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Abstract. Suppose I and J are proper ideals on some set X. We say
that I and J are incompatible if I ∪J does not generate a proper ideal.
Equivalently, I and J are incompatible if there is some A ⊆ X such
that A ∈ I and X \A ∈ J . If some B ⊆ X is either in I \J or in J \I,
then we say that B chooses between I and J .

We consider the following Ramsey-theoretic problem: Given several
pairs (I1,J1), (I2,J2), . . . , (Ik,Jk) of incompatible ideals on a set X,
find some A ⊆ X that chooses between as many of these pairs of ideals
as possible. The main theorem is that for every n ∈ N, there is some
I(n) ∈ N such that given at least I(n) pairs of incompatible ideals on
any set X, there is some A ⊆ X choosing between at least n of them.

This theorem is proved in two main steps. The first step is to iden-
tify a (purely finitary) problem in extremal combinatorics, and to show
that our problem concerning ideals is equivalent to this combinatorial
problem. The second step is to analyze the combinatorial problem in
order to show that the number I(n) described above exists, and to put
bounds on it. We show

1
2
n log2 n−O(n) < I(n) < n lnn + O(n).

The upper bound is proved by considering a different but closely re-
lated combinatorial problem involving hypergraphs, which may be of
independent interest: roughly, it is the problem of finding an as-large-
as-possible subset of the vertices on which some subset of the hyperedges
induces a partition. We also investigate some applications of this theo-
rem to a problem concerning conditionally convergent series.

1. Introduction

An ideal on a set X is a set I of subsets of X such that

◦ every finite subset of X is in I,
◦ if A,B ∈ I then A ∪B ∈ I, and
◦ if A ∈ I and B ⊆ A, then B ∈ I.

An ideal I is proper if I 6= P(X) or, equivalently, if X /∈ I. Two proper
ideals I and J on a set X are incompatible if their union is not contained
in any proper ideal. Equivalently, I and J are incompatible if there is some
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A ⊆ X such that A ∈ I and X \ A ∈ J . If B ⊆ X and if either B ∈ I \ J
or B ∈ J \ I, then we say that B chooses between I and J .

This paper investigates the following Ramsey-theoretic problem: given
several pairs (I1,J1), (I2,J2), . . . , (Ik,Jk) of incompatible ideals on a set X,
find some A ⊆ X that chooses between as many of these pairs of ideals as
possible. In other words, we would like to make many choices simultaneously,
using a single A ⊆ X.

Main Theorem. For each n ∈ N, there is some I(n) ∈ N such that for
any collection of I(n) pairs of incompatible ideals on a set X, there is some
A ⊆ X that chooses between at least n of those pairs.

This theorem is proved in two stages. The first stage is to identify a
(purely finitary) problem in extremal combinatorics, and to show that our
problem concerning ideals is equivalent to this combinatorial problem. The
second stage is to analyze the combinatorial problem to show that the num-
ber I(n) exists, and to put bounds on it. Namely, we show that

1
2n log2 n− 1

2n+ 3
2 < I(n+ 1) < 1 +

∑n
k=1

n
k

Let us note that
∑n

k=1
n
k < n lnn + γn + 1

2 , where γ ≈ .5772156649 is the
Euler-Mascheroni constant, so that the upper and lower bounds on I(n)
match up to a constant factor. In other words, I(n) = O(n log n).

The first stage of this proof is contained in Section 2, and the second
in the first part of Section 3. The second part of Section 3 and all of
Section 4 are devoted to finding upper and lower bounds for I(n). The upper
bound is proved by introducing a second problem of extremal combinatorics
concerning hypergraphs. Roughly, the problem is, given some hypergraph
(V,H), to find some X ⊆ V and H′ ⊆ H, with X as large as possible, so
that H′ induces a partition on X. This problem, which may have some
independent interest, is described more precisely and analyzed in Section 3.

In Section 5, we apply the main theorem to a problem concerning infinite
series. A conditionally convergent series is a sequence 〈an : n ∈ N〉 of real
numbers such that

∑
n∈N an converges but

∑
n∈N |an| does not. Every condi-

tionally convergent series 〈an : n ∈ N〉 has a subseries 〈ank
: k ∈ N〉 summing

to ∞ (e.g., the subseries obtained by summing only over positive terms),
and a different subseries summing to −∞ (e.g., the subseries obtained by
summing only over negative terms). Every conditionally convergent series
also has many subseries that diverge by oscillation; for example, one may
construct such a subseries by interleaving long stretches of positive terms
with long stretches of negative terms.

Definition 1.1. Let us say that a set A ⊆ N sends a series
∑

n∈N an to
infinity if either

∑
n∈A an =∞ or

∑
n∈A an = −∞.

Notice that in this definition, we require each subseries to diverge either
to ∞ or to −∞, and not merely to diverge by oscillation. Recently, the
first author has investigated the problem of sending several series to infinity
simultaneously, using a single A ⊆ N. In summary:
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◦ For any three conditionally convergent series, there is a single A ⊆ N
sending all three series to infinity simultaneously. (Brian [2])
◦ The analogous statement for four series is false: there is a collection

of four conditionally convergent series such that no single A ⊆ N
sends all four series to infinity. (Nazarov [10], [2, Section 3])

These results suggest the following Ramsey-theoretic problem: given sev-
eral conditionally convergent series, find some A ⊆ X that sends as many
of them as possible to infinity. In other words, we would like to send many
series to infinity simultaneously, using a single A ⊆ X. As a corollary to the
main theorem we obtain:

Theorem. For each n ∈ N, there is some ß(n) ∈ N such that for any col-
lection of ß(n) conditionally convergent series, there is some A ⊆ N sending
at least n of the series to infinity simultaneously.

Specifically, we show that ß(n) ≤ I(n) = O(n log n). The best lower
bound for ß(n) that we know is 2n− 5 ≤ ß(n), which is proved in Section 5
below. This is accomplished by generalizing the aforementioned example of
Navarov to find, for every n ≥ 2, an example of 2n conditionally convergent
series such that no single A ⊆ N can send more than n+2 of them to infinity
simultaneously. Finally, Section 6 contains an infinitary version of the result
on conditionally convergent series:

Theorem. For any infinite collection of conditionally convergent series,
there is a single A ⊆ N sending infinitely many of the series to infinity.

2. The reduction

In this section we reduce the main theorem stated in the introduction to a
(purely finitary) problem of extremal combinatorics. One may think of this
as the first half of a proof of the main theorem. The second half, contained
in the next section of the paper, is to analyze the combinatorial problem.

We begin with a formal definition of I(n):

Definition 2.1. For each n ∈ N, let I(n) denote the least k ∈ N with the
following property:

(∗)n For any set X and any collection (I1,J1), (I2,J2), . . . , (Ik,Jk) of k
pairs of incompatible ideals on X, there is some A ⊆ X such that A
chooses between I` and J` for at least n different values of `.

If there is no such k ∈ N, then we say that I(n) is not well-defined.

We now define another number Ĩ(n) for each n ∈ N. As with I(n), we
define it in such a way that it is not yet assumed to be well-defined. The
notation Ĩ(n) is used only in this section; it is not needed in later sections

because, as we shall show shortly, Ĩ(n) and I(n) are the same.

