such that each element of \mathcal{O}' is contained in a member of \mathcal{O} and contains a point not in any other member of \mathcal{O}' (such a \mathcal{O}' is said to be a *minimal open refinement* of \mathcal{O}).

Lemma 1.1. Let X be an irreducible space in which every open set has the same cardinality. If the Revised Range Conjecture holds for X, then X is a D-space.

Proof. Let N be an ONA on X. We may assume that the range of N is contained in a basis \mathcal{B} witnessing the Revised Range Conjecture for X. Since X is irreducible, there exists a minimal open refinement \mathcal{O}' of the range of N covering X. For each $O \in \mathcal{O}'$ pick a point in O not in any other member of \mathcal{O}' , and let Y be the set of picked points. Then Y is a closed discrete set, and we can define a partial ONA N' on Y by letting N'(y) be any member of the range of N containing the member of \mathcal{O}' containing y, for each $y \in Y$. It suffices now to extend N' to an ONA on all of X with the same range as N. Since Y is closed discrete, each open set has intersection of size |X| with the complement of Y. The range of N has cardinality $\kappa \leq |X|$. Let $\langle B_{\alpha} : \alpha < \kappa \rangle$ be a wellordering of the range of N, and choose points $\langle x_{\alpha} : \alpha < \kappa \rangle$ such that each $x_{\alpha} \in B_{\alpha} \setminus (Y \cup \{x_{\beta} : \beta < \alpha\})$, and define $N'(x_{\alpha}) = B_{\alpha}$ for each $\alpha < \kappa$. For each $x \in X \setminus (Y \cup \{x_{\alpha} : \alpha < \kappa\})$, let N'(x) = N(x).

In [18] it was shown that the removal of one point from 2^{ω_1} gives an irreducible space. However, this space is not a *D*-space, as shown by the following lemma. Note that every open subset of this space has the same cardinality.

Lemma 1.2. The space 2^{ω_1} with one point removed contains a closed copy of ω_1 .

Proof. For simplicity, let the removed point be the constant 0 function. For each $\alpha < \omega_1$, let x_α be $(\alpha \times \{0\}) \cup ((\omega_1 \setminus \alpha) \times \{1\})$. The subspace $\{x_\alpha : \alpha < \omega_1\}$ is closed. Furthermore, if for each $\beta < \omega_1$, we let $O_\beta = \{z \in 2^{\omega_1} \mid z(\beta) = 0\}$ and $I_\beta = \{z \in 2^{\omega_1} \mid z(\beta) = 1\}$, then the O_β 's and I_β 's generate the ω_1 -topology on $\{x_\alpha : \alpha < \omega_1\}$.

2 Lindelöfness and Martin's Axiom

Our second section concerns Lindelöf non-*D*-spaces and Martin's Axiom (MA). Recall that Martin's Axiom is the statement that if *P* is a partial order without uncountable antichains, and \mathcal{D} is a collection of dense subsets of *P* such that $|\mathcal{D}| < \mathfrak{c}$ (where \mathfrak{c} denotes the cardinality of the continuum), then there is a filter $G \subseteq P$ intersecting each element of \mathcal{D} (see [17], for instance). The covering number for the meager ideal (cov(\mathcal{M})) is the smallest cardinality of a family of meager sets of reals whose union is all of \mathbb{R} (see [5], for instance); restated, it is the smallest cardinality of a collection \mathcal{D} consisting of dense subsets of the partial order ($\omega^{\omega}, \subseteq$) with the property that no filter intersects every member of \mathcal{D} . The Baire Category Theorem implies that $cov(\mathcal{M}) \geq \aleph_1$. Martin's Axiom (indeed, its restriction to Cohen forcing) implies that $cov(\mathcal{M}) = \mathfrak{c}$.

We first prove that there are no Lindelöf non-*D*-spaces of cardinality less than $cov(\mathcal{M})$. One easy consequence is that one can not prove, only assuming ZFC, that there is such space of cardinality \aleph_1 .

We begin with the following.

Lemma 2.1. If X is a T_1 Lindelöf space and N is an open neighborhood assignment on X, then there is a countable $Y \subseteq X$ such that for every finite $a \subseteq Y$ and every $x \in X \setminus N[a]$ there is a $y \in Y \setminus N[a]$ such that $x \in N[y]$.

