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Abstract

We show that the members of a certain class of semi-proper iterations
do not add countable sets of ordinals. As a result, starting from suitable
large cardinals one can obtain a model in which the Continuum Hypothesis
holds and every function from ω1 to ω1 is bounded on a club by a canonical
function for an ordinal less than ω2.

1 Introduction

Given an ordinal γ, a function f : ω1 → Ord is a canonical function for γ if the
empty condition (i.e., ω1) in the forcing P(ω1)/NSω1 forces that j(f)(ωV

1 ) = γ,
where j is the elementary embedding induced by the generic. For each α < ω1,
the constant function with value α is the canonical function for α. For α ∈
[ω1, ω2), a canonical function f for α is obtained by taking a bijection g : ω1 → α
and letting f(β) be the ordertype of g[β]. In this paper we let Bounding denote
the statement that every function from ω1 to ω1 is bounded on a club subset
of ω1 by a canonical function for an ordinal less than ω2. It is fairly easy to
see that if the nonstationary ideal on ω1 (NSω1) is saturated, then Bounding
holds. The second author has shown [11] that given the existence of a Woodin
cardinal there is a semi-proper forcing making NSω1 saturated, and it has been
known for some time that there is a simpler forcing making Bounding hold from
a weaker large cardinal hypothesis. The most quotable result in this paper is
that this standard forcing to make every function from ω1 to ω1 bounded by
a canonical function is (ω,∞)-distributive (i.e., it does not add ω-sequences of
ordinals), and so this statement is consistent with the Continuum Hypothesis,
even in the presence of large cardinals. This is in contrast with saturation, as
Woodin [14] has shown that if NSω1 is saturated and sufficiently large cardinals
exist, then there is a definable counterexample to CH. We give a more general
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theorem stating that the members of a certain class of semi-proper iterations are
(ω,∞)-distributive. This class includes the standard forcing to make Bounding
hold, and is general enough to show that a generalization of Bounding for certain
sets of reals is also consistent with CH, answering a question in [14].

The key construction used in the proof generalizes the notion of α-properness
from Chapter V of [11] to semi-proper forcing. Briefly, a forcing is α-semi-proper
if for any ∈-chain of countable elementary submodels of length α, there is a
condition which is simultaneously semi-generic for each model in the sequence.
The problem in applying the method to show that a given improper iteration is
(ω,∞)-distributive is that for a given model N in the sequence, N [G] ∩ κ can
be a proper superset of N ∩ κ, where κ is the length of the iteration and G is
generic for some initial segment, so that new steps appear. For the forcings in
this paper, however, we have a good understanding of how to enlarge each such
N , as well as how to produce the appropriate tower of models to overcome this.

This can be generalized further, getting the consistency of certain forcing
axioms, using ideas from [11], Chapters V and VIII, and [13]. The reader is
referred to [10] for more on this topic and on RCS in particular.

Interest in this question derives also from the study of Woodin’s Pmax forcing
[14], which produces a model in which CH fails and all forceable Π2 sentences
for H(ω2) hold simultaneously. It is not known whether all such Π2 sentences
forceably consistent with CH can hold together with CH. The generalized form
of bounding in this paper is a candidate for showing that this is impossible.
Candidates for the other half of the incompatibility appear in [12], and Woodin
has suggested others concerning models of determinacy.

2 Skolem Hulls

Given a structure M with a predicate <∗ for a wellordering of the domain of M ,
and a subset X of the domain of M , we let Sk(M,∈,<∗)(X) denote the Skolem
hull of X in (M,∈, <∗). If X is a countable elementary substructure of some
H(χ) and η is an ordinal in X, then we let DX

η be the set of all a ∈ [η]<ω

such that f(a) ∈ X for all f : [η]|a| → ω1 in X. The point is that if <∗ is a
wellordering of H(χ), X ≺ (H(χ),∈, <∗) is countable, and z is a subset of some
ordinal η ∈ X, then

Sk(H(χ),∈,<∗)(X ∪ z) = {f(a) : a ∈ [z]<ω ∧ f ∈ H(χ)([η]<ω) ∩X}
and so if z is such that [z]<ω ⊂ DX

η ,

Sk(H(χ),∈,<∗)(X ∪ z) ∩ ω1 = X ∩ ω1.

Note that if η < η′ are ordinals in an elementary submodel X, then

DX
η = DX

η′ ∩ [η]<ω.

In order to verify that our forcings satisy the semi-properness condition
we require, we need to be able to iterate a certain simultaneous-extendibility
requirement. The following lemma will be useful in this regard.
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Lemma 2.1. Say that M is a structure and <∗ is a wellordering of the domain
of M . Let X be a countable elementary substructure of (M,∈, <∗). Let η be an
ordinal in X and let z0, z1 be countable subsets of η such that [z0]<ω ⊂ DX

η and
[z1]<ω ⊂ DX′

η , where X ′ = Sk(M,∈,<∗)(X ∪ z0). Then [z0 ∪ z1]<ω ⊂ DX
η .

Proof. Let a ∈ [z0]<ω and b ∈ [z1]<ω, and let f : [η]|a|+|b| → ω. Then fa : [η]|b| →
ω, defined by letting fa(y) = f(a ∪ y), is a function in

X ′ = Sk(M,∈,<∗)(X ∪ z0),

so f(a ∪ b) ∈ X ′ ∩ ω1 = X ∩ ω1.

Say that X,Y are countable elementary submodels of some (H(χ),∈, <χ)
with X ∈ Y . Let η be an ordinal in X and let γ ∈ Y ∩ η. Then even though
Sk(H(χ),∈,<χ)(X ∪{γ}) is not directly definable in Y , the set itself is in Y , since
it is equivalent to {f(γ) | f ∈ X ∧ f : η → H(χ)}.
2.2 Remark. Similarly, many of the arguments in this paper prove facts about
sequences of elementary submodels by induction on the length of the sequence.
Of course if X, Y are countable elementary submodels of (H(χ),∈, <χ) with
X ∈ Y , Y does not see that X is an elementary submodel, and so the induction
hypothesis cannot be applied directly in Y . However, the statement about
whether an object exists with a certain relation to X, a semi-generic extending
a certain condition, say, is formalizable in Y , and so if one exists in H(χ) then
one exists in Y .

3 A class of (ω,∞)-distributive iterations

Each step of the iterations we are considering is a forcing which shoots a continu-
ous increasing sequence of length ω1 through a given stationary set of countable
sets of ordinals. Under certain assumptions on the stationary set, such forcings
are a typical example of improper forcings which preserve stationary subsets of
ω1, and they have been well studied in recent years (see, for example, [3]). For
the iterations in this paper, we require that these stationary sets be definable
from sets from the ground model with the help of functions from ω1 to ω1 added
by initial segments of the iteration.

3.1 Definition. Let 〈λρ : ρ < κ〉 be a continuous increasing sequence of or-
dinals, and let A = 〈Aρ

β : ρ < κ, β < ω1〉 be such that each Aρ
β ⊂ [λρ+1]<ω1 .

Given ρ < κ and f : ω1 → ω1, let Qρ,f be the forcing whose conditions are count-
able, continuous, increasing sequences 〈xβ : β ≤ γ〉 such that for each β ≤ γ,
xβ ∩ω1 ∈ ω1 and xβ ∈ Aρ

f(xβ∩ω1)
, ordered by extension. Then an A-iteration is

a structure Q̄ = 〈Pρ, Q∼ ρ, f∼ρ : ρ < κ〉 such that

(a) 〈Pρ, Q∼ ρ : ρ < κ〉 is a Revised Countable Support iteration,

(b) each f
∼ρ is a Pβ-name for a function from ω1 to ω1, for β = 0 or β < ρ,
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(c) for all ρ < κ, 1Pρ
°Q
∼ ρ = Qρ,f

∼ρ
.

The stationary sets in our iterations must also satisfy certain extendibility
conditions with respect to the countable elementary submodels of a sufficiently
large initial segment of the universe.

Theorem 3.2. Let 〈λρ : ρ < κ〉 be a continuous increasing sequence of strong
limit cardinals with supremum κ. Fix a regular cardinal χ > (2κ)+, and let <χ

be a wellordering of H(χ). Let A = 〈Aρ
β : ρ < κ, β < ω1〉 be such that each

Aρ
β ⊂ [λρ+1]<ω1 , and let Q̄ = 〈Pρ, Q∼ ρ, f∼ρ : ρ < κ〉 be an A-iteration, such that

the following hold.

