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Abstract

We introduce a notion of strategically selective coideal, and show that
tall strategically selective coideals do not exist under ADR, generalizing a
classical theorem of Mathias. We discuss some issues involved in general-
izing this result to semiselective coideals.

A set C ⊆ P(ω) is a coideal if P(ω)\C is an ideal containing Fin, the collection
of finite subsets of ω. A fast diagonalization of a sequence 〈Ai : i < ω〉 ∈ P(ω)ω

is a set E = {ei : i ∈ ω} (listed in increasing order) such that e0 ∈ A0 and
ei+1 ∈ Aei for all i ∈ ω. A coideal C is

• tall if for no infinite A ⊆ ω is C ∩ P(A) = P(A) \ Fin, and

• selective if every ⊆-decreasing sequence 〈Ai : i < ω〉 ∈ Cω has a fast
diagonalization in C.

The axiom ADR asserts the determinacy of all games of length ω where the
players play subsets of ω. Woodin has shown the consistency of ADR relative
to large cardinals (see Theorem 9.3 of [10], for instance). The axiom DC is a
weak form of the Axiom of Choice, asserting that each tree of height ω without
terminal nodes has an infinite branch. The axiom DCR is the restriction of of
DC to trees on R; DCR is easily seen to be a consequence of ADR. Mathias
[8] showed that ADR implies that there are no tall selective coideals on ω. In
this note we give a generalization of this fact. Our proof consists of combining
Mathias’s proof with results of Solovay and Woodin.

Given a coideal C, we let GC be the game of length ω in which players I and
II choose the members of a ⊆-decreasing sequence of elements of C, with II
winning if the sequence constructed has a fast diagonalization in C.

0.1 Definition. A coideal C is strategically selective if player I does not have a
winning strategy in GC .
∗Research supported in part by NSF Grant DMS-1201494. Department of Mathematics,

Miami University, Oxford, Ohio 45056 USA
†Partially supported by National University of Singapore research grant number R-146-000-

211-112. Department of Mathematics, National University of Singapore, Singapore 119076

1



It follows almost immediately from the definitions that a selective coideal is
strategically selective, as in this case all runs of the game GC are won by II.
As defined by Farah [3], a coideal C is semiselective if whenever A ∈ C and Di
(i ∈ ω) are dense open subsets of the partial order (C,⊆) below A, there exist
sets Ai ∈ Di (i ∈ ω) and a fast diagonalization of 〈Ai : i ∈ ω〉 in C. As we shall
see, the Axiom of Choice implies that the notions of strategically selective and
semiselective are equivalent.

Assuming ADR, strategically selective coideals are easily seen to be semis-
elective; we don’t know if the reverse implication holds. Uniformization is the
statement that for each U ⊆ R × R, there is a partial function f : R → R with
the property that for each x ∈ R, if there is a y such that (x, y) is in U , then x
is in the domain of f and (x, f(x)) is in U . Uniformization an easy consequence
of ADR, via a game in which each player plays once.

Theorem 0.2. If Uniformization holds, then every strategically selective co-
dideal is semiselective.

Proof. Suppose that C is a coideal which is not semiselective, and let Di (i ∈ ω)
and A ∈ C witness this. Fix a strategy Σ in GC for player I where I plays a
subset of A in D0 as his first move, and, for any i > 0, I plays in response to any
sequence of length 2i an element of Di contained in the last move made by player
II. Uniformization implies that there exists such a strategy. Now suppose that
Ā = 〈Ai : i < ω〉 is a run of GC where I has played according to Σ, and suppose
toward a contradiction that {ei : i ∈ ω} is a fast diagonalization of Ā in C. Then
{e2i+1 : i ∈ ω} and {e2i : i ∈ ω} are each fast diagonalizations of 〈A2i : i ∈ ω〉,
and at least one of these two sets is in C, giving a contradiction.

Given a coideal C, we let PC denote the partial order of mod-I containment
on C, where I = P(ω) \ C. Farah [3] has shown that when C is semiselective,
forcing with PC adds a selective ultrafilter (see Theorem 1.1 below).