Proof. We find countable sets $Y_i \subseteq X$ $(i < \omega)$, and let $\langle a_i : i < \omega \rangle$ be a listing of all the finite subsets of $\bigcup_{i < \omega} Y_i$, such that each $a_i \subseteq \bigcup_{j \leq i} Y_j$. Let Y_0 be any countable subset of X such that $N[Y_0] = X$. Given a_i , consider the open cover of X given by the restriction of N to $a_i \cup (X \setminus N[a_i])$, and let Y_{i+1} be the set of x such that N(x) is in some fixed countable subcover. Then $Y = \bigcup_{i < \omega} Y_i$ is as desired.

Theorem 2.2. If X is a T_1 Lindelöf space and $|X| < cov(\mathcal{M})$, then X is a D-space.

Proof. Let $Y = \langle y_i : i < \omega \rangle$ be as in Lemma 2.1, and consider the set A of $a \in 2^{\omega}$ such that for each $i \in a^{-1}(1), y_i \notin N[\{y_j : j \in i \cap a^{-1}(1)\}]$. Then A is a perfect subset of 2^{ω} , and for each $x \in X$ the set of $a \in A$ with $x \notin N[\{y_i : i \in a\}]$ is nowhere dense in A. Since $|X| < cov(\mathcal{M})$, there is an $a \in A$ such that N[a] = X.

The assumptions of the Theorem 2.2 are implied by MA(Cohen forcing) when $|X| < \mathfrak{c}$ (see [5]).

Corollary 2.3 (MA(Cohen forcing)). If X is a Lindelöf space such that $|X| < 2^{\omega}$, then X is a D-space.

Corollary 2.4 (MA(Cohen forcing)). If X is a hereditary Lindelöf space such that it is not a D-space, then $|X| = 2^{\omega}$.

Proof. This is immediate, since if Y is a hereditary Lindelöf space then $|Y| \leq 2^{\omega}$, by a result of de Groot (see [15]).

Modifying the proof of Theorem 2.2, we can obtain a stronger result. First we note the following consequence of Lemma 2.1.

Lemma 2.5. Let X be a Lindelöf space and N be an open neighborhood assignment on X. Then there is a countable $Y \subseteq X$ such that for every finite $a \subseteq Y$, there is $b \subseteq Y \setminus N[a]$ such that $X = N[a] \cup N[b]$.

Let (X, τ) be a topological space. Let $f : \omega^{<\omega} \longrightarrow X \times \tau$ be a function. If $s \in \omega^{<\omega}$ and f(s) = (x, V), then we denote by $f_X(s) = x$ and by $f_\tau(s) = V$.

The idea for the next lemma is the following: we will construct an ω -tree using the Y given by the previous lemma. The successors of every element of the tree will be all the points of Y that are "not yet covered" by our construction. At the same time we will assure that every finite subset of Y that is not yet covered can be added to the tree in finitely many steps.

Lemma 2.6. Let (X, τ) be a Lindelöf space and N be an open neighborhood assignment on X. Then there is $f: \omega^{<\omega} \setminus \{\emptyset\} \longrightarrow X \times \tau$ such that:

- (i) if $s \in \omega^{<\omega} \setminus \{\emptyset\}$ then $f_{\tau}(s) \subseteq N(f_X(s))$;
- (ii) if r is a branch of $\omega^{<\omega}$, then $\{f_X(s) : s \in r\}$ is closed discrete in $\bigcup \{f_\tau(s) : s \in r\}$;
- (iii) if $C \subseteq X$ is compact, then $D_C = \{s \in \omega^{<\omega} : C \subseteq \bigcup_{t \leq s} f_{\tau}(t)\}$ is dense in $\omega^{<\omega}$.