1. For all ρ < κ, β < ω1, if E ∈ Aρ
β and E′ ∈ [λρ+1]<ω1 with E ⊂ E′ then

E′ ∈ Aρ
β,

2. For all ρ < κ, 1Pρ forces that for all countable X ≺ (H(χ)V Pρ
,∈, <χ) with

λρ+1, Q̄ ∈ X, and for all β < ω1 there exists a countable z ⊂ λρ+1 such
that [z]<ω is a subset of

⋂
{DZ

λρ+1
: Z ≺ (H(χ),∈, <χ) ∧ λρ+1, Q̄ ∈ Z ∈ X}

and, letting Y = Sk(H(χ),∈,<χ)(X ∪ z),

(i) X ∩ ω1 = Y ∩ ω1,

(ii) Y ∩ λρ+1 ∈ Aρ
β.

3. For all countable X ≺ (H(χ),∈, <χ) with Q̄ ∈ X, and for all ρ ∈ X ∩
κ, β < ω1 there exists a countable Y ≺ (H(χ),∈, <χ) such that

(i) X ⊂ Y

(ii) X ∩ Vλρ+2 = Y ∩ Vλρ+2,

(iii) Y ∩ λρ+1 ∈ Aρ
β.

Let P be the Revised Countable Support limit of 〈Pρ, Q∼ ρ : ρ < κ〉. Then P is
(ω,∞)-distributive.

3.3 Remark. By standard RCS arguments, if in the statement of Theorem
3.2 we assume in addition that κ is strongly inaccessible, then P is κ-c.c. (see
Theorem 4.6).

Conditions 2 and 3 of Theorem 3.2 could easily be subsumed into one con-
dition; indeed, in our applications we verify both conditions at the same time.
The conditions correspond to separate parts of the proof, however. Condition 2
is needed to show that each successor step of the iteration is α-semi-proper for
all countable α (Theorem 4.13), and could in fact be replaced by this require-
ment, though this would mean more work in applying the theorem. Condition
3 is used to construct the systems of models which we use to show that no
countable sets of ordinals are added (Lemma 4.20).
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Since in the end we show that P does not add ω-sequences, our iteration
is actually by Countable Support. Nonetheless, at this time we do not have a
proof of (the corresponding version of) Theorem 3.2 which avoids RCS.

For the rest of this paper, sets denoted by κ, 〈λρ : ρ < κ〉, χ, <χ, Qρ,f , Q̄,
P , A and 〈Aρ

β : ρ < κ, β < ω1〉 are supposed to have the properties given in the
hypotheses of Theorem 3.2. This policy will be modified in two ways. First, in
the application sections, we will add extra properties for these terms. On the
other hand, in proving the main theorem we sometimes state our lemmas more
generally in terms of certain properties of these objects, temporarily forgetting
the others. We hope that it is clear when we are doing this, so that there will
be no confusion.

4 The proof

The proof of Theorem 3.2 breaks into two largely disjoint parts, which come
together only in Lemma 4.21. In the first part, we define α-semi-proper forcing,
where α is a countable ordinal, and show that for each countable ordinal α,
α-semi-properness is preserved under RCS iterations. In Theorem 4.13 we use
Condition 2 from Theorem 3.2 to show that each successor step of our iteration
is forced to be α-semi-proper for all countable α, which then carries over to
the entire iteration. In the second part of the proof we use the end-extension
property given in Condition 3 of Theorem 3.2 to find a system of elementary
submodels suitable for proving (ω,∞)-distributivity, which is shown in Lemmas
4.17, 4.18, 4.20 and 4.21. By Theorem 4.7, the iteration is κ-c.c.

4.1 Revised Countable Support

The reader is referred to [11, 10] for the definition of Revised Countable Support
and its basic analysis. Alternate presentations of RCS can be found in [2, 7].
We will show that the arguments here follow in all three versions. The only
facts about RCS that we need outside of this section are Theorems 4.1, 4.7 and
4.11, and Property 4.3. These are (essentially - see Remark 4.4) proved in [7, 8]
for the version of RCS presented in [7]. We present proofs of these facts that
work for the versions of RCS in [11] and [2].

The following two theorems hold for all presentations of RCS. The first gives
an important property of RCS which distinguishes it from Countable Support,
that names for conditions are essentially conditions themselves.

Theorem 4.1. Say that 〈Pα, Q
∼ α : α < κ〉 is an RCS iteration with RCS limit

P . Let p ∈ P and fix γ < κ. Suppose that A is a maximal antichain in Pγ

below p¹γ and f : A → P is a function such that for each a ∈ A f(a) ≤ p and
f(a)¹γ = a. Then there is a condition p′ ≤ p such that p′ ≤ p, p¹γ = p′¹γ and
each a ∈ A forces that p′¹[γ, κ) = f(a)¹[γ, κ).

Theorem 4.2 follows from Theorem 4.1 and Corollary 2.8 from Chapter X of
[11] (and the corresponding theorem from [2]).
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Theorem 4.2. Suppose that 〈Pγ , Q
∼ γ : γ < κ〉 is an RCS iteration with RCS

limit Pκ such that each Q
∼ γ is forced to be semi-proper and each Q

∼ γ forces the
corresponding Pγ to have cardinality ℵ1. Then the following hold.

1. Pκ is semi-proper.

2. For all regular cardinals χ > 2|Pκ|, for all countable X ≺ H(χ) with
Pκ ∈ X, for all γ < δ in X ∩ (κ + 1), if

(a) p ∈ Pκ,
(b) q is an (X, Pγ)-semi-generic condition in Pγ below p¹γ,
(c) q forces “there exists r in Pκ ∩X such that p¹[γ, κ) = r¹[γ, κ),”

then there exists an (X, Pδ)-semi-generic condition q′ ∈ Pδ such that
q′¹γ = q and q′ ≤ p¹δ.

In [2], RCS is characterized by the following property.

4.3 Property. If 〈Pα : α < κ〉 is an RCS iteration with RCS limit P and p ∈ P ,
then for all q ≤ p in P there exist γ < κ, r ∈ Pγ such that r ≤ q¹γ and either
r°cof(κ̌) = ω or r°∀α ∈ (γ̌, κ̌) p(α) = 1Q

∼ α
.

If 〈Pα : α < κ〉 is an RCS iteration with RCS limit P then for each condition
p in P there is an associated P -name supp(p) for the support of p, the set of
α < κ such that

p(α) 6= 1Q
∼ α

,

as decided by the P -generic filter. One can easily prove by induction on κ that
Property 4.3 implies that for each p in P supp(p) is forced to be countable.

4.4 Remark. Property 4.3 is shown in [7] for the version of RCS in [7], for the
special case where κ = ω1 (so the first possibility for r cannot hold), en route to
(essentially) proving Theorem 4.6. Together these two facts give Property 4.3 for
this version of RCS, since in the remaining case (where |Pα| < cof(κ) for all α <
κ) a maximal antichain deciding the supremum of supp(p) for some condition p
must have maximal restriction in some initial segement of the iteration.

In [11], we have the following property (see Definition 1.1 and Claim 1.3 (1)
of [11], Chapter X).

4.5 Property. If 〈Pα : α < κ〉 is an RCS iteration of limit length with RCS
limit P and p ∈ P , then there exist P -names τi (i < ω) for ordinals less than κ
such that

1P °supp(p̌) = {τi : i < ω}
and such that for each q ≤ p in P there exist γ < κ, r ∈ Pγ+1 such that
r ≤ q¹(γ + 1) and r°τi = γ̌.

If we assume that in addition each Q
∼ α forces that the cardinality of the

corresponding Pα is ℵ1, then Property 4.5 implies Property 4.3. We need only
check the limit case. Fix p and q and assume that there is no pair γ, r such that
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• γ < κ,

• r ∈ Pγ ,

• r ≤ q¹γ,

• r°cof(κ̌) = ω.

If some Pα has cardinality greater than the cofinality of κ, then (assuming that q
is in the generic filter), κ will have cofinality ω1 in the extension by Pα+1. Then,
working in the Pα+1-extension, let X be a countable elementary substructure
of a large enough H(χ) with P, p, q, {τi : i < ω} ∈ X, where {τi : i < ω} is the
sequence given by Property 4.5 with respect to p. Define ζ =

⋃
(X ∩ κ) and let

q′ ≤ q¹[α + 1, κ) be (X, P/Pα+1)-semi-generic. Then q′ forces that supp(p) will
be contained in ζ. This means that for each i < ω every condition q′′ ≤ q′ in
P/Pα+1 will be compatible with an r ∈ Pζ/Pα+1 forcing that τi < ζ. But then
q′¹ζ will also have this property, and thus q′¹ζ also forces that supp(p) ⊂ ζ.
Therefore, there exists a condition r ∈ Pγ for some γ < κ such that r¹(α + 1)
forces that γ will have the properties of ζ as above, and that r¹[α + 1, γ) will
satisfy the properties of q′¹ζ. Such an r suffices.

