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PAUL LARSON AND PAUL MCKENNEY

Abstract. We study conditions on automorphisms of Boolean al-
gebras of the form P(λ)/Iκ (where λ is an uncountable cardinal
and Iκ is the ideal of sets of cardinality less than κ) which allow
one to conclude that a given automorphism is trivial. We show
(among other things) that every automorphism of P(2κ)/Iκ+

which is trivial on all sets of cardinality κ+ is trivial, and that
MAℵ1 implies both that every automorphism of P(R)/ Fin is triv-
ial on a cocountable set and that every automorphism of P(R)/ Ctble
is trivial.

1. Introduction

Given a set X and an ideal I on X, an automorphism of P(X)/I
is said to be trivial if it is induced by a bijection between sets in
P(X) \ I .1 In 1956, Walter Rudin [12] showed that if the Con-
tinuum Hypothesis holds, then the set of nontrivial automorphisms
of P(ω)/ Fin has cardinality 2ℵ1 . Around 1980, Saharon Shelah [13]
showed that consistently all automorphisms of P(ω)/ Fin are trivial.
Boban Veličković [16] later proved from OCA+MAℵ1 , a weak fragment
of the Proper Forcing Axiom, that all automorphisms of P(λ)/ Fin are
trivial, for all infinite cardinals λ. In the same paper, Veličković showed
that the existence of nontrivial automorphisms of P(ω)/ Fin is consis-
tent with MAℵ1 .

The possibilities for automorphisms of structures of the form P(λ)/I ,
for λ an uncountable cardinal and I an ideal containing Fin, seem to
be much less understood than the case λ = ω. For instance, it ap-
pears to be unknown whether ZFC proves that every automorphism of
P(λ)/ Fin is trivial off of a countable subset of λ, or that every au-
tomorphism of P(λ)/ Ctble is trivial. Shelah and Steprāns [14] have
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recently shown, however, that for every λ below the least strongly in-
accessible cardinal, every automorphism of P(λ)/ Fin is trivial off of
a subset of λ of cardinality 2ℵ0 .

Many questions about automorphisms of P(ω1)/ Fin are closely re-
lated to the question (due to Marian Turzanski, and often called the
Katowice Problem) of whether the Boolean algebras P(ω)/ Fin and
P(ω1)/ Fin can be isomorphic. There exists such an isomorphism if
and only if there is an automorphism of P(ω1)/ Fin which maps the
equivalence class of some infinite set to the equivalence class of an
infinite set of a different cardinality (analogous possibilities exist at
higher cardinals). We call automorphisms where this does not happen
cardinality-preserving.2

In this paper we consider the ideals Iκ = {X | |X| < κ}, for infi-
nite cardinals κ. We prove (Theorem 3.4) than a cardinality-preserving
automorphism of P(2κ)/Iκ+ (for any infinite cardinal κ) which is triv-
ial on all sets of cardinality κ+ is trivial. Assuming a weak fragment
of Martin’s Axiom, we prove (Theorem 4.4) the analogous result for
automorphisms of P(R)/ Fin which are trivial on all countable sets.
Assuming another fragment of Martin’s Axiom, we show (see Corol-
lary 5.9) that every automorphism of P(R)/ Ctble is trivial, and also
that every automorphism of P(R)/ Fin is trivial off of a countable set.

In Section 2 we prove several lemmas in a general setting that will
be useful for work in later sections. In Section 3 we discuss almost-
trivial automorphisms, and prove Theorem 3.4 (mentioned above). In
Section 4 we introduce a weak fragment of Martin’s Axiom, and use
it to prove Theorem 4.4. Section 5 develops a necessary and sufficient
condition for when an isomorphism between two countable, atomless
subalgebras of P(λ)/Iκ can extend to a trivial automorphism, when
κ has uncountable cofinality. We use this to study automorphisms of
P(ω1)/ Ctble when an uncountable Q-set exists. In Section 6, we
give some conditions on automorphisms which imply the existence of
fixed points. In Section 7 we develop a connection between ladder
systems and non-fixed points of automorphisms of P(λ)/Iκ, showing
in particular that if there is a cardinality-preserving (see Definition
2.7) automorphism of P(ω1)/ Fin whose set of ordinal fixed points is
nonstationary, then 2ℵ0 = 2ℵ1 . Finally, Section 8 contains a list of open
questions.

1.1. Notation. We write A ∼κ B to indicate |A4B| < κ. Given
σ ∈ 2<ω, we write Nσ for the set {x ∈ 2ω | σ ⊂ x}. Given a set X and
a cardinal κ, we write I X

κ for the ideal of subsets of X of cardinality

2See Definition 2.7 for a more precise formulation.
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less than κ. When there is no chance of confusion, we will drop the X
and just write Iκ. We write Fin for Iℵ0 and Ctble for Iℵ1 . If I is an
ideal on a set X and A ⊆ X, we write [A]I for the equivalence class of
A in P(X)/I . When there is no chance of confusion, we will simply
write [X] instead. We write [X]I ≤ [Y ]I to mean that X \ Y ∈ I
and [X]I < [Y ]I to mean that [X]I ≤ [Y ]I and [X]I 6= [Y ]I .

2. Preliminaries

Definition 2.1. Suppose that I and J are ideals on sets X and Y
respectively. A homomorphism π : P(X)/I →P(Y )/J is trivial if
there is a function f : Y → X such that π([A]I ) = [f−1(A)]J for all
A ⊆ X. Similarly, if Z ⊆ X then we say that π is trivial on Z if there
is a function f : Y → Z such that π([A]I ) = [f−1(A)]J for all A ⊆ Z.

One gets equivalent definitions by allowing the domain of f to be
a subset of Y with complement in J . We say that such a function
witnesses the triviality of π. We use inverse images to describe trivial
homomorphisms since these are guaranteed to preserve the Boolean
operations. The following lemma shows that we can often work with
forward images instead.

Lemma 2.2. Let X and Y be sets, let κ be an infinite cardinal, and
suppose that f : Y → X witnesses that π : P(X)/Iκ → P(Y )/Iκ is
a trivial isomorphism. Then there are sets E ⊆ X and F ⊆ Y with
X \E ∈ I X

κ and Y \F ∈ I Y
κ , such that f restricts to a bijection from

F to E. Moreover, f−1 : E → F witnesses that π−1 is trivial.

Proof. Suppose that A = X \ ran f has cardinality ≥ κ. Then [A] is
nonzero, but π([A]) = [f−1(A)] is zero, contradiction. Now suppose
that there is a set A ⊆ X such that |f−1(a)| ≥ 2 for all a ∈ A, and
|A| ≥ κ. Then f−1(A) has cardinality ≥ κ. Let f−1(A) = B ∪ C be
a partition such that f ′′(B) = f ′′(C) = A and |B| , |C| ≥ κ. Then
there is no D such that f−1(D) ∼κ B, a contradiction of the fact
that [B] is in the range of π. Let E = {x ∈ X | |f−1(x)| = 1} and
F = f−1(E). It follows that f restricts to a bijection from F to E, and
|X \ E| , |Y \ F | < κ.