Definition 2.2. Let Fn(k, 2) denote the set of all functions from a subset
of {1, 2, . . . , k} to {p, n}. We say that F ⊆ Fn(k, 2) is full provided that, for
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every i ∈ {1, 2, . . . , k} and j ∈ {p, n}, there is some f ∈ F with f(i) = j.

For each n ∈ N, let Ĩ(n) denote the least k ∈ N with the following property:

(†)n For any full F ⊆ Fn(k, 2), there is some G ⊆ F andD ⊆
⋃
g∈G dom(g)

such that |D| ≥ n, and no two members of G disagree on D.

If there is no such k ∈ N, then we say that Ĩ(n) is not well-defined.

In what follows, we shall sometimes represent functions as sets of ordered
pairs, and sometimes we shall represent functions and sets of functions as pic-
tures. For example the following two pictures represent subsets of Fn(3, 2):

n

p

n

p

n

p

1 2 3

n p

p n

n p

1

2 3

The picture on the left represents the subset of Fn(3, 2) containing the three
functions {(1, p)}, {(1, p), (2, p), (3, p)}, and {(2, n), (3, n)}. The picture on
the right shows a full subset of Fn(3, 2). (The collection of functions rep-
resented on the left is not full.) The reader may check that the family
represented by the picture on the right fails to have property (†)3. Thus

this picture shows Ĩ(3) > 3, assuming that Ĩ(3) is well-defined.

Theorem 2.3. For each n ∈ N, the properties (∗)n and (†)n are equivalent.

Hence I(n) is well-defined if and only if Ĩ(n) is, and if they are both well-

defined then I(n) = Ĩ(n).

Proof. We prove first that (†)n implies (∗)n. Fix k ∈ N and suppose that
(†)n holds. Let X be a set and let (I1,J1), (I2,J2), . . . , (Ik,Jk) be pairs of
incompatible ideals on X.

For each A ⊆ X, define a function φA ∈ Fn(k, 2) as follows. For every
` ∈ {1, 2, . . . , k}, let ` ∈ dom(φA) if and only if A chooses between I` and
J`, and for all ` ∈ dom(φA), let

φA(`) =

{
p if A ∈ I` \ J`
n if A ∈ J` \ I`.

Let us say that A ⊆ X is tame if for all ` ∈ {1, 2, . . . , k}, either A ∈ I` or
A ∈ J`. Then let

F = {φA : A ⊆ X is tame} .
Clearly, F ⊆ Fn(k, 2).

Claim. F is full.

Proof of claim. For everym ∈ {1, 2, . . . , k}\{`}, use the fact that Im and Jm
are incompatible to fix some Am ⊆ X such that Am ∈ Im and N\Am ∈ Jm.
For convenience, let Apm denote Am, and let Anm denote N \Am.
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Fix ` ∈ {1, 2, . . . , k}, and partition A` into 2k−1 sets as follows. For each
function f from {1, 2, . . . , k} \ {`} to {p, n}, define

Af` =
⋂{

A
f(m)
m : m ∈ {1, 2, . . . , k} \ {`}

}
∩A`.

There are only finitely many functions from {1, 2, . . . , k} \ {`} to {p, n},
so (because J` is closed under finite unions) if every Af` were in J` then

A` =
⋃
f :{1,2,...,k}\{`}→{p,n}A

f
` would also be in J`. But A` /∈ J`, because

N \ A` ∈ J`. Thus there is some f such that Af` /∈ J`. On the other hand,

Af` ∈ I` because Af` ⊆ A` ∈ I`. Hence Af` chooses between I` and J`, and
in fact φ

Af
`
(`) = p.

For each m ∈ {1, 2, . . . , k} \ {`}, either Af` ⊆ A
p
m, in which case Af` ∈ Im,

or Af` ⊆ Anm, in which case Af` ∈ Jm. From this and the fact that Af` ∈ I`,
it follows that Af` is tame.

Thus we have found a tame A ⊆ X with φA(`) = p. A similar argument
(which proceeds by partitioning N \A` instead of A`) shows that there is a
tame A ⊆ X with φA(`) = n. As ` ∈ {1, 2, . . . , k} was arbitrary, we conclude
that F is full. �

Applying (†)n, there is some G ⊆ F and some D ⊆
⋃
g∈G dom(g) such

that |D| ≥ n, and no two members of G disagree on D. For each g ∈ G, fix
some particular tame subset Ag of X such that φAg = g. Let A =

⋃
g∈G Ag.

We claim that A chooses between the ideals I` and J` for every ` ∈ D. Fix
` ∈ D, and suppose that g(`) = p for every g ∈ G with ` ∈ dom(g). Then
Ag ∈ I` \ J` for all g ∈ G with ` ∈ dom(g). For ` /∈ dom(g), Ag ∈ I`
and Ag ∈ J` (because Ag is tame). Hence Ag ∈ I` for all g ∈ G. As I` is
closed under finite unions, this implies A ∈ I`. Because J` is closed under
taking subsets, if A ∈ J` then Ag ∈ J` for every g ∈ G. But this is not
the case, because ` ∈ dom(g) for at least one g ∈ G, in which case g(`) = p
and Ag /∈ J`. Thus A ∈ I` \ J`. Similarly, if g(`) = n for every g ∈ G
with ` ∈ dom(g), then A ∈ J` \ I`. Either way, A chooses between I` and
J`. Because this is true for every ` ∈ D, and because |D| ≥ n, the set A
chooses between at least n of the pairs (I1,J1), (I2,J2), . . . , (Ik,Jk). This
completes the proof that (†)n implies (∗)n.

We now prove the converse direction, that (∗)n implies (†)n. Fix k ∈ N,
and suppose that (∗)n holds. Let F ⊆ Fn(k, 2) be full.

Let X = F ×N and for each ` ≤ k define two ideals I` and J` as follows:

I` = {A ⊆ X : A ∩ ({f} × N) is finite for every f ∈ F with f(`) = p} ,

J` = {A ⊆ X : A ∩ ({f} × N) is finite for every f ∈ F with f(`) = n} .
Fix ` ≤ k. Because F is full, there is some f ∈ F with f(`) = p. Therefore

X /∈ I`. All the other parts of the definition of an ideal are easy to check
for I`, so I` is an ideal on X. Similarly, the fullness of F implies that J` is



6 W. R. BRIAN AND P. B. LARSON

an ideal on X. To see that I` and J` are incompatible, consider

A =
⋃
{{f} × N : f ∈ F and f(`) 6= p} .

It is clear that A ∈ I`, and that

N \A =
⋃
{{f} × N : f ∈ F and f(`) = p}

⊆
⋃
{{f} × N : f ∈ F and f(`) 6= n} ∈ J`.

Thus I` and J` are incompatible for each ` ≤ k.
Applying (∗)n, there is some A ⊆ X such that A chooses between at least

n of the pairs (I1,J1), (I2,J2), . . . , (Ik,Jk). Let

G = {f ∈ F : A ∩ ({f} × N) is infinite} ,
D = {` ≤ k : A chooses between I` and J`} .

By our choice of A, we have |D| ≥ n. Thus, to prove (∗)n, it suffices to show
that D ⊆

⋃
g∈G dom(g) and that no two members of G disagree on D.