On the other hand, if cof(k) > |Pα| for all α, then there is a sequence of
pairs (γi, ri) (i < ω) such that

• the γi’s are increasing,

• each ri ∈ Pγi forces a bound below κ on τi,

• for all i < j, rj¹γi = ri,

• each ri ≤ p¹γi.

Then the limit of the ri’s is the desired condition. To find γi+1, ri+1, find a
maximimal antichain A in Pγi below ri such that for each a ∈ A there is a
γa < κ and an ra ∈ Pγa such that

• ra¹γi = a,

• ra ≤ p,

• ra decides τi.

Then apply Theorem 4.1 to A and the function a 7→ ra to find ri+1, and let
γi+1 = sup{γa : a ∈ A}, which must be below κ since cof(κ) > |Pγi |.

Similar considerations give the following (see also Lemma 36.5 of [5]). The
point is that the RCS limit of an iteration of cofinality ω1 is just the direct limit,
and the ordinals of cofinality ω1 are stationary below cof(κ) as below. Then
for any maximal antichain A in P as below there is some γ < κ of cofinality ω1

such that A ∩ Pγ is a maximal antichain in Pγ . But then |A| ≤ |Pγ |.
Theorem 4.6. Say that 〈Pγ , Q

∼ γ : γ < κ〉 is an RCS iteration with RCS limit
P such that cof(κ) > |Pγ | for all γ < κ, and such that each Q

∼ γ forces the
corresponding Pγ to have cardinality ℵ1. Then P is cof(κ)-c.c.
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Applying Theorems 4.2 and 4.6, we have reduced the proof of Theorem 3.2
to showing that each Pβ (β < κ) is (ω,∞)-distributive.

Theorem 4.7. Let 〈Pβ , Q
∼ β : β < κ〉 be an RCS iteration of strongly inaccessible

length with RCS limit Pκ such that

• each 1Pβ
forces the corresponding Q

∼ β to be semi-proper,

• each Q
∼ β makes the corresponding Pβ have cardinality ℵ1,

• each |Pβ | < κ,

• each Pβ is (ω,∞)-distributive.

Then for all ρ < β ≤ κ, Pβ/Pρ is semi-proper and κ-c.c. Therefore Pκ is
(ω,∞)-distributive.

4.2 Semi-generics for sequences

The following are generalizations of ideas from Chapters V, X and XII of [11].

4.8 Definition. Let α be a countable ordinal.

1. The set SEQα(χ) consists of all N̄ = 〈Nβ : β < α〉 such that

(a) each Nβ is a countable elementary substructure of (H(χ),∈, <χ),

(b) for each γ < α, N̄¹γ = 〈Nβ : β < γ〉 ∈ Nγ .

2. Let N̄ ∈ SEQα(χ) and let P be a forcing construction in N0. A condition
p ∈ P is (N̄ , P )-semi-generic if

p°Ňδ[G∼ P ] ∩ ω1 = Ňδ ∩ ω1

for all δ < α, where G∼ P is a P -name for the generic filter. The condition
p is (N̄¹[γ, β], P )-semi-generic if this holds for all δ ∈ [γ, β].

3. A forcing construction P is α-semi-proper if for every N̄ ∈ SEQα(χ) with
P ∈ N0 and for all p ∈ P ∩N0 there is an (N̄ , P )-semi generic q ∈ P such
that p ≥ q.

Given N̄ ∈ SEQα(χ) and P ∈ N0, if G ⊂ P is a generic filter then N̄ [G] is
the sequence 〈Nβ [G] : β < α〉. Both parts of the following lemma are immediate.
Note that in the second part there is no need to find a p ∈ G∼ P which is (N̄ , P )-
semi-generic.

Lemma 4.9. Let α be a countable ordinal and fix N̄ ∈ SEQα(χ).

1. Let P be an α-semi-proper forcing in N0, and let Q
∼

be a P -name in N0 for
an α-semi-proper forcing. Let q ∈ P be (N̄ , P )-semi-generic and let p

∼
be a

P -name for a condition in (
⋃

N̄ [G∼ P ])∩Q
∼

. Then there is a P -name r∼ for a
condition in Q

∼
such that 1P °r∼ ≤ p

∼
and (q, r∼) is (N̄ , P ∗Q)-semi-generic.
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2. 1°P
ˇ̄N [G∼ P ] ∈ SEQα̌(χ̌)V [G∼ P ].

Lemma 4.10. Let α be a countable ordinal. Say that Pκ is the RCS limit of
an RCS iteration 〈Pρ, Q∼ ρ : ρ < κ〉 in a in a set forcing extension V ∗ such that
each 1Pρ

forces the corresponding Q
∼ ρ to be semi-proper, and each Q

∼ ρ forces Pρ

to have cardinality ℵ1. Then the following hold in V ∗.

1. Pκ is α-semi-proper.

2. Fix β ≤ γ ≤ κ, and fix N̄ ∈ SEQα(χ) with Pκ and β, γ ∈ ⋃
N̄ . Let

p ∈ Pκ, q ∈ Pβ and δ < α be such that

• β ∈ Nδ,

• p is (N̄¹δ, Pκ)-semi-generic,

• q is (N̄¹[δ, α), Pβ)-semi-generic,

• p¹β ≥ q,

• q forces that for some r ∈ Pκ ∩Nδ, p¹[β, κ) = r¹[β, κ).

Let δ∗ ∈ [δ, α) be such that γ ∈ Nδ∗ . Then there exist q∗ ∈ Pγ and p∗ ∈ Pκ

such that

• p∗ is (N̄¹δ∗, Pκ)-semi-generic,

• q∗ is (N̄¹[δ∗, α), Pγ)-semi-generic,

• q∗ ≤ p∗¹γ,

• p∗ ≤ p,

• q∗¹β = q,

• q∗ forces that for some r ∈ Pκ ∩Nδ∗ , p∗¹[γ, κ) = r¹[γ, κ).

Proof. We prove part 2 by induction on α, working in V ∗. The first part follows
immediately. We fix the notation that Gρ is the generic filter for Pρ, for ρ < κ.
The case α = 1 is given by Theorem 4.2. For the case where α = α′ + 1, there
are two subcases. If δ∗ < α′, then we may assume by the induction hypothesis
that δ∗ = δ and that there is a (N̄¹[δ∗, α′), Pγ)-semi-generic q′ ∈ Pγ such that
q′¹β = q and q′ ≤ p¹γ. Then since q forces that Nα′ [Gβ ] will be elementary in
H(χ)V ∗[Gβ ], where Gβ is the generic filter for Pβ , we can replace q′ with a q′′

with the additional property that q forces that q′′¹[β, γ) will be equal to r¹[β, γ)
for some r ∈ Nα′ ∩ Pκ. By part 2 of Theorem 4.2, then, there is a q∗ ∈ Pγ such
that q∗¹β = q, q∗ ≤ q′′ and q∗ is (Nα′ , Pγ)-semi-generic. Such a q∗ suffices.

For the subcase δ∗ = α′, by the induction hypothesis there is a (N̄¹α′, Pκ)-
semi-generic q′ ∈ Pγ such that q′¹β = q and q′ ≤ p. Then since q forces that
Nα′ [Gβ ] will be elementary in H(χ)V ∗[Gβ ], where Gβ is the generic filter for
Pβ , we can replace q′ with a q′′ with the additional property that q forces that
q′′¹[β, κ) will be equal to r¹[β, κ) for some r ∈ Nα′ ∩Pκ, and we can let p∗ = q′′.
Then as in the previous paragraph, by part 2 of Theorem 4.2 there is a q∗ as
desired.
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The case where α is a limit and κ = κ′+1 is similar, now fixing α and induct-
ing on κ. By the induction hypothesis for α we may assume that δ = δ∗ and by
the induction hypothesis for κ we may assume that there is a (N̄¹[δ∗, α), Pκ′)-
semi-generic q′ ∈ Pκ′ such that q′¹β = q and q′ ≤ p¹κ′. Since Q

∼ κ′ is forced to
be α-semi-proper, by Theorem 4.1 (or part 1 of Lemma 4.9) there is a (N̄ , Pκ)-
semi-generic q∗ below p such that q∗¹κ = q′.