Proof. Le Y be as given by Lemma 2.5. We will define $f : \omega^{\leq \omega} \setminus \{\emptyset\} \longrightarrow Y \times \tau$ by recursion on the length of s in such a way that:

- (a) if $s \in \omega^{<\omega}$ then for every $n \in \omega$ and every nonzero $k \leq |s|, f_X(s^n) \notin f_\tau(s \restriction k);$
- (b) if $s \in \omega^{<\omega}$ then $f_{\tau}(s) = N(f_X(s)) \smallsetminus F$ where F is a finite subset of $Y \smallsetminus \{f_X(s)\};$
- (c) for every $s \in \omega^{<\omega}$, if $y \in Y \setminus \bigcup \{ f_{\tau}(s \restriction k) : 0 < k \leq |s| \}$, then there is an $n \in \omega$ such that $y = f_X(s \land n)$;
- (d) if $y = f_X(s \cap n)$ for some $s \in \omega^{<\omega}$ and $n \in \omega$, then for each finite $F \subseteq (Y \cap N(y)) \smallsetminus \{y\}$ there is a $k \in \omega$ such that $f(s \cap k) = (y, N(y) \setminus F)$;

Note that we can make this construction since Y is countable and so is $[Y]^{<\omega}$. First we will show that if r is a branch of $\omega^{<\omega} \setminus \{\emptyset\}$, then $\{f_X(s) : s \in r\}$ has no accumulation points in $\bigcup \{f_{\tau}(s) : s \in r\}$. Let $x \in \bigcup \{f_{\tau}(s) : s \in r\}$. We will show that it is not an accumulation point of $\{f_X(s) : s \in r\}$. Let $s \in r$ such that $x \in f_{\tau}(s)$. Note that $f_X(t) \notin f_{\tau}(s)$ for every $t \in r, t > s$. Then x is separated from these points and, since there are only finitely many points more in r, we have that x is not an accumulation point.

Note that, by Lemma 2.5, we have that, for every $s \in \omega^{<\omega} \setminus \{\emptyset\}$,

$$\bigcup \{ f_{\tau}(s \upharpoonright k) : 0 < k \le |s| \} \cup \bigcup_{n \in \omega} f_{\tau}(s \cap n) = X.$$

 |s| is a compact subset covered by the family $(f_{\tau}(s^{n}))_{n \in \omega}$. Then, there are $k_1, \ldots, k_n \in \omega$ such that

$$C \setminus \bigcup \{ f_{\tau}(s \restriction k) : 0 < k \le |s| \} \subseteq f_{\tau}(s \land k_1) \cup \dots \cup f_{\tau}(s \land k_n).$$

We can suppose that $f_X(s^k_i) \notin f_\tau(s^k_j)$ for all $1 \le i < j \le n$ by property (d). Thus, we can choose $p_1, ..., p_n \in \omega$ such that $f(s^p_1) = f(s^k_1), f(s^p_1 p_2) = f(s^k_2), ..., f(s^p_1 p_2^p \cdots p_n) = f(s^k_n)$, by property (c). Note that $C \subseteq \bigcup_{t \le s^p p_1^p p_2^p \cdots p_n} f_\tau(t)$.

It was already known that every σ -compact space is a *D*-space (see [6], for instance). Lemma 2.6 allows us to improve this result.

Theorem 2.7. Every Lindelöf space which is a union of fewer than $cov(\mathcal{M})$ many compact spaces is a D-space.

Proof. Suppose that κ is a cardinal less than $cov(\mathcal{M})$, and that $X = \bigcup_{\xi < \kappa} C_{\xi}$, where each C_{ξ} is compact. Let $f : \omega^{<\omega} \longrightarrow X \times \tau$ be the function given by Lemma 2.6. Note that for every $\xi < \kappa$ we have that $D_{C_{\xi}}$ (as defined in the proof of Lemma 2.6) is dense in $\omega^{<\omega}$. Then there is a branch r of $\omega^{<\omega}$ such that $r \cap D_{C_{\xi}} \neq \emptyset$ for each $\xi < \kappa$. Thus $\bigcup_{s \in r} f_{\tau}(s) \supset \bigcup_{\xi < \kappa} C_{\xi} = X$. Since $\{f_X(s) : s \in r\}$ is closed discrete in $\bigcup_{s \in r} f_{\tau}(s)$, we have that $\{f_X(s) : s \in r\}$ is closed discrete in X.

3 Forcing with trees of height ω

The results of the previous section suggest that some basic facts about *D*-spaces may be independent of ZFC. While we do not have such a result, we present in this section two facts about *D*-spaces and forcing which may be of some use. These facts concern forcing with trees of height ω , and apply the approach of the previous section.