If ` ∈ D, then A chooses between I` and J`, and in particular, either
A /∈ I` or A /∈ J`. Either way, this implies A∩ ({f}×N) is infinite for some
f ∈ F with ` ∈ dom(f). But then f ∈ G, so this shows ` ∈

⋃
g∈G dom(g).

As ` was an arbitrary member of D, we have D ⊆
⋃
g∈G dom(g).

If ` ∈ D, then A chooses between I` and J`, and in particular, either
A ∈ I` or A ∈ J`. Suppose for now that A ∈ I`. The definition of I` implies
that A ∩ ({f} × N) is finite for every f ∈ F with f(`) = p; but then the
definition of G implies that f /∈ G. Hence if A ∈ I`, then f(`) 6= p for all
g ∈ G (by which we mean that if g ∈ G then either g(`) = n or ` /∈ dom(g)).
Similarly, if A ∈ J`, then g(`) 6= n for all g ∈ G. Either way, no two members
of G disagree at `. As ` was an arbitrary member of D, no two members of
G disagree on D. �

3. Partitions in hypergraphs: an upper bound for I(n)

In this section we prove the main theorem by showing that I(n) is well-
defined for all n ∈ N, and obtain the upper bound I(n + 1) ≤ 1 +

∑n
k=1

n
k ,

which implies
I(n) < n lnn+ γn− lnn+ 3

2 − γ,
where γ ≈ .5772156649 is the Euler-Mascheroni constant.

To show that I(n) is well-defined and prove this upper bound, we do not
analyze I(n) directly. Instead we introduce another problem of extremal
combinatorics, defining another function H(n). This function has a simpler
definition than I(n), and seems significantly easier to work with. We show
that I(n+ 1) ≤ H(n) + 1 for all n, so that any upper bounds one might find
for H(n) automatically give upper bounds for I(n) also.

Recall that a hypergraph is a set V (called vertices) together with a col-
lection H of subsets of V (called hyperedges). A hypergraph (V,H) is said
to contain a partition of size n if there is some D ⊆ V and P ⊆ H such that
|D| = n and every member of D is contained in exactly one member of P.
In this case, we say that D and P form a partition in (V,H).
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For example, the picture on the left above shows a hypergraph with 8 vertices
and 4 hyperedges. The picture on the right shows that it contains a partition
of size 4.

Given a hypergraph (V,H), a vertex v ∈ V is called isolated if v /∈
⋃
H.

Given a hypergraph, we will be interested in the problem of finding in
it a partition involving as many vertices as possible. For example, in the
hypergraph above we found a partition of size 4, and one may check that
this is the largest possible: i.e., there is no partition of size ≥5.

Definition 3.1. Define H(n) to be the greatest k ∈ N such that there is a
hypergraph (V,H) with |V | = k having no isolated vertices and containing
no partitions of size greater than n. If there is no such k, then we say that
H(n) is not well-defined.

For example, because the hypergraph pictured above does not contain any
partitions of size >4, it shows that if H(4) is well-defined, then H(4) ≥ 8.

Theorem 3.2. Let n ∈ N. If F ⊆ Fn(k, 2) is full and k ≥ H(n), then F
satisfies property (†)n+1. Consequently, if H(n) is well-defined, then so is
I(n+ 1), and I(n+ 1) ≤ H(n) + 1.

Proof. Let F ⊆ Fn(k, 2) be full, and suppose that k ≥ H(n) + 1. Define a
hypergraph by setting V = {1, 2, . . . , k} and

H = {dom(f) : f ∈ F} .
Because F is full,

⋃
H = {1, 2, . . . , k}. In other words, the hypergraph

(V,H) has no isolated points. Because k > H(n), (V,H) contains a partition
of size greater than n. Fix some E ⊆ H and some D ⊆ V with |D| > n such
that every member of D is contained in exactly one member of E .

For each D ∈ E , choose a function fG ∈ G with dom(fG) = G. Let
G = {fG : G ∈ E}. Then D ⊆

⋃
E =

⋃
f∈G dom(f), but no two members of

G contain a common member of D. Hence all the functions in G agree on
D, and as |D| ≥ n+ 1, it follows that G satisfies property (†)n+1. �

To prove our paper’s main theorem, it remains now to show that H(n)
is well-defined for every n. In fact, this is relatively easy: the more difficult
part of this section is to prove an upper bound with leading term n log n.
The well-definedness of H(n) can be proved in a paragraph or two by using
the sunflower lemma of Erdős and Rado [6], or by using the Sauer-Shelah
lemma [11, 12]. (Shelah attributes the lemma to Perles; it was proved inde-
pendently, and possibly earlier, by Vapnik and Červonenkis [13]). The proof
we give presently is neither of these, however. While slightly longer, it has
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the advantage of being elementary and entirely self-contained. This proof of
the well-definedness of H(n) and I(n) gives quadratic polynomials for their
upper bounds.

If (V,H) has no isolated points, but (V,H\{E}) does have isolated points
for any E ∈ H, then (V,H) is called economical.

Lemma 3.3. Suppose (V,H) is a hypergraph with no isolated points. If H
is finite, then there is some H′ ⊆ H such that (V,H′) is economical and has
no isolated points.

Proof. Delete hyperedges from H, one by one, as long as it is possible to
delete a hyperedge without creating any isolated points. When it is no longer
possible to do so (which must be the case after finitely many steps), we have
found H′. �

Theorem 3.4. Suppose (V,H) is a hypergraph without isolated points, and
|V | > n2. Then (V,H) contains a partition of size greater than n.

Proof. If any E ∈ H contains more than n vertices, then taking X = E
and P = {E} shows that (V,H) contains a partition of size >n. So let us
suppose that each E ∈ H contains at most n vertices.

Suppose V is finite. This implies H is also finite (of size at most 2|V |). By
the previous lemma, there is some H′ ⊆ H such that (V,H′) is economical.
Because H′ is economical, we may for every E ∈ H′ find some vE ∈ V such
that vE is isolated in (V,H′ \ {E}). Then {vE : E ∈ H′} and H′ form a
partition in (V,H) of size |H′|. As (V,H) contains no isolated points, and
|V | > n2, and every E ∈ H′ contains at most n vertices, we have |H′| > n.
This finishes the proof for the case that V is finite.

Now suppose V is infinite. Pick some finite W ⊆ V with |W | > n2, and
let HW = {W ∩ E : E ∈ H}. By the previous paragraph, (W,HW ) contains
a partition of size >n, i.e., there is some D ⊆ W with |D| > n and some
G ⊆ HW such that each member of D is contained in exactly one member
of G. For each G ∈ G, choose some EG ∈ H such that EG ∩D = G. Then
D and {EG : G ∈ G} form a partition of size |D| > n in (V,H). �

Theorem 3.5. H(n) and I(n) are well-defined for all n ∈ N. Furthermore,
H(n) ≤ n2 and I(n) ≤ n2 − 2n+ 2 for all n.

Proof. From Theorems 3.2 and 3.4 it follows that H(n) is well-defined and
H(n) ≤ n2 for all n, and that I(n) is well-defined and

I(n) ≤ H(n− 1) + 1 ≤ (n− 1)2 + 1 = n2 − 2n+ 2

for all n ≥ 2. To finish the proof, all that remains is an easy observation:
I(1) is well-defined, and I(1) = 1. �

Now that we know I(n) and H(n) are well-defined, we proceed to sharpen
our upper bound on their values. As we will see in the following section,
the next theorem gives the right growth rate for I(n) and H(n), up to a
constant factor.
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Lemma 3.6. H(n) is equal to the greatest k ∈ N such that there is an
economical hypergraph (V,H) with |V | = k containing no partitions of size
greater than n.