For the case where α and κ are both limits there are two subcases (in either of
which we may assume that δ = δ∗). If κ has cofinality ω or ω1, or if |Pρ| < cof(κ)
for each ρ < κ, then we fix an increasing sequence 〈ξi : i < ω〉 cofinal in α, with
ξ0 = δ. If the cofinality of κ is countable, fix an increasing sequence of ordinals
〈βi : i < ω〉 ∈ N0 cofinal in κ, with β0 = β. Otherwise, let βi be any ordinal
in Nξi

greater than sup(
⋃

N̄¹ξi ∩ κ), again with β0 = β. Let p0 = p and let
q0 = q. Alternately choose conditions pi+1, qi+1 (i < ω), such that

1. each pi+1 is a condition in Pκ,

2. each qi+1 is a condition in Pβi+1 ,

3. each qi ≤ pi¹βi,

4. each pi+1 ≤ pi,

5. for all i < j < ω, qj¹βi = qi,

6. each pi+1 is (N̄¹ξi+1, Pκ)-semi-generic,

7. each qi+1 is (N̄¹[ξi+1, α), Pβi+1)-semi-generic,

8. each qi forces that for some condition r ∈ Pκ∩Nξi+1 , r¹[βi, κ) = pi¹[βi, κ).

For the case where no condition in any Pη makes cof(κ) ≤ ω1, we modify
condition 8 as follows:

8a. each qi forces that for some condition r ∈ Pκ ∩Nξi+1 such that for some
γ < κ 1Pκ°supp(ř) ⊂ γ̌, r¹[βi, κ) = pi[βi, κ).

That such conditions exist is immediate by the induction hypothesis (8a
follows from Property 4.3). Then the limit of the qi’s (call it q∗) will be the
desired (N̄ , Pκ)-semi-generic, as long as it is below each pi. This fact follows from
the fact that q∗ forces that {βi : i < ω} will be cofinal in

⋃{supp(pi) : i < ω}.
This is clear if cof(κ) = ω, and if cof(κ) = ω1 it follows from the fact that each
Nξi ∩ κ will be cofinal in Nξi [Gβi ] since qi is (Nξi , Pβi)-semi-generic. For the
remaining case it follows from condition 8a.

If |Pρ| ≥ cof(κ) for some ρ < κ, then we may assume that β > ρ and so
cof(κ) ≤ ω1 in the Pβ-extension. Then we may apply the previous argument in
the Pβ-extension, along with Theorem 4.1.

Theorem 4.11. Let α be a countable ordinal. Say that Pκ is the RCS limit of an
RCS iteration 〈Pβ , Q

∼ β : β < κ〉 such that each Pβ+1 = Pβ ∗Q
∼ β forces |Pβ | ≤ ℵ1

and each 1Pβ
forces that Q

∼ β is α-semi-proper. Then for all β < γ ≤ κ, Pγ/Pβ

is α-semi-proper for every α < ω1.
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To show that each Qρ,f is α-semi-proper for all α < ω1, we show that we
can extend sequences of models in a suitable way.

Lemma 4.12. Assume that λ < χ, Q̄, and 〈Aβ : β < ω1〉 ⊂ [λ]<ω1 are such
that

• for all β < ω1, E ∈ Aβ, if E ⊂ E′ then E′ ∈ Aβ,

• for all countable X ≺ (H(χ),∈, <χ) with λ, Q̄ ∈ X, and for all β < ω1

there exists a countable z ⊂ λ such that [z]<ω is a subset of
⋂
{DZ

λ : Z ≺ (H(χ),∈, <χ) ∧ Q̄, λ ∈ Z ∈ X}

and, letting Y = Sk(H(χ),∈,<χ)(X ∪ z),

(i) X ∩ ω1 = Y ∩ ω1,

(ii) Y ∩ λ ∈ Aβ.

Let N̄ ∈ SEQξ(χ) (for some ξ < ω1) with Q̄, λ ∈ N0, and let g : ω1 → ω1 be a
function in N0. Then there exists N̄ ′ ∈ SEQξ(χ) such that

(a) each Nη ⊂ N ′
η,

(b) each N ′
η ∩ ω1 = Nη ∩ ω1,

(c) each N ′
η ∩ λ ∈ Ag(N ′

η∩ω1),

(d) letting N ′ =
⋃{N ′

η : η ≤ ξ}, N ′ ∩ λ ∈ Ag(N ′∩ω1).

Proof. By induction on ξ. If N̄ has a last model, then we are done by the
extension assumption on countable elementary submodels of H(χ). For the limit
case, applying the induction hypothesis we may assume that every condition
already holds, except part (d). Let

N =
⋃
{Nη : η ≤ ξ}.

Applying the end-extension assumption, let z be a countable subset of λ such
that

[z]<ω ⊂
⋂
{DZ

λ : Z ≺ (H(χ),∈, <χ) ∧ λ, Q̄ ∈ Z ∈ N}
and such that, letting N ′ = Sk(H(χ),∈,<χ)(N ∪ z), we have

1. N ⊂ N ′,

2. N ∩ ω1 = N ′ ∩ ω1,

3. N ′ ∩ λ ∈ Ag(N ′∩ω1).

11



Let h : ω → z be a bijection, and fix an increasing sequence 〈ζi : i < ω〉 cofinal
in ξ with ζ0 = 0. Now let each

N ′
η = Sk(H(χ),∈,<χ)(Nη ∪ h[iη]),

where iη is the largest i such that ζi ≤ η. Since these are all finite extensions,
each initial sequence of the new sequence is an element of the later models. By
the choice of z, each Nη ∩ ω1 = N ′

η ∩ ω1, and so N̄ ′ is as desired.

Theorem 4.13. If Pρ is as in Theorem 3.2 and f : ω1 → ω1 is a function added
by Pρ, then Qρ,f is α-semi-proper in the extension by Pρ for all α < ω1.

Proof. By induction on α, using the Lemma 4.12 and working in the extension
by Pρ. Fix N̄ ∈ SEQα(χ) and p ∈ Qρ,f with p, Q̄, λ ∈ N0, and let N̄ ′ be as in
Lemma 4.12, with respect to 〈Aρ

β : β < ω1〉. If N̄ ′ has a final model (i.e., if α

is a successor), then we can choose a (N̄ ′¹(α− 1), Qρ,f )-semi-generic p′ ∈ N ′
α−1

extending p by the induction hypothesis (see Remark 2.2). Then since

N ′
α−1 ∩ λρ+1 ∈ Aρ

f(N ′
α−1∩ω1)

,

any N ′
α−1-generic for Qρ,f extending p′ will suffice as the desired condition. For

the case where α is a limit, we let N̄ and N̄ ′ be as in the proof of Lemma
4.12, and fix an increasing sequence ξi (i < ω) of ordinals cofinal in α. Then
letting p be p0 we can successively pick conditions pi (i < ω) such that each pi+1

is a (N̄ ′¹ξi+1, Qρ,f )-semi-generic in N ′
ξi+1

extending pi, and such that the last
member of each pi+1 contains N ′

ξi
∩ λρ+1. By Condition (d) from Lemma 4.12,

the limit of the pi’s (adjoined by their union) will be a condition in Qρ,f , and it
will be (N̄ , Qρ,f )-semi-generic since it extends an (N̄¹β, Qρ,f )-semi-generic for
each β < α.

4.3 Systems of models and conditions

To show that each initial segment Pβ (β < κ) is (ω,∞)-distributive, we choose a
suitable pair (M, N̄) where M is a countable elementary submodel of H(χ) and
N̄ ∈ SEQo.t.(M∩β)(χ), and find an (N̄ , Pβ)-semi-generic condition in Pβ which
extends an M -generic filter. As defined below, a (Q̄, ρ, β)-system is a partial
construction of such an object (minus the M -genericity requirement), where ρ is
the length of the initial segment for the iteration for which the desired condition
has been constructed, and β is the target length.