The following is our main theorem.

Theorem 0.3. If ADR holds, then there are no tall strategically selective coide-
als on ω.

Question 0.4 below is open, as far as we know. Corollary 3.4 of [2] states
a result which would imply a positive answer to the question. However, there
appears to be a gap in the proof, corresponding roughly to the issue of obtaining
functions a and b as in the statement of Proposition 1.4 below in the context of
ADR (i.e., without using the Axiom of Choice).

0.4 Question. Does ADR imply that there are no tall semiselective coideals on
ω?

We begin with Solovay’s result on the existence of a normal fine measure on
Pℵ1(R) under ADR. Here normality of a measure µ on Pℵ1(R) means that if
A ∈ µ and f is a function on A such that f(σ) is a nonempty subset of σ for
each σ ∈ A, then there is a real x which is in f(σ) for µ-many σ.
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Lemma 0.5 (Solovay [9]). If ADR holds, then there is normal fine measure on
Pℵ1(R).

Proof. Given A ⊆ Pℵ1(R), consider the game Gm(A) where players I and II
pick alternately pick finite sets of reals si (i ∈ ω) and I wins if

⋃
{si : i ∈ ω} ∈ A.

Let µ be the set of A for which I has a winning strategy in Gm(A). That µ is fine
(i.e., contains the set of supersets of each countable set of reals) is immediate.
That it is an ultrafilter follows from running two strategies against one another.
Normality follows the fact that given a family of games Gx indexed by reals for
which II has a winning strategy, there is a function picking such a strategy for
each game, induced by the game where I first picks x and then I and II play
Gx. Fixing f as in the statement of normality and supposing that player II
has a winning strategy for each payoff set of the form Fx = {σ | x ∈ f(σ)},
we can build a countable set of reals σ ∈ dom(f) which results from a run of
Gm(Fx) according to a winning strategy for player II, for each x ∈ σ, giving a
contradiction.

Given a set of ordinals S and a formula φ, let us write AS,φ for the set
{x ∈ (ωω)<ω : L[S, x] |= φ(S, x)}. Formally extending a definition due to
Woodin, we say that the pair (S, φ) is an ∞-Borel code for the set AS,φ, and
we say that a set B ⊆ (ωω)<ω is ∞-Borel if there exists such a pair (S, φ) with
AS,φ = B (i.e., if B has an ∞-Borel code). A tree on the ordinals projecting
to a subset of ωω is an example of an ∞-Borel code, but the assumption that
every set of reals is ∞-Borel is weaker than the assumption that every set of
reals is the projection of a tree on the ordinals. The statement that every subset
of (ωω)<ω is ∞-Borel is easily seen to be equivalent to the assertion that every
subset of ωω is∞-Borel, which in turn is part of Woodin’s axiom AD+ (see [4]).

The following theorem is unpublished.

Theorem 0.6 (Woodin). If ADR holds, then every set of reals is ∞-Borel.

Recall that Mathias forcing QU relative to an ultrafilter U consists of pairs
(s,A), where s is finite subset of ω and A ∈ U , with the order (s,A) ≥ (t, B) if
s ⊆ t, B ⊆ A and t \ s ⊆ A. The following is due to Mathias ([8], Theorem 2.0).

Theorem 0.7 (Mathias). Suppose that M is a model of ZF + DCR and that
U is a selective ultrafilter in M . Then a set x ⊆ ω is M -generic for QU if and
only if x \ y ∈ Fin for all y ∈ U .

The following proof puts together the facts listed above. The ultraproduct
construction in the proof is taken from the proof of Theorem 9.39 from [11],
except that we use ∞-Borel codes instead of trees on the ordinals.

Proof of Theorem 0.3. Suppose that ADR holds, and that C is a tall strategically
selective coideal. Fix a winning strategy Σ for player II in GC . By Theorem
0.6, there are formulas φ and ψ, and sets of ordinals S and T such that

C × Σ = AS,φ
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and
(ωω)<ω \ (C × Σ) = AT,ψ.