Proof. By definition, there is a hypergraph (V,H0) with |V | = H(n) con-
taining no isolated points, and containing no partitions of size greater than
n. By Lemma 3.3, there is some H ⊆ H0 such that (V,H) is economical.
If X and P form a partition in (V,H), then they also form a partition in
(V,H0); hence (V,H) contains no partitions of size greater than n. Thus the
number k described in the lemma is ≥H(n). The reverse inequality follows
immediately from the definition of H(n). �

Theorem 3.7. H(n) ≤
∑n

k=1
n
k for all n ∈ N.

Proof. Fix n ∈ N, and let (V,H) be an economical hypergraph containing
no partition of size greater than n. To prove the theorem, it suffices (by the
previous lemma) to show |V | ≤

∑n
k=1

n
k .

Recall that a vertex v ∈ V has degree d in (V,H) if |{E ∈ H : v ∈ E}| = d.
For each k ≤ n, define

Dk = {v ∈ V : v has degree k} .
More generally, if H′ ⊆ H then define

DH
′

k =
{
v ∈ V : v has degree k in (V,H′)

}
.

Observe that D1 and H form a partition in (V,H). This implies |D1| ≤
n. Because (V,H) is economical, there is an injection from H to V . (For
example, any injection that maps each E ∈ H to some vE that is isolated in
(V,H \ {E}).) Hence |H| ≤ |D1| ≤ n. It follows that (V,H) has no vertices
of degree greater than n. As (V,H) also has no isolated points,

V =
n⋃
k=1

Dk and |V | =
n∑
k=1

|Dk| .

For each k ≤ n, define mk = k|Dk|.
Fix j with 0 ≤ j < n. In the next part of the proof, our goal will be to

produce an inequality, labeled (Ineqj) below, that constrains the values of
the mk for k ≤ j + 1.

Let ` = n− |H| and let F1, F2, . . . , F` be any ` distinct sets that are not
in H. Recall that |H| ≤ n, so that ` ≥ 0. The Fi will be used as dummy
variables below. (We think of the Fi as “fake hyperedges” whose purpose is
to allow us to pretend that |H| = n, even if really |H| < n. In what follows,
one gets the right idea by thinking of each Fi as an empty edge.) Let

Deletej = {A : A ⊆ H ∪ {Fi : i ≤ `} and |A| = n− j} .
Note that |Deletej | =

(
n
j

)
.

Roughly, our idea for obtaining an inequality constraining m1, . . . ,mj+1

is as follows. Each A ∈ Deletej gives rise to a subset A∩H of H. Observing
that A ∩ H and DA∩H1 form a partition in (V,H), this means that DA∩H1
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must have size ≤n for each A. Summing over all A ∈ Deletej will give the
desired inequality.

Fix k ≤ n and v ∈ Dk = DHk . Given any H′ ⊆ H, note that v ∈ DH′
1 if

and only if |{E ∈ H′ : v ∈ E}| = 1, and this is the case if and only if∣∣{E ∈ H \ H′ : v ∈ E}∣∣ = k − 1.

Therefore, given A ∈ Deletej , v ∈ DA∩H1 if and only if the j members of
(H∪ {Fi : i ≤ `}) \ A consist of exactly k − 1 members of the k-element set
{E ∈ H : v ∈ E}, plus any j − (k − 1) other members of the n-element set
H ∪ {Fi : i ≤ `}. Hence, defining

Sv =
{
A ∈ Deletej : v ∈ DA∩H1

}
,

we have

|Sv| =

(
k

k − 1

)(
n− k

j − (k − 1)

)
= k

(
n− k

j − k + 1

)
whenever k ≤ j + 1, and |Sv| = 0 whenever k > j + 1. Note that |Sv| does
not depend on v, but only on the degree k of v and on j.

By varying k and v, and summing over all A ∈ Deletej , we obtain

∑
A∈Deletej

∣∣DH∩A1

∣∣ =
∑
v∈V
|Sv| =

n∑
k=1

∑
v∈Dk

|Sv| =

j+1∑
k=1

∑
v∈Dk

|Sv|

=

j+1∑
k=1

∑
v∈Dk

k

(
n− k

j − k + 1

)
=

j+1∑
k=1

|Dk| k
(

n− k
j − k + 1

)

=

j+1∑
k=1

mk

(
n− k

j − k + 1

)
.

Recall that for any H′ ⊆ H, DH
′

1 and H′ form a partition in (V,H). This

implies
∣∣∣DH′

1

∣∣∣ ≤ n for all H′ ⊆ H, and so

∑
A∈Deletej

∣∣DH∩A1

∣∣ ≤ ∑
A∈Deletej

n = n |Deletej | = n

(
n

j

)
.

Putting these observations together, we arrive at what we were aiming for,
namely an inequality that constrains the mk for k ≤ j + 1:

(Ineqj)

j+1∑
k=1

mj

(
n− k

j − k + 1

)
≤ n

(
n

j

)
.

The next step in our proof is to take a positive linear combination of
the inequalities (Ineq0), (Ineq1), . . . , (Ineqn−1) in order to obtain a single
inequality. The coefficients for this linear combination come from taking
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the reciprocals of row n − 1 of Pascal’s triangle. That is, by taking the
linear combination

1(
n−1

0

)(Ineq0) +
1(
n−1

1

)(Ineq1) +
1(
n−1

2

)(Ineq2) + · · ·+ 1(
n−1
n−1

)(Ineqn−1),

we arrive at a new inequality combining all the (Ineqj):

(?)

n−1∑
j=0

∑j+1
k=1 mk

(
n−k
j−k+1

)(
n−1
j

) ≤
n−1∑
j=0

n
(
n
j

)(
n−1
j

)
While it is far from obvious at this point, we shall see that (?) simplifies

to the inequality claimed in the statement of the theorem. The following
claim shows how to simplify the left-hand side of (∗).

Claim.
n−1∑
j=0

∑j+1
k=1 mk

(
n−k
j−k+1

)(
n−1
j

) =
n∑
k=1

nmk

k
.

Proof of Claim. Using a Fubini-like trick to rearrange the sum on the left,
we obtain
n−1∑
j=0

∑j+1
k=1 mk

(
n−k
j−k+1

)(
n−1
j

) =
n−1∑
j=0

j+1∑
k=1

mk

(
n−k
j−k+1

)(
n−1
j

) =
∑

0<k≤ j+1≤n
mk

(
n−k
j−k+1

)(
n−1
j

)
=

n∑
k=1

n−1∑
j=k−1

mk

(
n−k
j−k+1

)(
n−1
j

) =

n∑
k=1

mk

n−1∑
j=k−1

(
n−k
j−k+1

)(
n−1
j

)
Thus, to prove the claim, it suffices to show that

(‡)
n−1∑
j=k−1

(
n−k
j−k+1

)(
n−1
j

) =
n

k

whenever 1 ≤ k ≤ n.
To see this, first recall that(
m

r

)(
r

s

)
=

(
m

s

)(
m− s
r − s

)
for all m, r, s ∈ N with s ≤ r ≤ m.