4.14 Definition. Given ordinals ρ ≤ β ≤ κ, we say that (M, N̄, p, q) is a
(Q̄, ρ, β)-system if (letting δ = o.t.(M ∩ ρ) and γ = o.t.(M ∩ β)):

1. M ≺ (H(χ),∈, <χ),

2. Q̄, ρ, β belong to M ,

3. N̄ ∈ SEQγ(χ) and Q̄ ∈ N0,

12



4. q ∈ Pρ and q is (N̄¹[δ, γ), Pρ)-semi-generic,

5. for all ρ′ ∈ ρ ∩M , q¹ρ′ is (No.t.(M∩ρ′), Pρ′)-semi-generic,

6. for all η ∈ M ∩ β,

(a) for all ν ∈ No.t(η∩M) ∩ ω1, M ∩ λη+1 ∈ Aη
ν ,

(b) M ∩ Vλη+2 ∈ No.t.(η∩M),

7. p ∈ Pβ , p¹ρ ≥ q and for all η ∈ [ρ, β) ∩M , p¹η ∈ No.t.(η∩M).

4.15 Remark. Note that if β = ρ + 1 and (M, N̄, p, q) is a (Q̄, ρ, β)-system,
then (M, N̄, p, q) is also a (Q̄, β, β)-system, as (the second part of) Condition 4
becomes vacuous in the second case, and Condition 4 in the first case completes
Condition 5 in the second.

4.16 Definition. Let M ≺ (H(χ),∈, <χ) and β < κ with Pβ ∈ M . A filter
g ⊂ Pβ ∩M is M -generic if for all dense sets D ⊂ Pβ in M the intersection of g
and D is nonempty. A condition p ∈ M is a potential -M -generic for Pβ if there
exists a g ⊂ Pβ ∩M M -generic for Pβ such that for all ρ ∈ M ∩ β, 1Pρ forces
that if

M ∩ λρ+1 ∈ Aρ

f
∼ρ(M∩ω1)

then p(ρ) = g(ρ)_〈∪g(ρ)〉, and if for all ρ 6∈ M ∩ β, p(ρ) = 1Q
∼ ρ

.

Note that if g ⊂ Pβ is M -generic and p is in g then since supp(p) is a Pβ-name
for a countable subset of β the support of p as determined by g is contained in
M ∩ β. We need to see that potential-M -generics exist in suitable generality.

Lemma 4.17. For any β ≤ κ, if (M, N̄, p, ∅) is a (Q̄, 0, β)-system with p ∈ M ,
then there is a potential-M -generic p̄ ≤ p such that p̄¹η ∈ No.t.(η∩M) for all
η ∈ M ∩ β.

Proof. Given g ⊂ P ∩M M -generic for Pβ , one can easily build a corresponding
potential-M -generic p, letting p(ρ) be the empty condition when

M ∩ λρ+1 6∈ Aρ

f
∼ρ(M∩ω1)

.

The point then is just to find an M -generic filter g ⊂ M ∩ Pβ with p ∈ g, such
that g ∩ Pη ∈ No.t.(η∩M) for all η ∈ M ∩ β.

Inducting primarily on β ∈ M ∩ κ, and secondarily on γ ∈ M ∩ β, we show
that if p∗ ∈ Pβ ∩M and g∗ ∈ No.t.(M∩γ) is an M -generic filter for Pγ such that
g∗ ∩ Pγ′ ∈ No.t.(M∩γ′) for all γ′ ∈ M ∩ γ and p∗¹γ ∈ g∗, then there exists an
M -generic g ⊂ Pβ such that g ∩ Pγ = g∗, g ∩ Pη ∈ No.t.(M∩η) for all η ∈ M ∩ β
and p∗ ∈ g. Note that for each γ ∈ M ∩ β, since

P(P(λγ)) ∩M ∈ No.t.(M∩γ)

13



(and |Pγ | ≤ 2λγ ), the M -genericity of g∗ can be verified in No.t.(M∩γ) (M itself
is not in any member of N̄ , so this is not automatic).

The base case β = 0 is trivial. For the successor step, we may assume that
γ + 1 = β Then since for the successor case there is no restriction on the last
coordinate of the M -generic filter (other than M -genericity), g∗ can be extended
in any fashion to an M -generic for Pβ .

For the limit, fix an increasing sequence ηi (i < ω) cofinal in β ∩M , and let
p = p0. Now in ω many steps alternately pick

• M -generic gi ⊂ Pηi in No.t.(M∩ηi) (applying the induction hypothesis
plus the elementarity of No.t.(M∩ηi) plus the fact that N̄¹o.t.(M ∩ ηi) ∈
No.t.(M∩ηi), as in Remark 2.2) with pi¹ηi ∈ gi such that

– gi ∩ Pη ∈ No.t.(M∩η) for all η ∈ M ∩ ηi,

– gi ∩ Pηj = gj for all j < i,

• pi+1 ≤ pi in M meeting the ith dense set in M for Pβ such that pi+1¹ηi ∈ gi

(such a pi+1 exists because gi is M -generic for Pηi).

Since each pi+1 ∈ M , its initial segments are automatically in the corresponding
Nξ’s. Then {pi : i < ω} generates an M -generic filter g for Pβ , and for each
ηi, g ∩ Pηi = gi. Then by the induction hypothesis, g ∩ Pη ∈ No.t.(M∩η) for all
η ∈ M ∩ β, since for all i < ω with ηi ≥ η, g ∩ Pη = gi ∩ Pη.

Lemma 4.18. Fix β ≤ κ. If for all p0 ∈ Pβ there is a (Q̄, β, β)-system
(M, N̄, p, q) with p0 ∈ M and p ≤ p0 a potential-M -generic, then the forcing Pβ

is (ω,∞)-distributive.

Proof. Towards a contradiction, fix the least β for which the lemma fails, and
let p0 be a condition in Pβ forcing that Pβ adds a new ω-sequence of ordinals.
Let (M, N̄, p, q) be a (Q̄, β, β)-system with p0 ∈ M and p ≤ p0 a potential-M -
generic, as given by the hypothesis of the lemma. Then there exists a Pβ-name
τ in M such that p0 forces that τ will be a new ω-sequence of ordinals. Let
g ⊂ Pβ ∩M be an M -generic filter witnessing that p is a potential-M -generic.
We wish to see that q is below each member of g. Then we will be done, as for
each integer i there is a member of g intersecting the antichain in Pβ determining
the ith member of τ . So we will show by induction on ρ ∈ (β + 1) ∩ M that
q¹ρ ≤ p′¹ρ for all p′ ∈ g (simultaneously). The cases where ρ = 0 or ρ is a limit
and M ∩ ρ is cofinal in ρ are clear.

For the successor step from ρ to ρ+1, f
∼ρ(M ∩ω1) is a Pρ-name in No.t.(M∩ρ)

for a countable ordinal, so by Conditions 5 and 6 of Definition 4.14, q¹ρ forces
that

M ∩ λρ+1 ∈ Aρ

f
∼ρ(M∩ω1)

.

Then q¹ρ forces that p(ρ) = g(ρ)_(∪g(ρ)). By Condition 7 of Definition 4.14,
q¹(ρ+1) ≤ p¹(ρ+1), so q¹ρ forces that q(ρ) extends p(ρ). Now fix p′ ∈ g. Since
q¹ρ forces that p(ρ) extends p′(ρ), we have that q¹(ρ + 1) ≤ p′¹(ρ + 1).
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Lastly, for the case where ρ is a limit and M ∩ ρ is not cofinal in ρ, note
that ρ has uncountable cofinality, and also that we have shown that each Pρ′ ,
ρ′ < ρ is (ω,∞)-distributive. By Property 4.3 then, densely many conditions
in Pρ (and therefore g ∩ Pρ) are conditions in some Pρ′ , ρ′ < ρ, and so densely
many conditions in g ∩ Pρ are in some Pρ′ with ρ′ ∈ ρ ∩M .

Given a countable X ≺ (H(χ),∈, <χ) with λ ∈ X, and given η < λ, we say
that Y ≺ (H(χ),∈, <χ) is a minimal (η, λ)-extension of X if the following hold.

1. X ∩ η = Y ∩ η.

2. Y = Sk(H(χ),∈,<χ)(X ∪A), for some A ⊂ λ.

The fact about these extensions that we will use is given in the following lemma.

Lemma 4.19. Let X ≺ (H(χ),∈, <χ), and let λ < γ be ordinals in X with γ
a regular cardinal. Let Y be a minimal (η, λ)-extension of X for some η < λ.
Then X ∩ γ is cofinal in Y ∩ γ.

Proof. Since γ is regular, each f : [λ]<ω → γ has bounded range below γ. If f
is in X then this bound exists in X.

Lemma 4.20. For any set x ∈ H(χ) and any ordinal β ≤ κ there is a (Q̄, 0, β)-
system (M, N̄, 1Pβ

, ∅) with x ∈ M .