Let µ be a normal fine measure on Pℵ1(R). Let (M,E) be the ultraproduct∏
σ∈Pℵ1 (R) L(σ, S, T )/µ constructed inside L(R)[S, T, µ]. Then

• elements of M are represented by functions f in L(R)[S, T, µ], with domain
Pℵ1(R), such that f(σ) is in L(σ, S, T ), for each σ ∈ Pℵ1(R) (let F be the
class of such functions),

• the members of M are the equivalence classes of functions in F , under the
relation of mod-µ equivalence, and

• given two such equivalence classes [f ]µ and [g]µ, [f ]µE[g]µ if and only if

{σ ∈ Pℵ1(R) : f(σ) ∈ g(σ)} ∈ µ.

For each set x ∈ L(R)[S, T, µ], let cx be the constant function from Pℵ1(R) to
{x}. Since µ normal (and thus countably complete), and L(R)[S, T, µ] satisfies
DC (as ADR implies DCR), (M,E) is wellfounded. A standard argument by
induction on subformulas, using the normality of µ for the step corresponding
to existential quantifiers, shows that for any finite set of functions f1, . . . , fn
from F , and any n-ary formula φ,

(M,E) |= φ([f1]µ, . . . , [fn]µ)

if and only if
L(σ, S, T ) |= φ(f1(σ), . . . , fn(σ))

for µ-many σ. Let us call this fact the elementarity of the ultraproduct. One
consequence of this fact (and the wellfoundedness of (M,E)) is that there is an
isomorphism π from (M,E) to an inner model of the form L(R, S∗, T ∗), where
S∗ = π([cS ]µ) and T ∗ = π([cT ]µ). Then S∗ and T ∗ are sets of ordinals.

By the elementarity of the ultraproduct, AS,φ ⊆ AS∗,φ and AT,ψ ⊆ AT∗,ψ.
Since

AS,φ = (ωω)<ω \AT,ψ,

it follows again by elementarity that AS,φ = AS∗,φ and AT,ψ = AT∗,ψ. By
the normality of µ (and elementarity once again), it follows that for µ-many σ,

σ = R∩L(σ, S, T ) and A
L(σ,S,T )
S,φ (which is (C×Σ)∩L(σ, S, T )) is the product of a

tall strategically selective coideal and a strategy witnessing that it is strategically
selective, in L(σ, S, T ). Fixing one such σ, there is an L(σ, S, T )-generic filter H

for P
L(σ,S,T )
C which is generated by a run of GC according to Σ. One can build

such a run of GC by letting II play according to Σ and having I play to meet

each dense set in L(σ, S, T ) from P
L(σ,S,T )
C . Note that L(σ, S, T ) is closed under

Σ. Furthermore, since σ is a countable, L(σ, S, T ) is contained in a model of
Choice, which implies that P(P(R))∩L(σ, S, T ) is countable, so there exists (in

V ) an enumeration of the dense subsets of P
L(σ,S,T )
C in L(σ, S, T ) in ordertype

ω.

4



Let U be the selective ultrafilter in L(σ, S, T )[H] given by H. By Theorem
0.7, since Σ is a winning strategy for player II, there is an x ∈ C which is
L(σ, S, T )[H]-generic for the Mathias forcing QU . Some condition (s,B) in the
corresponding generic filter then forces that the generic real will be the left
coordinate of a pair in AS,φ. However, this is a contradiction, as some infinite
subset of x containing s is not in C, and any such set is still generic below (s,B),
by Theorem 0.7.

0.8 Remark. A one-point diagonalization of a sequence 〈Ai : i < ω〉 ∈ P(ω)ω

is a set E = {ei : i ∈ ω} (listed in increasing order) such that ei ∈ Ai for all
i ∈ ω. In an earlier version of this paper we used one-point diagonalizations
instead of fast diagonalizations in the definitions of selective, semiselective and
strategically selective. Example 0.9 below shows that these definitions are not
equivalent. We note that [1] uses one-point diagonalizations in the definition of
Ramsey (i.e., selective) ultrafilters; Example 0.9 shows that there is a gap in the
proof of Theorem 4.5.2 there claiming to show that this definition is equivalent to
the standard one. Similarly, Example 0.9 shows that the corresponding version
of Theorem 0.3 using one-point diagonalizations in place of fast diagonalizations
is false. The paper [7] cites (the earlier vesion of) this paper for proving this
false version of Theorem 0.3. Modifying that paper to use the correct definitions
requires making minor changes.