(See, e.g., [7, Eq. 5.21].) Setting m = n− 1, r = j, s = k − 1 gives(
n− 1

j

)(
j

k − 1

)
=

(
n− 1

k − 1

)(
n− k

j − k + 1

)
,

or equivalently (
n−k
j−k+1

)(
n−1
j

) =

(
j

k−1

)(
n−1
k−1

) .
Substituting this into the left-hand side of (‡) yields

n−1∑
j=k−1

(
n−k
j−k+1

)(
n−1
j

) =
n−1∑
j=k−1

(
j

k−1

)(
n−1
k−1

) =
1(
n−1
k−1

) n−1∑
j=k−1

(
j

k − 1

)
.
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Now recall the well-known hockey stick identity [9], also sometimes known
as the Christmas stocking identity, which states that

m∑
j=r

(
j

r

)
=

(
m+ 1

r + 1

)
for all m, r ∈ N with r ≤ m.

Plugging in r = k − 1 and m = n− 1, we get

n−1∑
j=k−1

(
j

k − 1

)
=

(
n

k

)
,

and combining this with our earlier observations gives

n−1∑
j=k−1

(
n−k
j−k+1

)(
n−1
j

) =
1(
n−1
k−1

) n−1∑
j=k−1

(
j

k − 1

)
=

(
n
k

)(
n−1
k−1

) =
n

k
,

which proves (‡) and finishes the proof of the claim. �

Returning to the inequality (?), and applying the preceding claim, we
obtain

n∑
k=1

nmk

k
≤

n−1∑
j=0

n
(
n
j

)(
n−1
j

) .
To simplify the right-hand side, observe that

n−1∑
j=0

n
(
n
j

)(
n−1
j

) = n
n−1∑
j=0

(
n
j

)(
n−1
j

) = n
n−1∑
j=0

n!
(n−j)!j!
(n−1)!

(n−j−1)!j!

= n
n−1∑
j=0

n

n− j
.

Substituting k = n− j and reversing the order of the summation,

n

n−1∑
j=0

n

n− j
= n

n∑
k=1

n

k
.

Hence
n∑
k=1

nmk

k
≤ n

n∑
k=1

n

k

and dividing both sides by n gives
n∑
k=1

mk

k
≤

n∑
k=1

n

k
.

But recall the definition of mk, namely mk = k |Dk|, where Dk denotes the
number of vertices in (V,H) of degree k. As every vertex has degree at least
1 (because there are no isolated points) and at most n (because |H| ≤ n),

|V | =

n∑
k=1

|Dk| =

n∑
k=1

mk

k
≤

n∑
k=1

n

k

as claimed. �
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The following corollary simply applies well-known results and techniques
to rephrase the conclusion of the previous theorem in a way that underscores
the asymptotic growth rates of H(n) and I(n).

Corollary 3.8. For every n ∈ N,

H(n) < n lnn+ γn+ 1
2 ,

I(n) < n lnn+ γn− lnn+ 3
2 − γ.

Proof. Let Hn = 1+ 1
2 + 1

3 +· · ·+ 1
n denote the nth harmonic number. Bounds

for Hn are given in [4, 8] (among other places), namely Hn < lnn+ γ + 1
2n

where γ ≈ .5772156649 is the Euler-Mascheroni constant. The first assertion
of the corollary follows immediately from this and the previous theorem:

H(n) ≤ nHn < n lnn+ γn+ 1
2 .

For the second assertion, Theorem 3.2 and the previous paragraph com-
bine to give

I(n) ≤ nH(n− 1) + 1 < (n− 1) ln(n− 1) + γ(n− 1) + 3
2

≤ (n− 1) lnn+ γn− γ + 3
2 = n lnn+ γn− lnn+ 3

2 − γ,
which finishes the proof. �

The bound (n− 1) ln(n− 1) + γ(n− 1) + 3
2 ≤ n lnn+ γn− lnn+ 3

2 − γ
used in the proof has optimal coefficients on the right-hand side for the first
three terms, but the constant term is asymptotically too large by 1. With
a little more work one can obtain

I(n) < (n− 1) ln(n− 1) + γ(n− 1) + 3
2 ≤ n lnn+ γn− lnn+ 1

2 − γ + 1
2n−1

for all n ∈ N.

4. Lower bounds for I(n) and H(n)

We now move on to the task of finding a lower bound for I(n).

Definition 4.1. Given n, k ∈ N, a subset F of Fn(k, 2) is called I(n)-
bounding if it is full, and if for every G ⊆ F and D ⊆

⋃
g∈G dom(g) with

|D| ≥ n, there are two functions in G that disagree at a point of D.

Observe that, for all n ∈ N,

I(n) = min {k : there is no I(n)-bounding family of size ≥k}
= max {|

⋃
F| : F is I(n)-bounding}+ 1

Lemma 4.2. Define an infinite sequence k1, k2, k3, . . . of natural numbers
via the following recurrence relation:

k1 = 1 and kn =
⌊n

2

⌋
+ kbn2 c + kbn+1

2 c.

For every n, there is an I(n+ 1)-bounding full subset of Fn(kn, 2).
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Proof. We begin the proof by constructing a sequence T1, T2, T3, . . . of rooted
trees. Afterward, these trees will be used to construct the desired families
of functions. Recall that every rooted tree comes equipped with a natural
partial order: v ≤ w if and only if the unique path from the root to w
contains u. In what follows, we move freely between the notion of a rooted
tree as a particular type of pointed graph, and the notion of a rooted tree
as a particular type of partial order.

The construction of the Tn is by recursion. To begin, let T1 be the rooted
tree with exactly one vertex. Given T1, T2, . . . , Tn−1, the rooted tree Tn is
defined so that

◦ the bottom of Tn consists of
⌊
n
2

⌋
linearly ordered vertices, the bot-

tommost one being the root of Tn.
◦ the topmost of these

⌊
n
2

⌋
linearly ordered vertices has two vertices

immediately above it; one is the root of an isomorphic copy of Tbn2 c,
and the other is the root of an isomorphic copy of Tbn+1

2 c.

Tn ...
⌊
n
2

⌋
vertices

Tbn2 c Tbn+1
2 c

T1 T2 T3 T4 T5 T6

T7 T8 T16
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Let us say that a vertex v ∈ V (Tn) is splitting if it has more than one
immediate successor. The following claim is fairly obvious, but will be useful
in what follows:

Claim. For each n ∈ N, every v ∈ V (Tn) that is not ≤-maximal either is a
splitting vertex, or else it has a splitting vertex above it. Also, every splitting
vertex in V (Tn) has exactly two successors.

Proof of claim: Both assertions are easily proved by induction on n. �

For every non-maximal vertex v of Tn, let σ(v) denote the ≤-least splitting
vertex w such that v ≤ w. Some such vertex exists by the previous claim.

Recall that two vertices b and c in a partial order are incomparable if b 6≤ c
and c 6≤ b. If b and c are incomparable, then let us write b∧ c to denote the
≤-greatest vertex that is below both b and c. (Note that b∧c is well-defined,
because at least one vertex must be below both b and c, namely the root.)

Claim. Fix n ∈ N, and let D ⊆ V (Tn) with |D| > n. Then there exist
a, b, c ∈ D such that b and c are incomparable, and σ(a) = b ∧ c.