For the last part of the lemma, we want to see that for each A ⊆
Y , π−1([A]) = [(f−1)−1(A)], i.e., that π([(f−1)−1(A)]) = [A]. Now,
(f−1)−1(A) = f ′′(A∩F ), so we want π([f ′′(A∩F )]) = [A]. We have that
π([f ′′(A∩F )]) = [f−1(f ′′(A∩F ))]. Since f−1(f ′′(A∩F ))∩F = A∩F ,
[f−1(f ′′(A ∩ F ))] = [A ∩ F ], which is the same as [A].

�
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Definition 2.3. A Boolean algebra B is < κ-complete if every subset
A of B with cardinality < κ has a least upper bound.

Remark 2.4. The Boolean algebra P(X)/Iκ is < cf κ-complete. In
particular, if A is a family of subsets of X, and |A | < cf κ, then
[
⋃

A ] is a least upper bound for the set {[A] | A ∈ A }.
It is a well-known open question (asked by Marian Turzanski) whether

the Boolean algebras P(ω1)/ Fin and P(ω)/ Fin can consistently be
isomorphic. In many of the arguments in this paper, we must allow for
the possibility that such an isomorphism exists (as well as analogous
isomorphisms at other cardinals). We record here some facts that we
use to deal with this possibility. The following theorem was proved by
Balcar and Frankiewicz [1] in the case λ = ω and µ = ω1; their proof
gives the general version below.

Theorem 2.5. (Balcar, Frankiewicz) Suppose κ ≤ λ < µ, and κ is
regular. If P(λ)/Iκ and P(µ)/Iκ are isomorphic, then λ = κ and
µ = κ+.

We will also make use of the following fact, where d is the minimal
cardinality of a set X, consisting of functions from ω to ω, such that
every such function is dominated everywhere by a member of X.

Theorem 2.6. (Balcar, Frankiewicz) If P(ω)/ Fin and P(ω1)/ Fin
are isomorphic, then d = ω1.

Finally, we make the following definition.

Definition 2.7. A homomorphism π : P(X)/I → P(Y )/J is
cardinality-preserving if for every A ⊆ X, there is some B ⊆ Y such
that |A| = |B| and π([A]) = [B].

Remark 2.8. An isomorphism π : P(X)/Iκ →P(Y )/Iκ is cardinality-
preserving if and only if for all A ⊆ X, and B ⊆ Y , if |A| , |B| ≥ κ and
π([A]) = [B] then |A| = |B|. By Theorem 2.5, for any pair of infinite
cardinals κ < λ, there exists an automorphism of P(λ)/Iκ which is
not cardinality-preserving if and only if there is an isomorphism be-
tween P(κ)/Iκ and P(κ+)/Iκ.

In our first application of the notion of cardinality-preservation, we
show that it allows one to lift automorphisms on Boolean algebras of
the form P(λ)/Iκ to ones of the form P(λ)/Iµ, when κ ≤ µ ≤ λ.

Definition 2.9. Suppose that I and J are ideals on sets X and Y
respectively, and that π : P(X)/I → P(Y )/J is a function. A
selector for π is a map π∗ : P(X)→P(Y ) such that π([A]) = [π∗(A)]
for all A ⊆ X.
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Remark 2.10. A selector, in the literature, often denotes a function
which is constant on equivalence classes. Our definition does not make
this requirement, and in fact we will often instead take selectors which
form bijections between equivalence classes.

Lemma 2.11. Let κ ≤ µ ≤ λ be infinite cardinals, and let π be an
automorphism of P(λ)/Iκ. Suppose that at least one of the following
holds:

• π is cardinality-preserving;
• µ > κ+ and κ is regular.

Then π induces an automorphism πµ of P(λ)/Iµ. In particular, if A
is a family of subsets of λ, |A | < cf µ, and π∗ is a selector for π, then

π∗
(⋃

A
)
∼µ
⋃
{π∗(A) | A ∈ A }

Proof. Our assumptions on π (using Theorem 2.5 in the case where
µ > κ+ and κ is regular) imply that π takes the subalgebra Iµ/Iκ

into itself. It follows that if π∗ is a selector for π, then the map

πµ([A]µ) = [π∗(A)]µ

is well-defined and an automorphism of P(λ)/Iµ. The rest follows
from the < cf µ-completeness of the Boolean algebra P(λ)/Iµ. �

The function πµ from the proof of Lemma 2.11 clearly does not de-
pend on the choice of π∗. We make the following definition, which will
be used in Section 3.

Definition 2.12. Let κ ≤ µ ≤ λ be infinite cardinals, and let π be an
automorphism of P(λ)/Iκ. We let πµ be the function on P(λ)/Iµ

defined by setting πµ([A]µ) = [π∗(A)]µ, for each A ⊆ λ and any selector
π∗ for π.

Lemma 2.13 shows that every automorphism of a Boolean algebra of
the form P(λ)/Iκ is determined by how it acts on sets of cardinality
κ.

Lemma 2.13. Let κ ≤ λ and let π and ρ be automorphisms of P(λ)/Iκ.
Then if π 6= ρ, there is some X ⊆ λ of cardinality κ such that π([X]) 6=
ρ([X]). Moreover, for each X ⊆ λ such that π([X]) 6≤ ρ([X]), there
exists Y ∈ [X]κ such that π([Y ]) 6≤ ρ([Y ]).

Proof. By composing with ρ−1, we may assume that ρ = id. Fix a
bijective selector π∗ for π, and choose X ⊆ λ such that π([X]) 6= [X].
Without loss of generality, by choosing between X and its complement
we may assume π∗(X) \X has cardinality ≥ κ. Let

W = (π∗)−1(π∗(X) \X).
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Then |W | ≥ κ and |W \ X| < κ. Let Y be a subset of W ∩ X of
cardinality κ. Then π∗(Y ) has cardinality at least κ, and

|π∗(Y ) \ (π∗(X) \X)| < κ.

It follows that |π∗(Y ) \ Y | ≥ κ, so π([Y ]) 6≤ [Y ]. �

3. Almost-trivial automorphisms of P(λ)/Iκ

Definition 3.1. Given an automorphism π of P(λ)/Iκ, we define
T (π) to be the ideal of subsets A of λ such that π is trivial on A. We
let Aµ(π) be the ideal generated by T (π) and Iµ.

If A ∈ Aµ(π), then we say π is µ-almost trivial on A. If π is µ-almost
trivial on λ, we just say that π is µ-almost trivial. If π is κ+-almost
trivial on a set A, then we just say that π is almost trivial on A.

In Lemma 3.2 we show that if two automorphisms lift to the same
automorphism, then they are the same off of a small set.

Lemma 3.2. Suppose that κ < µ ≤ λ are infinite cardinals, with κ and
µ regular, and let π and ρ be automorphisms of P(λ)/Iκ. Suppose
that either µ > κ+ or that both π and ρ are cardinality-preserving. If
πµ = ρµ then there is some A ∈ Iµ such that for all X ⊆ λ \ A,
π([X]) = ρ([X]).

Proof. By composing with ρ−1, we may assume that ρ = id. Let π∗

be a bijective selector for π. Our assumptions on π imply that π is a
permutation of Iµ. Suppose that the conclusion of the lemma fails,
so that for every A ∈ Iµ there is some X ⊆ λ disjoint from A with
π([X]) 6= [X]. We will show that πµ is not the identity.