0.9 Example. Let F̄ = {Fn : n ∈ ω} be a partition of ω into finite sets, such
that {|Fn| : n ∈ ω} is infinite and Fn∩n = ∅ for all n ∈ ω. Let IF̄ be the ideal of
sets x ⊆ ω for which there exists an m ∈ ω such that |x∩Fn| < m for all n ∈ ω.
Then IF̄ is Fσ, so Borel. Let CF̄ be the corresponding coideal. If, for each n ∈ ω,
An = ω \

⋃
m<n Fm, then each An is in CF̄ and each fast diagonalization of the

sequence 〈An : n ∈ ω〉 intersects each Fn at most 2 points, so is not in CF̄ . On
the other hand, if B̄ = 〈Bn : n ∈ ω〉 is any ⊆-decreasing sequence of members
of CF̄ , B̄ has a one-point diagonalization in CF̄ . This shows that changing
“fast” to “one-point” in the definition of selective coideal gives a weaker notion
(and similarly for semiselective and strategically selective). Assuming that the
Continuum Hypothesis holds, one can easily construct an ultrafilter contained in
CF̄ with the property that each ⊆-descending ω-sequence from U has a one-point
diagonalization in U .

1 Semiselective coideals

In this section we discuss some issues related to the question of whether ADR
implies the nonexistence of tall semiselective coideals. First we note two alter-
nate characterizations of semiselectivity shown by Farah in [3]. Theorem 1.1
can be proved in ZF.

Theorem 1.1 (Farah [3]). The following statements are equivalent, for a coideal
C on ω.

1. C is semiselective.
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2. The generic filter added by forcing with PC is a selective ultrafilter.

3. Forcing with PC does not add reals, and whenever {E} ∪ {Bi : i ∈ ω} ⊆ C
and for all i ∈ ω, E \ Bi 6∈ C, there exists an E′ ⊆ E in C such that for
each i ∈ ω, E′ \ (i+ 1) ⊆ Bi.

Given any partial order P , let Gds(P ) be the game where players I and II
alternately choose the members of a descending sequence of conditions in P ,
with I winning if the sequence does not have a lower bound in P . For any
coideal C, a winning strategy for I in Gds(PC) is a winning strategy for I in
GC . By the second part of statement (3) of Theorem 1.1, if C is semiselective,
then a winning strategy for II in Gds(PC) is a winning strategy for II in GC .
Theorem 0.3 shows that, assuming ADR, player I has a winning strategy in GC
for each tall coideal C on ω. It follows that if C is a tall semiselective coideal on
ω, and ADR holds, then I has a winning strategy in Gds(PC). The first part of
the following proposition then shows that forcing with PC must make DCR fail.

Proposition 1.2 (ZF). Suppose that C is a coideal on ω such that forcing with
PC does not add subsets of ω.

1. If I has a winning strategy in Gds(PC), then DCR fails after forcing with
with PC.

2. If II has a winning strategy in Gds(PC), and DCR holds, then it holds after
forcing with PC.

Proof. For the first part of the proposition, let τ be a winning strategy for I in
Gds(PC), and let G ⊆ C be generic for PC . In V [G], consider the set of finite
sequences from G of odd length which are partial plays of Gds(PC) according
to τ . Every such sequence is extended by a longer one, but no infinite play of
Gds(PC) according to τ can be forced by any condition in PC to be a subset of
the generic filter.