Proof. Let M0 ≺ (H(χ),∈, <χ) be countable with {Q̄, β, x} ∈ M . For some
ζ ≤ ω1 we build 〈Mξ : ξ ≤ ζ〉, 〈γξ : ξ ≤ ζ〉 and 〈Nξ : ξ < ζ〉 satisfying the
following conditions.

1. Each Mξ is a countable elementary submodel of (H(χ),∈, <χ).

2. Each Nξ is a countable elementary submodel of (H(χ),∈, <χ).

3. Each γξ is the ξth ordinal in Mξ (0 being the 0th ordinal).

4. Q̄ ∈ N0.

5. For all ξ < ζ, 〈Nη : η < ξ〉 ∈ Nξ.

6. For all ξ < ζ, M ∩ Vλξ+2 ∈ Nξ.

7. For all ξ < ζ and for all ν ∈ Nξ ∩ ω1, Mξ+1 ∩ λγξ+1 ∈ A
γξ
ν .

8. For each ξ < ζ, Mξ+1 is a minimal (22
λγξ

, λγξ+1)-extension of Mξ,

9. If ξ is a limit ordinal, then Mξ =
⋃{Mη : η < ξ}.

10. If there exists a ξ < ω1 such that γξ = β, then ζ is the least such ξ;
otherwise ζ = ω1.
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Given Mξ, by applying Condition 3 in the statement of Theorem 3.2 repeat-
edly, once for each A

γξ
ν with ν = Nξ ∩ ω1, we can choose each Mξ+1 to meet

Conditions 7 and 8. While the model Y resulting from this repeated application
may not be a minimal (22

λγξ
, λγξ+1)-extension of Mξ,

Y ∗ = Sk(H(χ),∈,<χ)(Mξ ∪ (Y ∩ λγξ+1))

will be, as Y ∩ Vλγξ+1 = Y ∗ ∩ Vλγξ+1 , so we can take this Y ∗ as our Mξ+1. The
rest of the construction is straightforward.

We claim that for each ξ ≤ ζ the sequence 〈γη : η ≤ ξ〉 lists the first ξ + 1
ordinals of Mξ in increasing order. This follows by induction on ξ. It is clear
when ξ = 0, and when ξ = ξ′ + 1 it follows from Condition 8 and the fact that

22
λγ

ξ′
> γξ′

(so in this case γξ = γξ′ + 1). If ξ is a limit ordinal, we have from the fact that
Mξ =

⋃{Mη : η < ξ} and the induction hypothesis that 〈γη : η < ξ〉 lists the
first ξ ordinals of Mξ in increasing order. Then the definition of γξ finishes the
proof of the claim.

Next we claim that γξ = β for some ξ < ω1, and so ζ < ω1. Given this
we are done, letting M = Mζ and N̄ = 〈Nξ : ξ < ζ〉. All the conditions of
Definition 4.14 are satisfied trivially, aside from Condition 6. Condition 6 is
satisfied since for each η ∈ Mζ ∩ β, there is some ξ < ζ such that η = γξ (and
so ξ = o.t.(M ∩ η)). Then Nξ and Mξ were chosen to satisfy Condition 6 of
Definition 4.14 by Conditions 6 and 7 of the construction, and this relationship
was preserved for all later Mξ by Condition 8.

Assume to the contrary that ζ = ω1. If γω1 = β, then since every ordinal in
Mω1 ∩ β is equal to some γξ, there is a limit ordinal ξ < ω1 such that

{γη : η < ξ} = Mξ ∩ β.

But then γξ = β, contradicting ζ = ω1. So we may assume that γω1 < β. We
will show that the cofinality of Mω1 ∩ γω1 is countable, which is a contradiction
since 〈γξ : ξ < ω1〉 is increasing and cofinal in it. If γω1 ≤ λγξ

for some γξ with
γω1 ∈ Mξ, then M ∩ γω1 = Mξ ∩ γω1 , which is countable. If not, γω1 = λγω1

.
If γω1 is singular, let ρ be the cofinality of γω1 . Then ρ < λγξ

for some γξ

with {ρ, γω1} ∈ Mξ, and there exists a cofinal map f : ρ → γω1 in Mξ. Since
ρ ∩ Mω1 = ρ ∩ Mξ, f [Mξ ∩ ρ] is a countable set cofinal in Mω1 ∩ γω1 . The
last remaining case is that γω1 is a regular limit cardinal. Let ξ be least with
γω1 ∈ Mξ, and fix a cofinal sequence in Mξ∩γω1 . By Lemma 4.19 and Condition
8 of the construction, this sequence is cofinal in Mω1 ∩ γω1 .

We finish by applying the following lemma to the case ρ = 0, γ = β, from
Lemma 4.20. By Lemma 4.18, then, we are done.

Lemma 4.21. Fix β ≤ κ. Let (M, N̄, p, q) be a (Q̄, ρ, β)-system with ρ ≤ γ ≤ β
in M , and assume that p is a potential-M -generic. Then there exists a condition
q′ ∈ Pγ such that
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1. q′¹ρ = q,

2. (M, N̄, p, q′) is a (Q̄, γ, β)-system.

Proof. We first note that the lemma follows from the restricted version of the
lemma where γ = β. To see this, fix M, N̄, p, q, ρ, γ, β as given by the hypothesis
of the unrestricted version, and note that the restricted version then gives a
q∗ ∈ Pγ such that q∗¹ρ = q and (M, N̄¹o.t.(M ∩γ), p¹γ, q∗) is a (Q̄, γ, γ)-system.
Now, if Gρ ⊂ Pρ is V -generic with q ∈ Gρ, then M [Gρ]∩Ord = M ∩Ord (since
p is a potential-M -generic and q ≤ p) and the following hold.

• ∀α < o.t.(β ∩M) Nα[Gρ] ∩ ω1 = Nα ∩ ω1,

• N̄ [Gρ] = 〈Nα[Gρ] : α < o.t.(M ∩ β)〉 ∈ SEQo.t.(M∩β)(χ)V [Gρ].

Furthermore, in V [Gρ],

• q∗¹[ρ, γ) ∈ Pγ/Pρ

• ∀γ′ ∈ (γ \ ρ) ∩M , q∗¹[ρ, γ′) is (No.t.(M∩γ′)[Gρ], Pγ′/Pρ)-semi-generic,

• p¹[ρ, γ) ≥ q∗¹[ρ, γ).

Applying the elementarity of No.t.(M∩γ)[Gρ] in H(χ)V [Gρ], we see that there
exists a condition q̄ ∈ No.t.(M∩γ)[Gρ] ∩ Pγ/Pρ satisfying these conditions. By
part 2 of Lemma 4.10, then, there is a condition q′ ∈ Pγ such that q′¹ρ = q and
q forces that q′¹[ρ, γ) is a

(N̄ [Gρ]¹[o.t.(M ∩ γ), o.t.(M ∩ β)), Pγ/Pρ)-semi-generic

condition extending such a q̄. This q′ suffices. We have Conditions 5 and 7 of
Definition 4.14 by the properites listed above for q∗¹[ρ, γ), Condition 4 by our
extension, and the others by the assumptions of the lemma.

The restricted version of the lemma follows by induction on o.t.((β \ρ)∩M).
Note that our induction hypothesis entitles us (once we have fixed β and ρ) to
assume that the unrestricted version holds whenever γ < β.

Now, when ρ = β there is nothing to show. The argument for increasing
o.t.((β \ ρ) ∩M) by one follows from the case where β = ρ + 1, and this case is
also trivial (see Remark 4.15).

The only remaining case then is when ρ < β and β = γ is a limit. Fix an
increasing sequence ηi (i < ω) cofinal in M∩β with η0 = ρ, and succesively apply
the induction hypothesis (in V , as opposed to some submodel). That is, let q0 =
q, and given qi, let qi+1 ∈ Pηi+1 be such that qi+1¹ηi = qi and (M, N̄, p, qi+1) is
a (Q̄, ηi+1, β)-system. Then each qi is (N̄¹[o.t.(M ∩ ηi), o.t.(M ∩ β)), Pηi)-semi-
generic, and the limit of the qi’s is the desired q′. Condition 4 of Definition 4.14
is then easily satisfied (the second half being vacuous), and Conditions 5 and 7,
being local properties, are satisfied by the induction hypothesis.
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5 Applications

5.1 Bounding

The following is a a minor modification of a standard fact.