Fix some A ∈ Iµ. By our assumption, there is some X disjoint from
A∪ π∗(A)∪ (π∗)−1(A) with π∗(X) 6∼κ X. By choosing between X and
λ\ (A∪X), we may assume that |π∗(X) \X| ≥ κ. By Lemma 2.13, we
may also assume that X has cardinality κ. Applying this observation
repeatedly, we may construct sets Aα (α < µ) in Iµ, and sets Xα

(α < µ) of cardinality κ, such that

• for all α < µ,
– Xα ∩ (Aα ∪ π∗(A) ∪ (π∗)−1(A)) = ∅,
– |π∗(Xα) \Xα| ≥ κ,
– Aα ∪Xα ∪ π∗(Aα) ∪ (π∗)−1(Aα) ∪ π∗(Xα) ⊆ Aα+1,

• for all limit α < µ, Aα =
⋃
{Aβ | β < α}.
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For each α < µ, |π∗(Xα) ∩ Aα| < κ, so |π∗(Xα) \ (Aα+1 \ Aα)| < κ.
Let X =

⋃
{Xα | α < µ}. Since, for all α < µ, we have

|(π∗(Xα) \Xα) ∩ (Aα+1 \ Aα)| ≥ κ

|π∗(Xα) \ π∗(X)| < κ

X ∩ (Aα+1 \ Aα) = Xα

it follows that |(π∗(X) \X) ∩ (Aα+1 \ Aα)| ≥ κ for every α < µ. Then
|π∗(X) \X| ≥ µ. This completes the proof. �

By applying Lemma 3.2 in the case where πµ (recall Definition 2.12)
is trivial, we obtain the following

Theorem 3.3. Suppose that κ < µ ≤ λ are infinite cardinals, with κ
and µ regular, and let π be an automorphism of P(λ)/Iκ. Suppose
that either π is cardinality-preserving or µ > κ+. If πµ is trivial, then
π is µ-almost trivial.

Theorem 3.4 is one of the main results of the paper. The strategy
used in its proof is reused in Section 4.

Theorem 3.4. Suppose that π is an automorphism of P(2κ)/Iκ+,
and that π is trivial on every set of cardinality κ+. Then π is trivial.

Proof. Let π∗ be a bijective selector for π, and for each A ⊆ 2κ of
cardinality κ+, choose a function fA : A → π∗(A) such that for all
B ⊆ A, π∗(B) ∼κ+ f ′′A(B). By Lemma 2.2, each fA restricts to a
bijection between subsets of A and π∗(A) whose complements (in A
and π∗(A) respectively) have cardinality at most κ, and moreover, for
every B ⊆ π∗(A), π−1([B]) = [f−1

A (B)].
Let 〈xα | α < 2κ〉 be an enumeration of P(κ). For each β < κ, let

Rβ = {α < 2κ | β ∈ xα} and let Tβ = (π∗)−1(Rβ). For each γ < 2κ, let
yγ = {β < κ | γ ∈ Tβ}. Let h : 2κ → 2κ be such that for all γ, α < 2κ,
if yγ = xα, then h(γ) = α.3

For each β < κ, and A ∈ [2κ]κ
+

, let GA,β be the set of γ ∈ A for
which γ ∈ Tβ if and only if fA(γ) ∈ Rβ. Since for each such β and A,
we have

f−1
A [Rβ] ∼κ+ (π∗)−1(Rβ ∩ π∗(A)) ∼κ+ (Tβ ∩ A),

it follows that GA,β ∼κ+ A. Then, for each A ∈ [2κ]κ
+

,

HA =
⋂
{GA,β | β < κ} ∼κ+ A.

3While it is not important for the current proof, we note (without any triviality
condition on π) that h′′(A) ∼κ+ π∗(A) for every A in the smallest κ-complete
subalgebra of P(2κ) containing Iκ+ and the sets Tβ (β < κ).
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For each γ ∈ HA and β < κ, we have

β ∈ yγ ⇐⇒ γ ∈ Tβ ⇐⇒ fA(γ) ∈ Rβ ⇐⇒ β ∈ xfA(γ).

Then, for each γ ∈ HA, yγ = xfA(γ), so h(γ) = fA(γ). Since HA ∼κ+ A,
we then have h�A ∼κ+ fA.

It follows from this that∣∣{α < 2κ
∣∣ ∣∣h−1[{α}]

∣∣ 6= 1
}∣∣ ≤ κ,

so for some B,C ∈ [2κ]≤κ, h � (2κ\B) is a bijection between (2κ\B) and
(2κ\C). Thus, the map ρ([A]) = [h′′(A)] defines a trivial automorphism
of P(2κ)/Iκ+ . By the above, we have π([A]) = ρ([A]) for all A ⊆ 2κ

with cardinality ≤ κ+; hence, by Lemma 2.13, π = ρ.
�

Remark 3.5. Theorem 3.4 contradicts the remark at the end of [16]
which claims that MAℵ1 + OCA (which implies that 2ℵ0 ≥ ℵ2, and
that all automorphisms of P(ω1)/ Fin are trivial) does not imply that
all automorphisms of P(ω2)/ Fin are trivial. Combining Theorem 3.4
with the main result of [14], one gets that if all automorphisms of
P(ω1)/ Fin are trivial, then all automorphisms of P(λ)/ Fin are triv-
ial, for all λ below the least strongly inaccessible cardinal.

Remark 3.6. Theorems 3.3 and 3.4 show that if µ < κ are infinite
cardinals and π is an automorphism of P(2κ)/Iµ which is trivial on
all sets of cardinality κ+, then π is trivial.

We finish this section with facts about T (π) which will be used in
Section 4.

Lemma 3.7. Suppose that κ ≤ λ are infinite cardinals, and that π is
an automorphism of P(λ)/Iκ. Then T (π) is closed under unions of
cardinality less than cf κ.

Proof. Fix a cardinal γ < cf κ, and let Aδ (δ < γ) be sets in T (π).
We may assume that each Aδ has cardinality ≥ κ, and that the Aδ’s
are pairwise disjoint. Applying Lemma 2.2 (and possibly removing a
set of cardinality less than κ from each Aδ) let fδ : Aδ → λ (δ < γ)
be injections such that for all δ < γ and X ⊆ Aδ, π([X]) = [f ′′δ (X)].
Put f =

⋃
{fδ | δ < γ} and A =

⋃
{Aδ | δ < γ}. Fix a selector π∗ of

π, and let X ⊆ A. Since P(λ)/Iκ is < cf κ-complete and π is an
automorphism, it follows that

π∗(X) ∼κ
⋃
{π∗(X ∩ Aδ) | δ < γ} .

Note also that

f ′′(X) =
⋃
{f ′′(X ∩ Aδ) | δ < γ} .
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Since π∗(X ∩ Aδ) ∼κ f ′′δ (X ∩ Aδ) for every δ < γ, π∗(X) ∼κ f ′′(X).
This shows that A ∈ T (π), as required. �

Theorem 3.3 and Lemma 3.7 give the following.