For the second part, fix A ∈ C, a winning strategy τ for II in Gds(PC) and
a PC-name σ for a set of finite sequences of reals with the property that every
sequence in the set is extended by another sequence in the set. Consider the set
of finite sequences

A0, x0, A1, A2, x2, A3, . . . , A2n, x2n, A2n+1

for which A0 ⊆ A, 〈A0, . . . , A2n+1〉 is a partial play of Gds(PC) according to τ ,
and each A2i forces that 〈x0, x2, . . . , x2i〉 is a member of the realization of σ.
Then DCR, plus the fact that τ is a winning strategy for II, gives a condition
below A forcing some infinite sequence to be a path through the realization of
σ.

A positive answer to any part of the following question would show that no
tall semiselective coideals exist, assuming ADR.
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1.3 Question. Suppose that ADR holds, and let C be a coideal on ω. Must PC
preserve DCR? What if C is tall, or if PC is assumed not to add subsets of ω, or
to be semiselective, or tall and semiselective?

Proposition 1.4 shows that if C is a semiselective coideal, and there exist
suitable choice functions, then C is strategically selective (from which it fol-
lows that under AC the two notions are equivalent). Given a function a as
in the statement of Proposition 1.4, the existence of a function b follows from
Uniformization.

Proposition 1.4 (ZF). Let C be a coideal, and let Σ be a winning strategy for
I in GC. Let S be the set of finite partial runs τ in GC according to Σ for which
it is II’s turn to move. Suppose that there exist functions a on S and b on S×C
such that

• for each τ ∈ S, a(τ) is a maximal antichain in (C,⊆) below the last
member of τ , contained in the set of members of C which are responses by
Σ to a move for II following τ ;

• for each τ ∈ S and B ∈ a(τ), b(τ,B) is an element of C such that
τ_〈b(τ,B), B〉 is a partial run of GC according to Σ.

Then C is not semiselective.

Proof. Let A0 be the first move made by Σ. Let H be a generic filter for PC ,
with A0 ∈ H. In V [H], consider the collection T consisting of those sequences
of the form 〈B0, . . . , B2n〉 contained in H, where for each even i < 2n, Bi+2 is in
a(〈B0, . . . , Bi〉) and Bi+1 = b(〈B0, . . . , Bi〉, Bi+2). By genericity, each sequence
in T has an extension in T . Since each a(τ) (τ ∈ S) is an antichain, the members
of T extend one another, and there exists a unique sequence B̄ = 〈Bi : i < ω〉
whose finite initial segments are all in T .

Suppose now toward a contradiction that C is semiselective. Then forcing
with PC doesn’t add reals, so B̄ is in V . Since Σ is a winning strategy for I in
GC , B̄ does not have a fast diagonalization in C. By part (3) of Theorem 1.1,
then, B̄ does not have a lower bound in C, so no element of C could force all of
the elements of B̄ to be in H, giving a contradiction.

Proposition 1.4 gives the following.

Theorem 1.5 (ZF). If there exists a wellordering of R, and M is a model of ZF
+ ADR containing R, then there is no tall coideal in M which is semiselective
in V .

Finally, we note that the following theorem of Todorcevic (a version of which
appears in [3]; the form given here is proved in [5]) allows one to argue from
the point of view of a model of the Axiom of Choice that certain inner models
do not contain tall coideals which are semiselective in V . In the presence of
suitably large cardinals (for instance, a measurable cardinal above infinitely
many Woodin cardinals), typical inner models of determinacy (such as L(R))
have the property that all of their sets of reals are at least c-universally Baire
in V (see, for instance, Theorems 3.3.9 and 3.3.13 of [6]).
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Theorem 1.6 (Todorcevic). If U is a selective ultrafilter and I is a tall ideal
on ω containing Fin which is c-universally Baire, then U ∩ I 6= ∅.

Corollary 1.7. If C is a tall coideal in an inner model M containing the reals,
and every set of reals in M is c-universally Baire, then C is not semiselective in
V

Proof. If C were semiselective in V , then forcing with PC would produce a se-
lective ultrafilter disjoint from P(ω) \ C.

As with Theorem 1.5, the corollary to Todorcevic’s result leaves open the
possibility that there is a tall coideal which is semiselective in the model in
question, but no longer semiselective in any outer model of Choice.
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