Proof of claim: The proof is by induction on n.
The base case n = 1 is vacuously true: T1 has only a single vertex, so

there is no D ⊆ V (T1) with |D| > 1.
Let n > 1 and suppose the claim holds for all m < n. (In fact, we really

only need the inductive hypothesis for m =
⌊
n
2

⌋
,
⌊
n+1

2

⌋
; observe that both

these values of m are strictly less than n when n > 1.) For convenience let
A, B, and C denote, respectively, the

⌊
n
2

⌋
vertices at the bottom of Tn, the∣∣∣V (Tbn2 c)

∣∣∣ vertices forming an isomorphic copy of Tbn2 c, and the
∣∣∣V (Tbn+1

2 c)
∣∣∣

vertices forming an isomorphic copy of Tbn+1
2 c.

Let D ⊆ V (Tn) with |D| > n. If |D ∩ B| >
⌊
n
2

⌋
then, because the claim

holds for
⌊
n
2

⌋
by hypothesis and the vertices in B form an isomorphic copy

of Tbn2 c, D∩B must contain some a, b, c such that b and c are incomparable

and σ(a) = b ∧ c. Similarly, if |D ∩ C| >
⌊
n+1

2

⌋
then, because the claim

holds for
⌊
n+1

2

⌋
by hypothesis, D ∩ C must contain some a, b, c such that b

and c are incomparable and σ(a) = b ∧ c. For the remaining case, suppose
that |D ∩B| ≤

⌊
n
2

⌋
and |D ∩ C| ≤

⌊
n+1

2

⌋
. Observe that

|D ∩ (B ∪ C)| = |D ∩B|+ |D ∩ C| ≤
⌊
n
2

⌋
+
⌊
n+1

2

⌋
= n

and because |D| > n, this implies D ∩A 6= ∅. Similarly,

|D ∩ (A ∪B)| ≤ |A|+ |D ∩B| ≤
⌊
n
2

⌋
+
⌊
n
2

⌋
≤ n

and because |D| > n, this implies D ∩ C 6= ∅. Similarly,

|D ∩ (A ∪ C)| ≤ |A|+ |D ∩ C| ≤
⌊
n
2

⌋
+
⌊
n+1

2

⌋
= n

and because |D| > n, this implies D∩B 6= ∅. Thus each of D∩A, D∩B, and
D ∩ C is nonempty. It is clear that if we choose any a ∈ D ∩A, b ∈ D ∩B,
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and c ∈ D ∩ C, then b and c are incomparable, and σ(a) = b ∧ c. Thus the
claim is true for n and, by induction, the claim is true for all n ∈ N. �

Recall that a maximal chain in one of the Tn is a set of vertices of Tn that
is (1) linearly ordered by ≤, and (2) properly contained in no other linearly
ordered set of vertices. Equivalently, a maximal chain is (the underlying set
of) a path in Tn connecting the root to a ≤-maximal vertex.

Claim. For every n ∈ N, there is an I(n+1)-bounding family F ⊆ Fn(k, 2),
where k = |V (Tn)|.

Proof of claim: Fix n ∈ N, and let ≤ denote the natural tree order on V (Tn).
Every splitting vertex in V (Tn) has exactly two successors by a previous
claim; for every splitting vertex s ∈ V (Tn), arbitrarily define a bijection
λs from the two successors of s to the set {p, n}. For each maximal chain
P ⊆ V (Tn), if v is not the topmost vertex of P then let succP (v) denote the
vertex in P immediately above v.

To each maximal chain P in Tn we now associate two functions, denoted
f+
P and f−P . The domain of both functions is P . If v ∈ P is not the topmost

vertex of P , then define

f+
P (v) = f−P (v) = λσ(v)(succP (σ(v)))

and if v is the topmost vertex in P , then let f+
P (t) = p and f−P (t) = n.

P

n p

n pn pn pn pn pn pn p

n pn pn p

n p n p

n p

n p

n p
f−P

n p

n pn pn pn pn pn pn p

n pn pn p

n p n p

n p

n p

n p
f+
P
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By relabelling the vertices of Tn, we may consider

F =
{
f+
P , f

−
P : P is a maximal chain in Tn

}
to be a subset of Fn(k, 2), where k = |V (Tn)|. We claim that F is I(n+ 1)-
bounding.

For every non-maximal vertex v of Tn, there is are maximal chains P
and Q containing v, such that P and Q include different successors of σ(v).
But then v ∈ dom(f+

P ) and v ∈ dom(f+
Q ), and f+

P (v) 6= f+
Q (v), so that

{f+
P (v), f+

Q (v)} = {p, n}. If v is a maximal vertex of Tn, then there is a

unique path P containing v, and we have f+
P (v) = p and f−P (v) = n. Hence

F is full.
Suppose that G ⊆ F , that D ⊆

⋃
g∈G dom(g), and that |D| ≥ n + 1. We

claim that some two functions in G disagree on D. By a previous claim,
|D| > n implies that there are some a, b, c ∈ D such that b and c are
incomparable, and σ(a) = b ∧ c. Let gb, gc ∈ G such that b ∈ dom(gb) and
c ∈ dom(gc). By our construction of the functions in F , we must have
a ∈ dom(gb) ∩ dom(gc), and gb(a) = gb(σ(a)) 6= gc(σ(a)) = gc(a).

Hence F is I(n+ 1)-bounding. �

It is obvious from the construction of the Tn that |V (Tn)| = kn for every
n, so this claim completes the proof of the theorem. �

Theorem 4.3. Let k1, k2, k3, . . . denote the sequence defined in Lemma 4.2.

I(n) ≥ kn−1 + 1

for every n > 1. Moreover, kn >
1
2(n− 1) log2(n− 1)− 1

2n+ 2, and thus

I(n) > 1
2(n− 1) log2(n− 1)− 1

2n+ 2

for every n > 1.

Proof. Let f(x) = 1
2(x log2 x − x + 1). Note that the second derive of f(x)

is positive everywhere on the interval (0,∞):

f ′(x) = 1
2 ln 2(1 + lnx)− 1

2 and f ′′(x) = 1
(2 ln 2)x > 0.

This implies that f(x) is convex on (0,∞), meaning that if 0 < a < b,
the graph of y = f(x) contains no points strictly above the line segment
connecting (a, f(a)) and (b, f(b)). In particular, if x ∈ (0,∞) then

f(x+ 1
2) ≤ 1

2(f(x) + f(x+ 1)),

and this implies f
(⌊

n
2

⌋)
+ f

(⌊
n+1

2

⌋)
≥ 2f

(
n
2

)
for every n ∈ N.

Let k1, k2, k3, . . . denote the sequence defined in Lemma 4.2. We prove
by induction on n that f(n) < kn for all n ∈ N. The base case is straight-
forward: f(1) = 0 < 1 = k1. For the inductive step, fix n > 1 and suppose
k` < f(`) whenever ` < n. Using the conclusion of the previous paragraph
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and the inductive hypothesis, we have

kn =
⌊n

2

⌋
+ kbn2 c + kbn+1

2 c >
⌊n

2

⌋
+ f

(⌊
n
2

⌋)
+ f

(⌊
n+1

2

⌋)
≥ n−1

2 + 2f
(
n
2

)
= n−1

2 + n
2 log2

n
2 −

n
2 + 1 = 1

2(n log2
n
2 ) + 1

2 = 1
2(n log2 n− n+ 1) = f(n).