Lemma 3.8. Suppose that κ < λ are infinite cardinals, and that π is
a cardinality-preserving automorphism of P(λ)/Iκ. Then Aκ+(π) is
closed under unions of cardinality κ.

4. Automorphisms of P(R)/ Fin

In this section we define a cardinal characteristic of the continuum
- the Cofinal Selection Number - and use it to show that a certain
fragment of MAℵ1 (a consequence of cov(M ) > ℵ1, where cov(M )
denotes the covering number for the ideal of meager sets) implies that
any automorphism of P(R)/ Fin which is trivial on all countable sets is
trivial. By Theorem 3.4, it suffices to prove this result with ω1 in place
of R; as this makes no essential difference in the proof, we work with R.
Veličković has shown [16] that MAℵ1 implies that any automorphism of
P(ω1)/ Fin which is trivial on all countable sets is trivial. His fragment
of MAℵ1 is different, corresponding roughly to adding ℵ1 many Cohen
reals and then specializing an Aronszajn tree.

Definition 4.1. Given Γ ⊆ P(2ω), we let CSN(Γ) be the smallest
cardinality of a family F ⊆ (2ω)ω × (2ω)ω such that

(1) for every (f, g) ∈ F , {f(n) | n < ω} ∪ {g(n) | n < ω} is dense
in 2ω,

(2) for all pairs (f, g), (f ′, g′) from F , if g 6= g′, then

{g(n) | n < ω} ∩ {g′(n) | n < ω} = ∅,

(3) for every (f, g) ∈ F and n < ω, f(n) 6= g(n), and
(4) for every set A ∈ Γ, the set

{(f, g) ∈ F | ∃∞n < ω |A ∩ {f(n), g(n)}| = 1}

has cardinality smaller than that of F ,

if such a family F exists. If no such family exists, we set CSN(Γ) =
(2ℵ0)+.

It is not hard to see that CSN(P(2ω)) = (2ℵ0)+ (condition (2) was
included to make this the case).

Consider the poset Q with conditions (σ, s), where σ ∈ 2<ω and s is a
function mapping into 2, with domain {(σ�n)_〈1− σ(n)〉 | n < domσ}.
We define (σ, s) ≤ (τ, t) ⇐⇒ σ ⊇ τ ∧ s ⊇ t. It is easy to see that
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Q is isomorphic to a dense subset of C×C, where C is Cohen forcing.
Given p = (σ, s) ∈ Q we define

Up =
⋃
{Nτ | τ ∈ dom s ∧ s(τ) = 1}

and

Vp =
⋃
{Nτ | τ ∈ dom s ∧ s(τ) = 0}

and, given G ⊆ Q, we set

UG =
⋃
{Up | p ∈ G}

and

VG =
⋃
{Vp | p ∈ G} .

Lemma 4.2. Let X = {xn | n < ω} and Y = {yn | n < ω} be subsets
of 2ω such that X ∪ Y is dense and xn 6= yn for all n < ω. Then if
G is Q-generic, there are infinitely many n < ω such that UG contains
exactly one of xn, yn.

Proof. Given p ∈ Q we let Ep be the set of n ∈ ω for which Up and Vp
each contain a member of {xn, yn}. We will show that for each p ∈ Q,
there exist q ≤ p and n 6∈ Ep with n ∈ Er. Let p ∈ Q be given. Since
X ∪ Y is dense, there must be some n such that at least one of xn or
yn is in [σp]. We consider the case xn ∈ [σp]; the case yn ∈ [σp] can be
handled similarly.

Suppose first that yn 6∈ [σp]; then yn ⊇ τ for some τ ∈ dom sp.
Let σq be some extension of σp such that xn 6⊇ σq; say k is minimal
such that xn(k) 6= σq(k). Let ν = (σq�k)axn(k). Define sq so that
sq(ν) = 1− sp(τ).

Now suppose yn ∈ [σp]. Then we may find σq extending σp such
that neither of xn, yn are in [σq]. Let k and ` be minimal such that
xn(k) 6= σq(k) and yn(`) 6= σq(`); let

τ = (σq�k)axn(k)

and

ν = (σq�`)
ayn(`).

Define sq so that sq(τ) = 0 and sq(ν) = 1. �

Lemma 4.2, and the fact that Q is isomorphic to a dense subset of
C× C, give the following.

Corollary 4.3. CSN(Σ0
1) ≥ cov(M ).
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Theorem 4.4 is a variant of Theorem 3.4, restricted to the case κ = ω.
Theorem 4.4 assumes triviality on countable sets, instead of sets of
cardinality ℵ1, as in Theorem 3.4, at the cost of assuming a weak
fragment of Martin’s Axiom.

Theorem 4.4. Assume CSN(∆1
1) > ω1, and let π be a cardinality-

preserving automorphism of P(2ω)/ Fin which is trivial on every count-
able subset of 2ω. Then π is trivial.

Proof. Suppose that π is nontrivial and let π∗ be a bijective selector
for π. We may choose π so that for all σ, τ ∈ 2<ω, if σ ⊆ τ then
π∗(Nσ) ⊇ π∗(Nτ ), and if σ ⊥ τ then π∗(Nσ) ∩ π∗(Nτ ) = ∅.

For each x ∈ 2ω and n < ω, there is a unique σ ∈ 2n such that x ∈
π∗(Nσ). Moreover, these σ’s form a branch through 2ω, which we will
call h(x). Thus h : 2ω → 2ω is a function satisfying h−1(Nσ) = π∗(Nσ)
for each σ ∈ 2<ω. By Lemma 2.11, it follows that h−1(B)4 π∗(B) is
countable, for every Borel set B ⊆ 2ω. In particular, h is countable-to-
one.

Let Q be the set of σ ∈ 2<ω such that π is nontrivial on Nσ.

Claim 4.5. Q is a perfect tree.

Proof. Clearly, every σ ∈ Q has at least one extension in Q. Suppose
that for some σ ∈ Q, there is exactly one x ∈ [Q] which extends σ.
Then π is trivial on Nτ for every τ ⊇ σ with τ 6⊆ x; hence by Lemma 3.8
(and our assumption that π is trivial on countable sets), π is trivial on
their union, i.e. Nσ \ {x}. But then clearly π is trivial on Nσ. �

For each countable A ⊆ 2ω we may fix a function fA : π∗(A) → A
such that for all X ⊆ A, π([X]) = [f−1

A (X)].

Claim 4.6. Let A ⊆ 2ω be countable. Then there is a countable
set B ⊆ 2ω with B ⊇ A, and an infinite set X ⊆ B \ A, such that
h′′X ∪ f ′′BX is dense in [Q], and for every x ∈ X, h(x) 6= fB(x).