Theorem 3.1. If X is a D-space and T is a tree of height ω , then X remains a D-space after forcing with T.

Proof. Let N be a *T*-name for an ONA on *X*, and let \mathcal{B} be the set of open subsets of *X* which are forced by some condition to be in the range of the realization of N. Let $\langle p_{\alpha} : \alpha < \kappa \rangle$ be a wellordering of the elements of *T* such that shorter elements are listed before longer ones. We define recursively on α closed discrete sets D_{α} ($\alpha < \kappa$) and functions $f_{\alpha} : D_{\alpha} \to T$ and $h_{\alpha} : D_{\alpha} \to \mathcal{B}$ such that, letting Y_{α} be the set of *x* in any D_{β} ($\beta < \alpha$) such that $f_{\beta}(x) \geq p_{\alpha}$:

- for all x in any D_{α} , $f_{\alpha}(x) \leq p_{\alpha}$ and $f_{\alpha}(x) \Vdash \dot{N}(\check{x}) = h_{\alpha}(x)\check{};$
- for all $\alpha < \kappa$ and for all $y \in X$, either there exist $\beta < \alpha$ and $x \in D_{\beta} \cap Y_{\alpha}$ such that $y \in h_{\beta}(x)$ or there exists an $x \in D_{\alpha}$ such that $y \in h_{\alpha}(x)$;
- if $\beta < \alpha$ and $x \in D_{\beta} \cap Y_{\alpha}$, then $h_{\beta}(x) \cap D_{\alpha} = \emptyset$.

(Note that since $f_{\beta}(x) \leq p_{\beta}$ for each $\beta < \kappa$ and each $x \in X$, $p_{\beta} \geq p_{\alpha}$ whenever $D_{\beta} \cap Y_{\alpha}$ is nonempty; in particular there are only finitely many such β , so Y_{α} is closed discrete.)

Supposing that we have constructed D_{α} , f_{α} and h_{α} for all $\beta < \alpha$, let

$$E_{\alpha} = \bigcup \{ h_{\beta}(x) \mid \beta < \alpha \land x \in D_{\beta} \cap Y_{\alpha} \}.$$

We define a new ONA N_{α} as follows. For each $x \in E_{\alpha}$, let $N_{\alpha}(x) = E_{\alpha}$. For each $x \in X \setminus E_{\alpha}$, pick a condition $p(x) \leq p_{\alpha}$ and an element $B(x) \in \mathcal{B}$ such that $p(x) \Vdash \dot{N}(\check{x}) = B(x)$, and let $N_{\alpha}(x) = B(x)$. Then there is a closed discrete set D_{α}^{*} such that $N_{\alpha}[D_{\alpha}^{*}] = X$. Let $D_{\alpha} = D_{\alpha}^{*} \setminus E_{\alpha}$. For each $x \in D_{\alpha}$, let $f_{\alpha}(x) = p(x)$ and let $h_{\alpha}(x) = B(x)$. This completes the construction.

Let g be a V-generic path through T. For each $\alpha \in \kappa$, let C_{α} be the set of $x \in D_{\alpha}$ such that $f_{\alpha}(x) \in g$. Let

$$C = \bigcup \{ C_{\alpha} \mid \alpha \in \kappa \}.$$

By genericity $\dot{N}_g[C] = X$. We will we done once we show that C is closed discrete.

Pick a point y in X. There is a $x \in C_{\beta}$ for some $\beta \in \kappa$ such that $y \in \dot{N}_g(x)$. Since $f_{\beta}(x) \in g$, $\dot{N}_g(x) = h_{\beta}(x)$. Fix $\gamma < \kappa$ such that $p_{\gamma} \in g$, $\gamma > \beta$ and $p_{\gamma} \leq f_{\beta}(x)$. Since $D_{\alpha} \cap h_{\beta}(x) = \emptyset$ for all $\alpha > \beta$ with $p_{\alpha} \leq f_{\beta}(x)$, y is not in the closure of

$$\bigcup \{ D_{\alpha} \mid \gamma \leq \alpha < \kappa, p_{\alpha} \in g \} \}$$

which contains $\bigcup \{ C_{\alpha} : \gamma \leq \alpha < \kappa \}$. On the other hand,

$$C \subseteq \bigcup \{ D_{\alpha} : p_{\alpha} > p_{\gamma} \} \cup \bigcup \{ C_{\alpha} \mid \gamma \leq \alpha < \kappa \}.$$

Since $\bigcup \{D_{\alpha} : p_{\alpha} > p_{\gamma}\}$ is a finite union of closed discrete sets, y is not in the closure of $\bigcup \{D_{\alpha} : p_{\alpha} > p_{\gamma}\} \setminus \{y\}$, either, which shows that C is closed discrete.