Theorem 5.1. Let λ be a measurable cardinal, let θ be a regular cardinal such
that Vλ+2 ⊂ H(θ), and let <∗ be a wellordering of H(θ). Then for every count-
able ordinal β and every X ≺ (H(θ),∈, <∗), there is a z ∈ [λ]β such that

(∗∗) [z]<ω ⊂
⋂
{DZ

λ : Z ≺ (H(θ),∈, <∗) ∧ Z ∈ X},

and such that, letting
Y = Sk(H(θ),∈,<∗)(X ∪ z),

X ∩ λ is a proper initial segment of Y ∩ λ.

Proof. It suffices to prove the theorem for the case β = 1, since then we may
repeat the construction any countable ordinal number of times. To see that
(∗∗) is preserved, note that if after repeating the construction some countable
number of times we have the λ-end-extension X ′ of X and we have added
γ0, . . . , γn (possibly among other ordinals) to z and Z ≺ (H(θ),∈, <∗) is in X,
then Z ′ = Sk(H(θ),∈,<∗)(Z ∪ {γ0, . . . , γn}) ∈ X ′. Further, if γn+1 ∈ DZ′

λ , then
by Lemma 2.1, {γ0, . . . , γn+1} ∈ DZ

λ .
Now, to prove the theorem for the case β = 1, let µ be the <∗-least normal

measure on λ, and fix X as in the statement of the theorem. Let γ be any
member of

⋂
(X ∩ µ), and let

Y = Sk(H(θ),∈,<∗)(X ∪ {γ}).
The key point is that if f : λ → λ is a regressive function in any elementary
submodel of (H(θ),∈, <∗), then f is constant on a set A ∈ µ, and since µ is
<∗-least, µ and therefore A and the constant value are also in the model. Along
with the fact that

⋂
(X ∩µ) ⊂ ⋂

(Z ∩µ) for any Z ≺ (H(θ),∈, <∗) with Z ∈ X,
this shows that γ satisfies (∗∗). To see that Y ∩ λ is a proper end-extension of
X ∩ λ, note that γ 6∈ X, and since any ordinal η ∈ Y ∩ λ is of the form f(γ) for
some f : λ → λ in X, if η ∈ Y ∩ γ then any corresponding f is regressive on a
set in µ, and so η ∈ X, by the key point.

Putting together Theorems 3.2 and 5.1 we have the following.

Corollary 5.2. Say that there exists a strongly inaccessible limit of measurable
cardinals. Then there is a semi-proper forcing extension in which Bounding
holds, along with the Continuum Hypothesis.

Proof. Let 〈λρ : ρ < κ〉 be a continuous increasing sequence of cardinals with
supremum κ strongly inaccessible such that each λρ+1 is a measurable cardinal.
Fix a regular cardinal χ > (2κ)+, and let <χ be a wellordering of H(χ). Let

A = 〈Aρ
β ⊂ [λρ+1]<ω1 : ρ < κ, β < ω1〉
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be such that each Aρ
β is the set of countable subsets of λρ+1 of ordertype greater

than β. Then by Theorem 5.1, Conditions 1-3 of Theorem 3.2 are satisfied
(Condition 2 by the fact that small forcing preserves measurable cardinals), so
any forcing P as in the statement of Theorem 3.2 is semi-proper and (ω,∞)-
distributive. We may further require that for every function f added by some
initial stage of the iteration there is a ρ < κ such that f = f

∼ρ. Each Qρ,f forces
that |λρ+1| = ℵ1 and that any canonical function for λρ+1 dominates f on a
club, so P forces Bounding. Further, since 2ω < κ in V and P forces κ = ω2, P
forces CH.

Deiser and Donder have recently shown [1] that Bounding is equiconsistent
with a strongly inaccessible limit of measurable cardinals.

5.2 Suslin Bounding

The previous application can be generalized to show that the following statement
can be forced without adding reals, answering a question in [14].

5.3 Definition. ([4]) Suppose that A ⊂ R. Then A is universally Baire if for
any compact Hausdorff space X and any continuous function π : X → R, the
set {a ∈ X | π(a) ∈ A} has the property of Baire in X.

5.4 Definition. Suslin Bounding is the following statement. Say that A ⊂ R
is universally Baire, and that f : ω1 → A. Then there is a tree T on ω×ω1 such
that A = p[T ] and such that {α < ω1 | f(α) ∈ p[T ¹(ω × α)]} contains a club.

Theorem 5.5. Bounding is equivalent to Suslin Bounding for Π1
1 sets.

Proof. For the forward direction, we adapt the proof that Π1
1 sets are projections

of trees on ω × ω1 (see [9]). Let S be a tree on ω × ω, let B = p[T ] and let
A = ωω \B. Recall that for all x ∈ A,

Sx = {σ ∈ ω<ω | (x¹|σ|, σ) ∈ S}

is wellfounded. For each x ∈ A, let βx be the least ordinal (necessarily countable)
such that there exists a function rx : ω<ω → βx with the property that if σ, σ′ ∈
Sx are such that σ is a proper initial segment of σ′, then rx(σ) > rx(σ′). Fix
f : ω1 → A, and for each α < ω1 let h(α) = βf(α). Now fix γ < ω2 and a bijection
g : ω1 → β such that for every α in a fixed club C ⊂ ω1, o.t.(g[α]) > h(α). Let
σ : ω → ω<ω be a bijection such that |σ(i)| ≤ i + 1 for all i < ω. Let T be the
tree on ω×ω1 consisting of all pairs (ρ, τ) such that if i, j < |ρ| (= |τ |) and σ(i)
is a proper initial segment of σ(j) with

(ρ¹|σ(i)|, σ(i)), (ρ¹|σ(j)|, σj)

both in S, then g(τ(i)) > g(τ(j)). Then p[T ] = A, and, for each x ∈ A, if δx is
the least (again, necessarily countable) ordinal δ such that o.t.(g[δ]) ≥ βx and
ix is an order preserving embedding of βx into g[δx], then (x, g−1 ◦ ix ◦ rx ◦ σ)
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is a path through T ¹ω × δx. Since δf(α) ≤ α for all α ∈ C, this shows that T
satisfies the definition of Suslin Bounding for f .

For the other direction, let W ⊂ ωω be the set of functions coding wellordings
of ω under some fixed coding with the property that for each g ∈ ωω and n ∈ ω,
g¹(n + 1) codes how n + 1 compares with each m < n + 1. Each function from
ω1 to ω1 induces a corresponding function from ω1 into W . Let f : ω1 → W be
such a function, and let T be the tree given by Suslin Bounding, with C the
witnessing club set. We have a partial, not necessarily transitive, order <o on
the sequences in T , where σ0 <o σ1 if one extends the other, and, σi being the
longer one, the first cordinate of the last element of σi codes that |σ0| < |σ1| in
the corresponding ordering. Let <t be the least transitive ordering containing
<o. Then <t is a wellfounded partial order. Seeing this requries checking
that the resulting order is antireflexive and wellfounded. To see antireflexivity,
assume that

τ <o σ0 <o . . . <o σn <o τ

is the shortest possible counterexample. First note that σ0 and σn cannot
be comparable in <o (or identical) since then the longest of τ, σ0, σn would
code a linear ordering containing the other two. Therefore σ0 and σn must be
incompatible extensions of τ , and σ1 must be comparable with τ and distinct
from σn. But then depending on whether σ1 >o τ or τ >o σ1, there is a shorter
counterexample, removing either σ0 or σ2 . . . σn from the original sequence. To
see wellfoundedness, let σi (i < ω) be a descending sequence in <o. First note
that if some τ ∈ T has infinitely many extensions in the sequence, then all but
finitely many of them must be extensions of a fixed immediate successor of τ ,
since otherwise initial segments of τ are visited infinitely often by the sequence,
which is impossible (using antireflexivity of <t), there being only finitely many
of them. But the empty sequence has infinitely many extension in the sequence,
which means that we can build an infinite chain though T all of whose members
have this property. We claim that infinitely many members of this chain must be
in the sequence, which gives a contradiction since the chain codes a wellordering.
To see the claim, fix a member τ0 of the chain, and an arbitrary integer n. Then
there is some σi, i > n, extending τ0, and a member τ1 of the chain with length
greater than |σi|. Let σj be an extension of τ1, for some j > i. Then if σi is
not on the chain, there must be some k in the interval (i, j) such that σk is an
initial segment of τ1. Since n was arbitrary, the claim follows.