Proof. Suppose otherwise. Then there is a countable A∗ ⊆ 2ω such
that for every countable B ⊇ A∗, there is some σ ∈ Q such that the
set of x ∈ B \ A∗ with h(x) 6= fB(x) and Nσ ∩ {h(x), fB(x)} 6= ∅ is
finite. Pressing down, we may fix a σ∗ ∈ Q and a finite F ∗ ⊆ 2ω such
that for all B in some stationary subset of [2ω]ω, if x ∈ B \ A∗ ∪ F ∗,
then whenever one of h(x), fB(x) is in Nσ∗ , we have h(x) = fB(x).
In particular, if x ∈ π∗(Nσ∗) = h−1(Nσ∗), then h(x) ∈ Nσ∗ and so
h(x) = fB(x) as long as x ∈ B \ (A∗ ∪ F ∗). It follows that π is trivial
on π∗(Nσ∗), a contradiction. �
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By applying Claim 4.6 repeatedly, we may find a ⊆-increasing se-
quence 〈Aα : α < ω1〉 consisting of countable subsets of 2ω, and infinite
sets Xα ⊆ Aα+1 \ Aα, such that for every α < ω1, h′′Xα ∪ f ′′Aα+1

Xα

is dense in [Q], and h(x) 6= fAα+1(x) for every x ∈ Xα. Since h is
countable-to-one, we may thin the sequence if necessary so that the
sets h[Xα] are disjoint for distinct α. Applying the assumption that
CSN(∆1

1) > ω1 (and possibly thinning our sequence again), we may
find a Borel set B ⊆ [Q] such that for every α < ω1, there are infin-
itely many x ∈ Xα such that B contains exactly one of h(x), fAα+1(x).
Hence,

(h−1(B)4 f−1
Aα+1

(B)) ∩ (Aα+1 \ Aα)

is infinite for every α < ω1. Since f−1
Aα+1

(B)4 (π∗(B) ∩ Aα+1) is finite

for each α, it follows that π∗(B)4 h−1(B) is uncountable. This is a
contradiction. �

Remark 4.7. Since d ≥ cov(M ), if we replace “CSN(∆1
1) > ω1” with

“cov(M ) > ω1” in Theorem 4.4, by Theorem 2.6 we can then remove
the assumption that π is cardinality-preserving. On the other hand, it
follows from Theorem 2.5 that if π and π−1 are both trivial on every
countable subset of 2ω, then π must be cardinality-preserving.

5. Isomorphisms between countable subalgebras

In [6, Theorem 3.1], Geschke showed that any isomorphism between
countable subalgebras of P(ω)/ Fin extends to a trivial automorphism,
and in fact a trivial automorphism witnessed by a permutation of ω.
In this section we find a necessary and sufficient condition for an iso-
morphism between two countable, atomless subalgebras of P(λ)/Iκ

to extend to a trivial automorphism, in the case where κ has uncount-
able cofinality. We then use our result to examine automorphisms of
P(ω1)/ Ctble when a Q-set exists.

Recall that any two countable, atomless Boolean algebras are iso-
morphic. In particular, if A is a countable, atomless Boolean algebra,
then A is isomorphic to the Boolean algebra of clopen subsets of 2ω,
hence A is generated by elements aσ (σ ∈ 2<ω) such that aσ ∧ aτ = 0
for σ ⊥ τ , and aσa0 ∨ aσa1 = aσ. Note that in this case, if π : A → B
is an isomorphism, then the elements bσ = π(aσ) (σ ∈ 2<ω) generate
B, and satisfy the same relations.

Definition 5.1. If A is a countable, atomless Boolean subalgebra of
P(λ)/Iκ, then we say that a sequence Ā = 〈Aσ | σ ∈ 2<ω〉 of subsets
of λ is a nice sequence of representatives for A if

• for every σ ∈ 2<ω, the sets Aσa0 and Aσa1 partition Aσ, and
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• the sequence [Aσ] (σ ∈ 2<ω) generates A .

If Ā is a nice sequence of representatives for A , and x ∈ 2ω, then we
set

Ax =
⋂
{Aσ | σ ⊂ x}

and

X(Ā) = {x ∈ 2ω | Ax 6= ∅}

Note that if Ā is a nice sequence of representatives for A , then [A∅]
is the top element of A , and

A∅ =
⋃{

Ax
∣∣ x ∈ X(Ā)

}
The following lemma shows that this information serves as a sort of
invariant for A .

Lemma 5.2. Suppose that A is a countable, atomless Boolean subalge-
bra of P(λ)/Iκ, where cf κ > ω, and that Ā and B̄ are nice sequences
of representatives for A with Aσ ∼κ Bσ for each σ ∈ 2<ω. Then there
is an S ∈ Iκ such that for every x ∈ 2ω, Ax \ S = Bx \ S. Moreover,
X(Ā) ∼κ X(B̄).

Proof. Let S =
⋃
{Aσ 4Bσ | σ ∈ 2<ω}; then |S| < κ, and for every

x ∈ 2ω, Ax \ S = Bx \ S. Now, if x ∈ X(Ā)4 X(B̄), then it follows
that Ax ∪Bx ⊆ S, since one of Ax or Bx must be empty. But for each
α ∈ S, there is at most one x ∈ 2ω such that α ∈ Ax, and likewise,
there is at most one y ∈ 2ω such that α ∈ By. �

Theorem 5.3 characterizes when an isomorphism between two count-
able, atomless subalgebras of P(λ)/Iκ can extend to a trivial isomor-
phism.

Theorem 5.3. Let Ā, B̄ be nice sequences of representatives for count-
able, atomless Boolean subalgebras of P(λ)/Iκ, where cf κ > ω. Then
the following are equivalent.

(1) There is a trivial isomorphism from P(A∅)/Iκ to P(B∅)/Iκ

which sends [Aσ] to [Bσ], for every σ ∈ 2<ω.
(2) X(Ā) ∼κ X(B̄), and there is some S ∈ Iκ such that for all

x ∈ 2ω, |Ax \ S| = |Bx \ S|.

Proof. Suppose that f : E → F is a bijection, where

• E ⊆ A∅,
• F ⊆ B∅,
• A∅ \ E and B∅ \ F are both in Iκ,
• f ′′(Aσ ∩ E) ∼κ Bσ for all σ ∈ 2<ω.
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Let C̄ = 〈f ′′(Aσ) | σ ∈ 2<ω〉. Then B̄ and C̄ satisfy the hypotheses of
Lemma 5.2, so X(C̄) ∼κ X(B̄). Since f ′′(Ax ∩ E) = Cx ∩ F for all
x ∈ 2ω, it follows that X(C̄) ∼κ X(Ā) as well, so X(Ā) ∼κ X(B̄).
Now let S be as given in Lemma 5.2, applied to B̄ and C̄, so that
Cx\S = Bx\S for all x ∈ 2ω. Expanding S if necessary (but preserving
its membership in Iκ) we may assume that S contains A∅\E and B∅\F
and is closed under f and f−1. Then, for each x ∈ 2ω, f maps Ax \ S
to Bx \ S. Since f is a bijection it follows that |Ax \ S| = |Bx \ S|.

Suppose now that X(Ā) ∼κ X(B̄), and that there exists an S ∈ Iκ

such that |Ax \ S| = |Bx \ S| for every x ∈ 2ω. For each

x ∈ X(Ā)4X(B̄),

either Ax = ∅ or Bx = ∅, so

Ax \ S = Bx \ S = ∅
and

Ax ∪Bx ⊆ S.