A similar argument shows the following result, where we start with a Lindelöf space in the ground model. If T is a tree and S is a subset of T, we say that S can be refined to an antichain if there is a function $a: S \to T$ such that $a(s) \leq s$ for all $s \in S$, and such that the range of S is an antichain.

Theorem 3.2. If X is a Lindelöf space and T is a tree of height ω such that every countable subset of T can be refined to an antichain, then X is a D-space after forcing with T.

Proof. Let \dot{N} be a *T*-name for an ONA on *X*, and let \mathcal{B} be the set of open subsets of *X* which are forced by some condition to be in the range of the realization of \dot{N} . Let $\langle p_{\alpha} : \alpha < \kappa \rangle$ be a wellordering of the elements of *T* such that shorter elements are listed before longer ones. We define recursively on α countable sets $D_{\alpha} \subseteq X$ ($\alpha < \kappa$) and functions $f_{\alpha} : D_{\alpha} \to T$ and $h_{\alpha} : D_{\alpha} \to \mathcal{B}$ such that, letting Y_{α} be the set of *x* in any D_{β} ($\beta < \alpha$) such that $f_{\beta}(x) \geq p_{\alpha}$:

- for all x in any D_{α} , $f_{\alpha}(x) \leq p_{\alpha}$ and $f_{\alpha}(x) \Vdash \dot{N}(\check{x}) = h_{\alpha}(x)$;
- for all $\alpha < \kappa$ and for all $y \in X$, either there exist $\beta < \alpha$ and $x \in D_{\beta} \cap Y_{\alpha}$ such that $y \in h_{\beta}(x)$ or there exists an $x \in D_{\alpha}$ such that $y \in h_{\alpha}(x)$;
- if $\beta < \alpha$ and $x \in D_{\beta} \cap Y_{\alpha}$, then $h_{\beta}(x) \cap D_{\alpha} = \emptyset$;
- the range of each f_{α} is an antichain.

(Note that since $f_{\beta}(x) \leq p_{\beta}$ for each $\beta < \kappa$ and each $x \in X$, $p_{\beta} \geq p_{\alpha}$ whenever $D_{\beta} \cap Y_{\alpha}$ is nonempty; in particular there are only finitely many such β , so Y_{α} is finite.)

Supposing that we have constructed D_{α} , f_{α} and h_{α} for all $\beta < \alpha$, let

$$E_{\alpha} = \bigcup \{ h_{\beta}(x) \mid \beta < \alpha \land x \in D_{\beta} \cap Y_{\alpha} \}.$$

We define a new ONA N_{α} as follows. For each $x \in E_{\alpha}$, let $N_{\alpha}(x) = E_{\alpha}$. For each $x \in X \setminus E_{\alpha}$, pick a condition $p(x) \leq p_{\alpha}$ and an element $B(x) \in \mathcal{B}$ such that $p(x) \Vdash \dot{N}(\check{x}) = B(x)$, and let $N_{\alpha}(x) = B(x)$. Then there is a countable set D_{α}^{*} such that $N_{\alpha}[D_{\alpha}^{*}] = X$. Let $D_{\alpha} = D_{\alpha}^{*} \setminus E_{\alpha}$. For each $x \in D_{\alpha}$, let $f_{\alpha}(x)$ be a condition below p(x) in such a way that the range of f_{α} is an antichain, and let $h_{\alpha}(x) = B(x)$. This completes the construction.

Let g be a V-generic path through T. For each $\alpha \in \kappa$, let C_{α} be the set of $x \in D_{\alpha}$ such that $f_{\alpha}(x) \in g$. Let

$$C = \bigcup \{ C_{\alpha} \mid \alpha \in \kappa \}.$$

By genericity $\dot{N}_g[C] = X$. We will we done once we show that C is closed discrete.