Now extend <t to a wellordering ≤T of T , and let γ be the length of ≤T . Let
h : ω1 → T be a bijection, and define g : ω1 → ω1 by letting g(α) be the ordertype
of ≤T restricted to h[α]. Then g is a canonical function for γ. Furthermore, for
a club C ′ ⊂ C of α < ω1, T ¹(ω × α) = h[α]. For these α, g(α) is greater than
the ordertype of every wellordering in the projection of T ¹(ω × α), and thus
greater than f(α).

5.6 Remark. Note that Suslin Bounding for Π1
1 sets and Suslin Bounding for

Π∼
1
1 sets are identical.

Instead of working directly with the definition of universal Baireness, we
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will consider the equivalent (in the presence of large cardinals) form given by
Theorem 5.8. Given a set X, we let m(X) denote the set of countably complete
ultrafilters on X. Recall that a sequence of measures 〈µi : i < ω〉 such that
each µi concentrates on κi is a countably complete tower if for any sequence
〈Ai : i < ω〉 such that each Ai ∈ µi there is a sequence z ∈ κω such that each
z¹i ∈ Ai. See [6, 14] for more detail.

5.7 Definition. Suppose that κ is a nonzero ordinal and that T is a tree on
ω×κ. Then T is δ-homogeneous if there is a partial function π : ω<ω → m(κ<ω)
such that

1. if s ∈ dom(π) then π(s) is a δ-complete measure on κ|s| and π(s)(Ts) = 1,
where Ts = {t ∈ κ|s| : (s, t) ∈ T},

2. for all x ∈ ωω, x ∈ p[T ] if and only if

(a) {x¹k : k ∈ ω} ⊂ dom(π),

(b) 〈π(x¹k) : k ∈ ω〉 is a countably complete tower.

A set A ⊂ R is δ-homogeneously Suslin if A = p[T ] for some δ-homogeneous
tree T . A is ∞-homogeneously Suslin if it is δ-homogeneously Suslin for arbi-
trarily large δ.

Theorem 5.8. ([4]) Suppose that there is a proper class of Woodin cardinals
and that A ⊂ R. Then the following are equivalent.

1. A is universally Baire.

2. A is ∞-homogeneously Suslin.

We use the following fact to ensure that our forcing iteration considers all
universally Baire sets.

Lemma 5.9. Let P be an (ω,∞)-distributive partial order, and let G ⊂ P be V -
generic. Then in V [G], for all A ⊂ R and all γ > (2|P |)+, A is γ-homogeneously
Suslin if and only if A ∈ V and A is γ-homogeneously Suslin in V .

Proof. This follows from the following standard facts about measures, where
V [G] is an extension by a forcing P such that (2|P |)+ < γ ≤ κ.

1. For every γ-complete measure U on κ<ω in V [G], U ∩V ∈ V . (Otherwise,
densely often in P there is a set in V whose membership in the measure
is undecided; by genericity then there will be a subset of the measure of
size ≤ |P | with empty intersection.)

2. For every γ-complete measure on κ<ω in V [G], every positive set contains
a positive set in V . (For each P -name for a positive set and each condition
in P , consider the set of sequences p forces into the positive set.)

3. Every γ-complete measure on κ<ω in V extends to one in V [G]. (All sets
containing positive sets from the ground model.)
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For the forward direction, let T be a γ-homogeneous tree on ω × κ in V [G]
such that p[T ] = A, for some γ > (2|P |)+. Let π : ω<ω → m(κ<ω) witness that
T is γ-homogeneous. Each π(σ) extends a measure in V on κ<ω, and since
P is (ω,∞)-distributive, the corresponding function π′ taking each σ to the
restriction of π(σ) to V exists in V . For each x ∈ R \ p[T ], let 〈Ax

k : k < ω〉 be
a witness to the fact that 〈π(x¹k) : k < ω〉 is not countably complete. For each
s ∈ ω<ω, let

Bs =
⋂
{Ax

|s| | x ∈ R \ p[T ] ∧ s ⊂ x}.
Since every positive set for each π(x¹k) contains one from V , and since P is
(ω,∞)-distributive, we can assume by shrinking if necessary that 〈Bs | s ∈ ω<ω〉
is in V . Now let T ′ ∈ V be the set of pairs s, t such that t ∈ Bs. Since
the measures are all γ-complete, each Bs is positive for π(s). Then T ′ is γ-
homogeneous (with π′ as a witness) with the same projection as T .

For the other direction, assume that T (on ω × κ) and π in V witness that
A is γ-homogeneously Suslin. Extend the π(σ)’s to V [G]-measures, inducing a
function π′ : ω<ω → m(κ<ω). Since each positive set in V [G] contains one in V ,
and since no ω-sequences of ordinals have been added by P , for each x ∈ ωω the
countable completeness of the corresponding tower is not changed by P . Since
no countable sets of ordinals have been added the projection of T is the same,
so T (along with π′) witnesses in V [G] that A is γ-homogeneously Suslin.

Let T be a tree on ω × κ and let f : ω1 → p[T ]. Our one-step forcing Rf,T

is the set of continuous increasing sequences 〈xα ∈ [κ]<ω1 : α ≤ β〉 of countable
length such that for all α ≤ β, xα ∩ ω1 ∈ ω1 and f(xα ∩ ω1) ∈ p[T ¹(ω × xα)],
ordered by extension.

Given a δ+-homogeneous set of reals, we use the measures witnessing homo-
geneity to suitably expand countable elementary substructures of H(χ).

Lemma 5.10. Fix δ ≥ ω1, and let T be a δ+-homogeneous tree on ω × κ,
witnessed by π : ω<ω → m(κ<ω). Let χ > 2κ be a regular cardinal with <χ

a wellordering of H(χ), and let X ≺ (H(χ),∈, <χ) with T, π ∈ X. Then for
any countable a ⊂ p[T ] there exists a countable z ⊂ κ such that letting Y =
Sk(H(χ),∈,<χ)(X ∪ z) we have that

1. X ∩ δ = Y ∩ δ,

2. a ⊂ p[T ¹(ω × (Y ∩ κ))].

3. [z]<ω ⊂ ⋂{DZ
κ : Z ≺ (H(χ),∈, <χ) ∧ {T, π} ∈ Z ∈ X}.

Proof. Fix T, π, X and a = {ai : i < ω}. By Lemma 2.1, it suffices to show
that we can deal with a0, as we can just repeat the process ω times. For each
k < ω, let Ak =

⋂
(X ∩ π(a0¹k)). Then by the definition of δ+-homogeneity

(i.e., countable completeness) there exists z ∈ (κ \ δ)ω such that for all k < ω,
(a0¹k, z¹k) ∈ T and z¹k ∈ Ak. Now z is as desired, since by the δ+-completeness
of each π(a0¹k), if k ∈ ω and h : κk → δ then h is constant on a set Ch ∈ π(a0¹k),
and so this constant value must be an element of any elementary submodel of
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(H(χ),∈, <χ) with h and π as members. Further, if h is in X, then z¹k ∈ Ch,
so h(z¹k) is the corresponding constant value.

Given Y as in Lemma 5.10 where f(Y ∩ω1) ∈ a, the union of any Y -generic
for Rf,T , adjoined by its union, is a condition.

To get the consistency of Suslin Bounding from Theorem 3.2, we start from
a proper class of Woodin cardinals, and let κ be a strongly inaccessible cardinal
such that every ∞-homogeneously Suslin set of reals is ∞-homogeneously Suslin
in Vκ. The assumption of the Woodin cardinals is just to make ∞-homogeneous
Suslinity equal to universal Baireness. Let F : ω1 → R be a wellordering of the
reals. Let our bookkeeping for P be such that each pair (A, f), where A is
a universally Baire set (from the ground model) and f : ω1 → A is added by
some initial segment of the iteration, is associated to some ρ greater than the
stage at which f was added, such that A is the projection of a |P(P(λρ))|+-
homogeneously Suslin tree T ∈ Vκ on ω×κ for some κ ≤ λρ+1. For this ρ, we let
each Aρ

β be the set of countable x ⊂ λρ+1 such that F (β) ∈ p[T ¹(ω × (x ∩ κ))],
so that Qρ,(F−1◦f) = Rf,T . By Lemma 5.10, these sets also satisfy Conditions
1-3 of Theorem 3.2. This scheme then gives the following corollary.

Corollary 5.11. Say that there is a proper class of Woodin cardinals and
let κ strongly inaccessible be such that every ∞-homogeneously Suslin set of
reals is ∞-homogeneously Suslin in Vκ. Then there is a semi-proper (ω,∞)-
distributive forcing of size κ in whose extension the Continuum Hypothesis and
Suslin Bounding hold.
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