It follows that, if

E =
⋃{

Ax
∣∣ x ∈ X(Ā) ∩X(B̄)

}
and

F =
⋃{

Bx

∣∣ x ∈ X(Ā) ∩X(B̄)
}
,

then A∅ \ S ⊆ E and B∅ \ S ⊆ F . For each x ∈ X(Ā) ∩ X(B̄),
choose a bijection gx : Ax \ S → Bx \ S. Since for x 6= y we have
Ax ∩ Ay = Bx ∩ By = ∅, it follows that g =

⋃
x∈X(Ā)∩X(B̄) gx is a

bijection from E \ S to F \ S, such that g′′(Aσ \ S) = Bσ \ S for every
σ ∈ 2<ω. Then g is as desired. �

Remark 5.4. If X ⊆ R has no isolated points then X ∩ Nσ (σ ∈ 2<ω)
forms a nice sequence of representatives for a countable, atomless subal-
gebra AX of P(R)/ Ctble, and the set X(Ā), where each Aσ is X∩Nσ,
is exactly equal to X. If X and Y are two such sets, then there is an
isomorphism from AX to AY sending [X ∩Nσ] to [Y ∩Nσ] for every σ.
By Theorem 5.3, if X 4 Y is uncountable, then there does not exist a
trivial isomorphism from P(X)/ Ctble to P(Y )/ Ctble sending each
set [X ∩Nσ] to [Y ∩Nσ].

Definition 5.5. A set X ⊆ 2ω is a QB-set if for every Y ⊆ X, there
is a Borel B ⊆ 2ω such that B ∩X = Y .

The above is a weakening of the usual notion of a Q-set, where the
set B above is required to be Gδ and not just Borel. The reader can
consult [11, 10] for properties ofQ-sets. We note in particular that MAκ
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implies all subsets of R of size κ are Q-sets (this is credited to Silver on
page 162 of [8]), and that the Ramsey forcing axiom K4 implies that all
subsets of R of size ω1 are Q-sets ([15]). As for the difference between
Q-sets and QB-sets, Miller ([9]) showed that if X ⊆ R is a QB-set,
then there is some α < ω1 such that every subset of X is relatively
Σ0
α, whereas it is consistent that for every 2 ≤ α < ω1 there is an

uncountable X ⊆ R such that α is the minimal ordinal for which every
subset of X is relatively Σ0

α.

Theorem 5.6. Suppose there exists a QB-set X ⊆ 2ω of cardinality λ,
where cf λ > ω. Then the following are equivalent.

(1) There exists a cardinality-preserving, nontrivial automorphism
of P(λ)/ Ctble.

(2) There exists a QB-set Y ⊆ 2ω such that X 4 Y is uncountable,
and for every Borel B ⊆ 2ω, |B ∩X|+ ℵ0 = |B ∩ Y |+ ℵ0.

Proof. Assuming that (1) holds, we may fix a nontrivial cardinality-
preserving isomorphism π from P(X)/ Ctble to P(λ)/ Ctble. Choose
a sequence of sets Ā = 〈Aσ | σ ∈ 2<ω〉 such that A∅ = λ, and, for all
σ ∈ 2<ω,

• π([Nσ ∩X]) = [Aσ],
• Aσ is the disjoint union of Aσa0 and Aσa1.

Since X is a QB-set, every subset of X is equal to C ∩ X for some
Borel C. Since P(λ)/ Ctble is countably complete, π([C ∩X]) = [D],
where D is the set built from Ā in the same way that C is built from
〈Nσ : σ ∈ 2<ω〉. Since π is an isomorphism, every subset of λ is, up to
a countable set, a member of the σ-algebra generated by the sets Aσ
(σ ∈ 2<ω). It follows that for each y ∈ 2ω, the set

Ay =
⋂
{Ay�n : n ∈ ω}

is countable, and that the set of y ∈ 2ω for which |Ay| ≥ 2 is countable.
Let Y be the set of y ∈ 2ω for which |Ay| = 1, and for each y ∈ Y ,
let h(y) be the unique element of Ay. Then h is injective, h′′(Y ) is a
cocountable subset of λ, and h−1(Aσ) = Nσ ∩ Y for each σ ∈ 2<ω. We
claim that Y is the desired set.

To see that Y is a QB-set, fix Z ⊆ Y . Then there exists a D in
the σ-algebra generated by Ā such that D4 h′′(Z) is countable. Then
h−1(D)4Z is countable, and h−1(D) is equal to B ∩ Y for a Borel set
B ⊆ 2ω which is built from the sets Nσ in the same way that D was
built from the sets Aσ. Similarly, for each Borel set B ⊆ 2ω, letting D
be the set built from the sets Aσ in the way that B was built from the
sets Nσ, π([B ∩ X]) = [D] and h−1(D) = B ∩ Y . Since λ \ h′′(Y ) is
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countable,
|B ∩ Y |+ ℵ0 = |D|+ ℵ0.

Since π is cardinality-preserving

|D|+ ℵ0 = |C ∩X|+ ℵ0.

Finally, if X 4 Y were a countable set S, we could fix a bijection
b : X \ S → h′′(Y \ S) by setting b(x) to be h(x). Then as above, for
each Borel set B ⊆ 2ω, π([B ∩X]) = [h′′(B ∩Y )] = [b′′(B ∩X)]. Again
applying the fact that X is a QB-set, this shows that π is trivial.

Now suppose that Y ⊆ 2ω witnesses (2). Define π : P(X)/ Ctble→
P(Y )/ Ctble by

π([C ∩X]) = [C ∩ Y ]

where C ranges over the Borel sets. We claim that

(i) π is well-defined,
(ii) π is an isomorphism, and

(iii) π is cardinality-preserving and nontrivial.

All of these follow easily from our assumptions, except perhaps the
claim that π is nontrivial. Suppose then that S and T are countable
subsets of 2ω, and that f is bijection from X \ S to Y \ T such that
π([A]) = [f ′′(A \ S)] for all A ⊆ X. Since X 4 Y is uncountable there
are uncountably many x ∈ X \ S such that f(x) 6= x. Moreover, we
may fix incompatible σ, τ in 2<ω such that the set

Z = {x ∈ Nσ ∩ (X \ S) | f(x) ∈ Nτ}
is uncountable. Then there is a Borel set B such that Z = B ∩ X =
(B ∩Nσ) ∩X, so by the definition of π,

π([Z]) = [(B ∩Nσ) ∩ Y ]

On the other hand, f ′′(Z) ⊆ Nτ , hence f ′′(Z) ∩Nσ = ∅. This contra-
dicts our assumption that π([Z]) = [f ′′(Z)]. �

Remark 5.7. We do not know whether it is consistent with ZFC that
there exists a nontrivial automorphism of P(ω1)/ Ctble. On the other
hand, Theorem 1 of [5] shows that the analogous result for Calkin
algebras holds under the assumption that 2ω1 = ω2. More precisely,
let B denote the C*-algebra of bounded, linear operators on a Hilbert
space of dimension ω1, and let J be its (closed, two-sided, ∗-) ideal
of operators with separable range. Then 2ω1 = ω2 implies there are
2ω2-many automorphisms of B/J .