Pick a point y in X. There is a $x \in C_{\beta}$ for some $\beta \in \kappa$ such that $y \in \dot{N}_g(x)$. Since $f_{\beta}(x) \in g$, $\dot{N}_g(x) = h_{\beta}(x)$. Fix $\gamma < \kappa$ such that $p_{\gamma} \in g$, $\gamma > \beta$ and $p_{\gamma} \leq f_{\beta}(x)$. Since $D_{\alpha} \cap h_{\beta}(x) = \emptyset$ for all $\alpha > \beta$ with $p_{\alpha} \leq f_{\beta}(x)$, y is not in the closure of

$$\bigcup \{ D_{\alpha} \mid \gamma \leq \alpha < \kappa, p_{\alpha} \in g \},\$$

which contains $\bigcup \{ C_{\alpha} : \gamma \leq \alpha < \kappa \}$. On the other hand, letting

$$Z = \bigcup \{ \{ z \in D_{\alpha} \mid f_{\alpha}(z) \in g \} : \alpha < \gamma \},$$
$$C \subseteq Z \cup \bigcup \{ C_{\alpha} \mid \gamma \le \alpha < \kappa \}.$$

Since Z is a finite set, y is not in the closure of $Z \setminus \{y\}$, either, which shows that C is closed discrete.

References

- R. Arens, J. Dugundji, Remark on the concept of compactness, Portugal. Math. 9 (1950) 141-143
- [2] A.V. Arhangel'skii, *D-spaces and finite unions*, Proc. Amer. Math. Soc. 132 (7) 2004, 2163–2170
- [3] A.V. Arhangel'skii, D-spaces and covering properties, Topology Appl. 146/147 (2005), 437–449
- [4] A.V. Arhangel'skii, R.Z. Buzyakova, Addition theorems and D-spaces, Comment. Math. Univ. Carolin. 43 (2002) 4, 653–663
- [5] T. Bartoszyński, H. Judah, Set Theory. On the Structure of the Real Line, A.K. Peters, 1995
- [6] C.R. Borges, A.C. Wehrly, A study of D-spaces, Topology Proc. 16 (1991), 7–15
- [7] C.R. Borges, A.C. Wehrly, Another study of D-spaces, Questions Answers Gen. Topology 14 (1996) 1, 73–76
- [8] C.R. Borges, A.C. Wehrly, Correction to [7], Questions Answers Gen. Topology 16 (1998) 1, 77–78
- [9] R.Z. Buzyakova, On D-property of strong Σ spaces, Comment. Math. Univ. Carolin. 43 (2002) 3, 493–49
- [10] R.Z. Buzyakova, Hereditary D-property of function spaces over compacta, Proc. Amer. Math. Soc. 132 (2004) 1, 3433–3439
- [11] E.K van Douwen, W.F. Pfeffer, Some properties of the Sorgenfrey line and related spaces, Pacific J. Math 81 (1979), 371-377
- [12] T. Eisworth, On D-spaces, in: Open problems in topology II, Elsevier, 2007
- [13] W.G. Fleissner, A.M. Stanley, *D-spaces*, Topology Appl. 114 (2001) 3, 261– 271
- [14] G. Gruenhage, A note on D-spaces, Topology Appl. 153 (2006), 2229–2240
- [15] R.E. Hodel, Cardinal Functions I, in: Handbook of Set-theoretic Topology, Kunen K. and Vaughan JE, eds., Elsevier Science Publishers, BV, North Holland, 1984, 1–61
- [16] M. Hrušák, J.T. Moore, Twenty Problems in Set-Theoretic Topology, in: Open problems in topology II, Elsevier, 2007
- [17] T. Jech, Set Theory, Springer, 2003

[18] P.B. Larson, Irreducbility of product spaces with finitely many points removed, Topology Proceedings 30 (2006) 1, 327-333

Instituto de Matemática e Estatística da Universidade de São Paulo (IME-USP) Rua do Matão, 1010 - Cidade Universitria CEP 05508-090 São Paulo - SP - Brasil lucia@ime.usp.br laurichi@ime.usp.br

Department of Mathematics and Statistics Miami University, Oxford, Ohio 45056, United States larsonpb@muohio.edu