By induction, f(n) < kn for all n ∈ N as claimed.
By Lemma 4.2, there is for every n ∈ N a I(n + 1)-bounding full subset

of Fn(kn, 2). Thus for every n > 1,

I(n) ≥ kn−1 + 1 > f(n− 1) + 1 = 1
2(n− 1) log2(n− 1)− 1

2n+ 2,

as claimed. �

Corollary 4.4. Let k1, k2, k3, . . . denote the sequence defined in Lemma 4.2.
Then for every n, H(n) ≥ kn and consequently,

H(n) > 1
2n log2 n− 1

2n+ 1
2 .

Proof. The first inequality follows from the previous theorem and Theo-
rem 3.2, which asserts that H(n) ≥ I(n + 1) − 1 for all n. The second
inequality is then a direct consequence of the lower bound on the kn found
in the proof of Theorem 4.3. �

The bound in this corollary implies that there is, for every n, a hypergraph
on kn vertices containing no partitions of size greater than n. Indeed, the
proof of Lemma 4.2 gives us such hypergraphs: for each n, if Bn denotes the
set of all branches through the tree Tn, then the hypergraph (Tn,Bn) is a
witness to the assertion H(n) ≥ |Tn| = kn.

The next corollary simply converts the bound from Theorem 4.3 into a
form that reveals its asymptotic growth rate.

Corollary 4.5. For every n ∈ N,

I(n) > 1
2n log2 n− 1

2n−
1
2 log2 n+ ln 16−1

ln 4 .

Proof. First note that if 0 < x < 1, then, using the Taylor series for ln(1−x),(
1
x − 1

)
ln(1− x) =

(
1

x
− 1

) ∞∑
k=1

−xk

k
=

∞∑
k=1

−xk

k

(
1

x
− 1

)
= x− 1 +

x2

2
− x

2
+
x3

3
− x2

3
+
x4

4
− x3

4
+ . . .

= −1 +

∞∑
k=1

xk

k(k + 1)
≥ −1.

If n > 1, then putting x = 1
n shows

(n−1) ln
(
1− 1

n

)
= (n−1) ln

(
n−1
n

)
= (n−1) ln(n−1)−(n−1) ln(n) ≥ −1

or, after rearranging and dividing by ln 2,

(n− 1) log2(n− 1) ≥ n log2 n− log2 n− 1
ln 2 .
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Combining this with Theorem 4.3, we get

I(n) > 1
2(n− 1) log2(n− 1)− 1

2n+ 2

≥ 1
2

(
n log2 n− log2 n− 1

ln 2

)
− 1

2n+ 2

= 1
2n log2 n− 1

2n−
1
2 log2 n+ ln 16−1

ln 4

for all n > 1. It is easy to check that this bound also holds for I(1) = 1. �

Asymptotically, our lower and upper bounds for I(n) and H(n) differ
only by a constant multiple, so we have proved that I(n) = Θ(log n) and
H(n) = Θ(log n). We conjecture that H(n) = n lnn + o(n log n), so that
it is the upper bound, rather than the lower bound, that gives the correct
coefficient for the n log n term.

For small values of n, our upper and lower bounds for I(n) and H(n)
agree, and therefore give us the exact values of these numbers. We record
this observation in the next theorem, and compute as well a few other values
of I(n) and H(n).

Theorem 4.6. The first six values of I(n) and H(n) are:

◦ I(1) = 1
◦ I(2) = 2
◦ I(3) = 4
◦ I(4) = 6
◦ I(5) = 9
◦ I(6) = 11

◦ H(1) = 1
◦ H(2) = 3
◦ H(3) = 5
◦ H(4) = 8
◦ H(5) = 10
◦ H(6) = 14

Proof. One may easily check that the sequence k1, k2, k3, . . . defined in
Lemma 4.2 begins 1, 3, 5, 8, 10, 13, . . . . By Theorems 3.2, 3.7, and 4.3, we
know that

kn + 1 ≤ I(n+ 1) ≤ H(n) + 1

for all n > 1 and

kn ≤ H(n) ≤
n∑
k=1

k

n

for all n. For n = 1, 2, 3, 4 these bounds match (after rounding the upper
bound for H(n) down to the nearest integer), thus proving that

◦ I(2) = 2
◦ I(3) = 4
◦ I(4) = 6
◦ I(5) = 9

◦ H(1) = 1
◦ H(2) = 3
◦ H(3) = 5
◦ H(4) = 8

Furthermore, it is easy to see that I(1) = 1. Putting n = 5 into the inequal-
ities above, we get

11 ≤ I(6) ≤ 12 and 10 ≤ H(5) ≤ 11,
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and for n = 6 we get

13 ≤ H(6) ≤ 14.

To finish the proof of the theorem, we must show that H(5) ≤ 10 (which
implies I(6) ≤ 11) and that H(6) ≥ 14.

To show H(6) ≥ 14, it suffices to exhibit a hypergraph on 14 vertices
containing no partitions of size greater than 6. Here are three such examples:

For each of these hypergraphs, it is not obvious that there are no partitions
of size > 6, but it can be checked manually with sufficient patience. For
each subset of the hyperedges, one merely has to check that no more than
6 vertices are contained in exactly one member of the subset. This is trivial
for each particular subset of the hyperedges; the only trouble is that there
are 26 = 64 cases to check for each hypergraph.

To show H(5) ≤ 10, let us suppose (aiming for a contradiction) that
H(5) ≥ 11. By Lemma 3.6, if H(5) ≥ 11 then there is an economical
hypergraph (V,H) with |V | ≥ 11 containing no partitions of size greater
than 5.

As in the proof of Theorem 3.4, we may for every E ∈ H find some vE ∈ V
such that vE is isolated in (V,H \ {E}). Then {vE : E ∈ H} and H form a
partition in (V,H) of size |H|. Hence |H| ≤ 5. Also, every E ∈ H has size
≤5, because E and {E} form a partition in (V,H) of size |E|.

If |E| ≤ 3 for every E ∈ H, then (as there are no isolated points) |H| ≤ 5
and |V | ≥ 11 imply there are at least 7 vertices each contained in exactly
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one member of H. But then these 7 or more vertices together with H form
a partition of size ≥7. Thus H contains hyperedges of size 4 or 5.

In fact, H must contain hyperedges of size 5. To see this, suppose (aiming
for a contradiction) that |E| ≤ 4 for every E ∈ H. Using the previous
paragraph, fix E ∈ H with |E| = 4. Observe that |F \ E| ≤ 2 for all
F ∈ H: otherwise, we would have both |F \ E| ≥ 3 and (using |F | ≤ 4,
which together with |F \ E| ≥ 3 implies |E ∩ F | ≤ 1) also |E \ F | ≥ 3, in
which case taking X = E4F and P = {E,F} would give a partition of size
≥6. Let W = V \E. Then |W | ≥ 7 and (we just showed that) each member
of H\{E} contains at most two points of W . As |H\{E}| ≤ 4, this implies
there are at least 6 points of W each of which is contained in exactly one
member of H \ {E}. But then taking X to be this set of ≥ 6 points and
P = H \ {E} gives a partition of size ≥6.