Notice that condition (2) above fails whenever the union of two QB-
sets of cardinality ω1 is also a QB-set. Combined with Theorem 3.4,
we obtain the following as a corollary.
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Corollary 5.8. Suppose that there is a QB-set of cardinality ω1, and
the union of any two QB-sets of cardinality ω1 is a QB-set. Then every
automorphism of P(R)/ Ctble is trivial.

The cardinal characteristic q0 is the least cardinality of a subset of
2ω which is not a Q-set (see [2], for instance). Following [17], we let z
be the least cardinality of a subset of 2ω which is not a QB-set. Then
q0 is clearly at most z. We note that q0 is at most d (see [2]; we do not
know if the same holds with z in place of q0.) and that MAℵ1 implies
that q0 = 2ℵ0 , by the result of Silver mentioned after Definition 5.5.

Corollary 5.8 and Theorem 3.3 give the following.

Corollary 5.9. If z > ℵ1 then each of the following hold.

• Every automorphism of P(R)/ Ctble is trivial.
• Every cardinality-preserving automorphism of P(R)/ Fin is triv-

ial on a cocountable set.

In conjunction with the main result of [14], we see that z > ℵ1 implies
that every cardinality-preserving automorphism of P(λ)/ Fin is trivial
on a cocountable set, for every λ less than the least strongly inaccessible
cardinal. Veličković [16] has shown that MAℵ1 is consistent with the
existence of a nontrivial automorphism of P(ω)/ Fin.

Remark 5.10. Corollary 5.8 applies to automorphisms π which may
not be induced by automorphisms of P(R)/ Fin. We do not know if
the hypothesis of either of Theorem 4.4 and Corollary 5.8 implies the
other. However, as CSN(P(2ω)) = (2ℵ0)+, CSN(∆1

1) is at least z.

6. Fixed points

If π is an automorphism of a Boolean algebra of the form P(λ)/Iκ,
then a fixed point of π is a set A ⊆ λ such that π([A]) = [A]. A fixed
point A is nontrivial if A and λ\A both have cardinality at least κ. By
the < cf κ-completeness of P(λ)/Iκ, the set of (∼κ-classes of) fixed
points of such a π is a (possibly trivial) < cf κ-complete subalgebra of
P(λ)/Iκ.

Lemma 6.1. Suppose that κ ≤ λ are infinite cardinals, and that π is
an automorphism of P(λ)/Iκ. Let π∗ be a selector for π. Let η be an
infinite regular cardinal not equal to cf κ, and suppose that 〈Aα : α < η〉
is a sequence of subsets of λ such that

(1) for all α < β < η,∣∣(π∗(Aα) ∪ (π∗)−1(Aα)) \ Aβ
∣∣ < κ
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(2) for all β < η, ∣∣∣⋃ {Aα | α < β} \ Aβ
∣∣∣ < κ

Then
⋃
{Aα : α < η} is a fixed point of π.

Proof. Let B =
⋃
{Aα | α < η}. We want to see that π∗(B) ∼κ B.

Suppose first that |B \ π∗(B)| ≥ κ. We claim that there is some α < η
such that |Aα \ π∗(B)| ≥ κ. If η < cf κ, then this follows directly; on
the other hand, if η > cf κ, then (using the regularity of η) there is
some α < η such that∣∣∣⋃ {Aβ \ π∗(B) | β < α}

∣∣∣ ≥ κ

in which case we have |Aα \ π∗(B)| ≥ κ by (2). Now fix some X ⊆
Aα \ π∗(B) with cardinality exactly κ. Then∣∣(π∗)−1(X) \ Aα+1

∣∣ < κ

and ∣∣(π∗)−1(X) ∩B
∣∣ < κ

hence |(π∗)−1(X)| < κ, a contradiction. Supposing instead that

|π∗(B) \B| ≥ κ

we get that |B \ (π∗)−1(B)| ≥ κ, and we can run the argument just
given with (π∗)−1 in place of π∗ to obtain another contradiction. �

Summarizing, we get the following. Part (3) of the theorem uses
Theorem 2.5. The proof of part (4) breaks into two cases, one where
cf κ is uncountable, and one where cf κ = ℵ0.

Theorem 6.2. Suppose that κ ≤ λ are infinite cardinals, and that π
is an automorphism of P(λ)/Iκ.

(1) The set of ∼κ-classes of fixed points π is a < cf κ-complete
subalgebra of P(λ)/Iκ.

(2) If η is a regular cardinal not equal to cf κ, and 〈Aα : α < η〉 is
a sequence of fixed points of π such that for all β < η,∣∣∣⋃ {Aα | α < β} \ Aβ

∣∣∣ < κ,

then
⋃
{Aα | α < η} is a fixed point of π.

(3) If κ is regular and λ > κ, then for every A ⊆ λ, there is a fixed
point B ⊆ λ such that A ⊆ B and |B| ≤ |A|+ κ+.

(4) If π is cardinality-preserving and κ is uncountable, then for ev-
ery A ⊆ λ, there is a fixed point B ⊆ λ such that A ⊆ B and
|B| = |A|.
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Theorem 6.2 gives the following corollary.

Corollary 6.3. If λ > κ are infinite cardinals, and π is an automor-
phism of P(λ)/Iκ, then π has nontrivial fixed points if at least one of
the following holds:

• κ is regular and λ > κ+,
• π is cardinality preserving and κ is uncountable.

Remark 6.4. K.P. Hart and Harm de Vries have shown ([7]) that if the
algebras P(ω)/ Fin and P(ω1)/ Fin are isomorphic, then there exists
a nontrivial automorphism of P(ω)/ Fin. One can run their argu-
ment in reverse, considering the trivial automorphism of P(ω)/ Fin in-
duced by the (upwards or downwards) shift, getting that if P(ω)/ Fin
and P(ω1)/ Fin are isomorphic, then there exists an automorphism of
P(ω1)/ Fin without nontrivial fixed points. An easy argument shows
that every trivial automorphism of P(ω1)/ Fin has a club of ordinal
fixed points.

Section 7 considers ordinal fixed points of cofinality κ for automor-
phisms of Boolean algebras of the form P(κ+)/Iκ.

7. Ladder systems

A ladder on a limit ordinal α is a cofinal subset of α whose ordertype
is the cofinality of α (we do not require here that the subset be closed).
If S is a set of limit ordinals, a ladder system on S is a sequence
〈Lα | α ∈ S〉 such that each Lα is a ladder on the corresponding α.
A ladder system 〈Lα | α ∈ S〉 satisfies κ-uniformization (for a given
cardinal κ) if for every sequence of functions fα : Lα → κ (α ∈ S),
there is a function F : sup(S)→ κ such that for all α ∈ S,

{β ∈ Lα | F (β) 6= fα(β)} ∈ Iκ.

Here we show that the existence of a cardinality-preserving auto-
morphism of P(κ+)/Iκ without ordinal fixed points of cofinality κ
(where κ is a regular cardinal) gives rise to a ladder system on a club
subset of κ+ which satisfies 2-uniformization (which is easily seen to
be equivalent to γ-uniformization, for any γ < κ).

Given an automorphism π of P(λ)/Iκ, for infinite cardinals κ ≤ λ,
we say that β ∈ λ is a closure point of π if for all α < β, π([α]) < [β]
and π−1([α]) < [β].4 If λ > κ and π is cardinality-preserving, then the
set of closure points of π is a club subset of λ. It is easy to see that
every closure point whose cofinality is not cf κ is a fixed point (this
does not require that π is cardinality-preserving, or that κ is regular).

4See subsection 1.1 for the meaning of the order < in this context.
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Theorem 7.1. Suppose that

• κ is a regular cardinal,
• π is a cardinality-preserving automorphism of P(κ+)/Iκ,
• C is the set of closure points of π, and
• S ⊆ κ+ is the set of α ∈ C which are not fixed points of π.

Then there exist S0, S1 such that S = S0 ∪S1, and such that S0 and S1

each support a ladder system satisfying 2-uniformization.

Proof. Let

S0 = {α ∈ S | [α] 6≤ π([α])}
and let

S1 = {α ∈ S | π([α]) 6≤ [α]}
Then clearly S = S0∪S1. Let π∗ be a bijective selector for π. For each
α ∈ S0, let L0

α = α\π∗(α), and for each α ∈ S1, let L1
α = α\ (π∗)−1(α).

Then for each i ∈ {0, 1} and each α ∈ Si,
• |Liα| = κ,
• |Liα ∩ β| < κ for all β < α.

The second of these follows from the fact that α is a closure point of π,
and from the fact that |(π∗)−1(L0

α) ∩ α| < κ in the case where α ∈ S0

and |π∗(L1
α) ∩ α| < κ in the case where α ∈ S1. It follows that each Liα

is a ladder on the corresponding α.
Now suppose we are given 2-colorings f iα : Liα → 2 for each pair

(α, i) with i ∈ {0, 1} and α ∈ Si. For each such pair (α, i) let aiα =
(f iα)−1({1}). For each α ∈ S0, put

b0
α = (π∗)−1(aα) ∩ ((π∗)−1(α) \ α)

and for each α ∈ S1, put

b1
α = π∗(aα) ∩ (π∗(α) \ α).

Notice that, for each i ∈ {0, 1}, biα ∩ biβ = ∅ for distinct α, β ∈ Si.
Let Bi =

⋃
{biα | α ∈ Si}, for each i < 2. Define A0 = π∗(B0) and

A1 = (π∗)−1(B1). For each i ∈ {0, 1}, let Fi be the characteristic
function of Ai. If α ∈ S0, then

B0 ∩ ((π∗)−1(α) \ α) = b0
α

hence A0 ∩ Lα ∼κ aα. Similarly, if α ∈ S1, then

B1 ∩ (π∗(α) \ α) = b1
α

so A1 ∩ Lα ∼κ aα. It follows that F0�Lα ∼κ fα for all α ∈ S0 and
F1�Lα ∼κ fα for all α ∈ S1.

�
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The following theorem of Devlin and Shelah then shows that the exis-
tence of a cardinality-preserving automorphism of P(ω1)/ Fin without
nontrivial ordinal fixed points implies that 2ℵ0 = 2ℵ1 .

Theorem 7.2. (Devlin-Shelah [4]) Suppose that {Sα : α < ω1} is such
that

• each Sα is a subset of ω1 supporting a ladder system satisfying
2-uniformization,
• the diagonal union of {Sα | α < ω1} contains a club subset of
ω1.

Then 2ℵ0 = 2ℵ1.

After a simple modification of π∗, we see that π∗ moves the ladders
Lα, for α ∈ S0, to disjoint sets; and (π∗)−1 moves Lα for α ∈ S1

to disjoint sets. It follows that they satisfy uniformization properties
stronger than 2-uniformization (but not comparable, as far as we know,
with κ-uniformization). For instance, they each satisfy the following
property : for any partition of Si into sets {Tα | α < γ} (for some
γ ≤ κ+) there exist sets {Kα | α < γ} such that

• for all α < γ and all β ∈ Tα, |Lβ \Kα| < κ,
• for every sequence of functions fα : Kα → 2 (α < γ) there exists

a function F : κ+ → 2 such that, for each α < γ, F � Kα ∼κ fα.

8. Open questions

We collect here various open questions related to the material in
this paper, some of which have been mentioned above, and some of
which have been asked by others. First, we ask for various types of
automorphisms.

Question 1. Are any of the following consistent with ZFC?

(a) There exists an uncountable cardinal λ and an automorphism of
P(λ)/ Fin which is not trivial on any cocountable set.

(b) There exists an uncountable cardinal λ and an automorphism of
P(λ)/ Fin which is not trivial on any uncountable set. (By [14], λ
would have to be at most 2ℵ0 .)

(c) There exists an infinite cardinal κ and a nontrivial automorphism
of P(κ+)/Iκ which is trivial on all sets of cardinality κ.

(d) There exists an infinite cardinal κ such that all automorphisms of
P(κ)/Iκ are trivial, but there is a nontrivial automorphism of
P(κ+)/Iκ.

(e) There exist infinite cardinals κ < λ and a nontrivial automorphism
of P(λ)/Iκ+ which is trivial on all sets of cardinality κ+. (By
Theorem 3.4, λ would have to be bigger than 2κ.)



22 PAUL LARSON AND PAUL MCKENNEY

(f) There exists an automorphism of P(ω1)/ Fin with no nontriv-
ial fixed points. (What if the automorphism is required to be
cardinality-preserving? In this case, we would have to have 2ℵ0 =
2ℵ1 , by Theorems 7.1 and 7.2.)

(g) There exist uncountable cardinals κ ≤ λ and a nontrivial automor-
phism of P(λ)/Iκ (what if κ = ℵ1?).

(h) There exists an uncountable cardinal λ and an outer automorphism
of the Calkin algebra on the Hilbert space of dimension λ. (See
Remark 5.7 or [5] for definitions and more information.)

We also ask about the Katowice Problem, question (a) below, and
its relation to automorphisms. The reader is referred to [7, 3] for more
on the Katowice Problem and related questions. We note in particular
that, in [3], Chodounský has constructed a model of ZFC where most
of the known consequences of a positive answer to Question (a) hold.

Question 2. (a) (Turzanski) Is it consistent with ZFC that the Boolean
algebras P(ω)/ Fin and P(ω1)/ Fin are isomorphic?

(b) Is it consistent with ZFC that there is an isomorphism from P(ω1)/ Fin
to P(ω)/ Fin which is trivial on all countable sets?

(c) Is it consistent with ZFC that there exists an automorphism π of
P(ω1)/ Fin such that π([A]) = [B] for no infinite A ⊂ B ⊆ ω1

with ω1 \B infinite?
(d) Does the existence of an isomorphism P(ω)/ Fin ' P(ω1)/ Fin

imply that there is a nontrivial automorphism of P(ω1)/ Ctble?
(Since such an isomorphism implies there is an uncountable Q-set,
by Theorem 5.6 it is enough to ask whether such an isomorphism
implies there exist two uncountable QB-sets, with uncountable dif-
ference, which intersect the same Borel sets uncountably.)

(e) Does the existence of an isomorphism between P(ω)/ Fin and
P(ω1)/ Fin imply that z = ℵ1?
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