Thus H contains a hyperedge E of size 5. As in the previous paragraph,
observe that |F \ E| ≤ 2 for all F ∈ H: otherwise, we would have both
|F \ E| ≥ 3 and |E \ F | ≥ 3, in which case E4F and {E,F} would form a
partition of size ≥6.

Let W = V \ E and let G = {F ∩W : F ∈ H \ {E}}. Note that |G| ≤ 4
and that the hypergraph (W,G) has no isolated points. Also |W | = |V | −
|E| ≥ 6, and by the previous paragraph, each member of G has size ≤2. G
cannot consist of singletons because |G| < |Y |; thus there is some G ∈ G
with |G| = 2.

Similarly, let X = W \ G and let F = {F \G : F ∈ G \ {G}}. Then,
arguing as in the previous paragraph, |X| ≥ 4 and |F| ≤ 3, so F cannot
consist of singletons. Thus there is some F ∈ F such that |F | = 2. But since
the members of G all have size ≤2, this implies F ∈ G, and that G∩F = ∅.

Thus there are G,F ∈ G with |G| = |F | = 2 and G ∩ F = ∅. By the
definition of G, this means that there are A,B ∈ H such that |A \ E| =
|B \ E| = 2 and (A \ E) ∩ (B \ E) = ∅.

E

A B

If |E \ (A ∪B)| ≥ 2, then taking P = {A,B,E} and

X = (E \ (A ∪B)) ∪ (A \ E) ∪ (B \ E)

gives a partition of size ≥ 6. Thus |E \ (A ∪ B)| ≤ 1. But recall that
|A|, |B| ≤ 5, so this implies that

A \ (E ∩B) 6= ∅ and B \ (E ∩A) 6= ∅,
which means A4B has size ≥6. But then A4B and {A,B} form a partition
of size ≥6. Hence H(5) ≤ 10. �

One question left open by the previous proof is whether I(7) is equal to
14 or to 15. (Using the upper bounds stated in the proof, it must be one
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of these.) Either answer would be interesting. If I(7) = 14, then we would
know that the upper bound I(n) ≤ H(n− 1) + 1 can be strict. If I(7) = 15,
then we would know that the lower bound I(n) ≥ kn−1 + 1 can be strict. At
the moment we do not know that either of these inequalities can be strict,
because there are no cases where we can compute I(n), except where n = 1
or where (as in the previous proof) the upper and lower bounds match.

We suspect that both inequalities can be strict. Concerning the question
of whether the bound I(n) ≥ kn−1 + 1 can be strict, let us remark that
even if the families of functions constructed in the proof of Lemma 4.2 are
optimal in size, they are not unique. For example, the picture following
Definition 2.2 gives an example of a I(3)-bounding family F that is different
from the one constructed from T2 in the proof of Lemma 4.2. Similarly,
the following picture shows a I(4)-bounding family that seems completely
unrelated to the one constructed from T3:

n

p

n

p

n

p

n

p

n p

1 2

3

4

5

5. Conditionally convergent series

In this section we apply the results of Sections 2 and 3 to prove the second
theorem stated in the introduction.

In what follows, ā always denotes a sequence 〈an : n ∈ N〉 of real numbers;
similarly, āi always denotes a sequence

〈
ain : n ∈ N

〉
. If ā is a sequence of

real numbers and A ⊆ N, then
∑

(ā, A) denotes the subseries
∑

n∈A an.

Definition 5.1. For each n ∈ N, let ß(n) denote the least k ∈ N with the
following property:

(‡)n For any k conditionally convergent series, there is some A ⊆ N send-
ing at least n of those series to infinity.

If there is no such k ∈ N, then we say that Ĩ(n) is not well-defined.

Theorem 5.2. The number ß(n) is well-defined for each n ∈ N. Further-
more, ß(n) ≤ I(n) for all n.
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Proof. Let k ≥ I(n) and let {ā1, ā2, . . . , āk} be a collection of k conditionally
convergent series. For each ` ∈ {1, 2, . . . , k}, define the following two ideals:

I` =
{
A ⊆ N :

∑
(āi, {n ∈ A : an > 0}) converges

}
,

J` =
{
A ⊆ N :

∑
(āi, {n ∈ A : an < 0}) converges

}
.

It is not difficult to see that I` and J` are incompatible ideals on N for every
` ≤ k. It also is not difficult to see that if A ∈ I` \J`, then

∑
(ā`, A) = −∞,

and if A ∈ J` \ I`, then
∑

(ā`, A) =∞. Hence if A chooses between I` and
J`, then A sends ā` to infinity. As k ≥ I(n), there is some A ⊆ N that
chooses between I` and J` for at least n distinct values of `; hence there is
some A ⊆ N that sends at least n of these k series to infinity. �

The inequality stated in the theorem above can be strict: It is proved in
[2] is that ß(3) = 3, but we saw in Theorem 4.6 that I(3) = 4.

The inequality ß(n) ≤ I(n) gives us an n log n-type upper bound for ß(n)
via the results of Section 3, namely ß(n) ≤ n lnn+ γn− lnn+ 3

2 − γ. Our
next theorem provides a nontrivial lower bound for ß(n).

Theorem 5.3. ß(n) ≥ 2n− 5 for every n ∈ N.

Proof. To prove this theorem, we construct for every n ∈ N a collection of
2n conditionally convergent series, such that no more than n+2 of the series
can be sent to infinity simultaneously. This shows that ß(n + 3) > 2n, or
equivalently that ß(n) ≥ 2n− 5, for every n. The proof expands on an idea
of Nazarov [10] presented in [2, Section 3], where the bound ß(3) ≥ 4 is
proved. The presentation here follows [2, Section 3] as closely as possible.

Fix n ∈ N. Partition N into adjacent intervals I1, I2, I3, . . . (the lengths
of which will be specified later in the proof). For each m ≥ 0, let bm denote
the length of the interval Im. The function m 7→ bm is rapidly increasing
(and just how rapidly it should increase is specified below). For convenience,
we shall take each bm to be an even number, so that the first member of
every interval Im is an odd number.

We now define our collection of 2n series (modulo the as-yet-undefined
sequence of bm’s) by specifying the terms of each one on each of the intervals
Im. Let us denote the series by ā1, ā2, . . . , ā2n, and write āi =

〈
aik : k ∈ N

〉
.

Given m = `n+ j, 0 ≤ j < n, define aik on the interval Im as follows:

◦ If i ≤ n and i 6= j, then aik = 1
m for odd k and aik = − 1

m for even k.

◦ ajk = − 1
m for odd m and ajk = 1

m for even m.

◦ If i ≥ n and i 6= n+ j, then aik = 0 for all k.

◦ an+j
k = − 1

bm
for odd k and an+j

k = 1
bm

for even k.
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Explicitly, our 2n series look like this on Im when m ≡ j (modulo n):

series 1 : + 1
m − 1

m + 1
m − 1

m + 1
m − 1

m + 1
m − 1

m . . .

series 2 : + 1
m − 1

m + 1
m − 1

m + 1
m − 1

m + 1
m − 1

m . . .

...
...

...
...

...
...

...
...

...

series j : − 1
m + 1

m − 1
m + 1

m − 1
m + 1

m − 1
m + 1

m . . .

...
...

...
...

...
...

...
...

...

series n : + 1
m − 1

m + 1
m − 1

m + 1
m − 1

m + 1
m − 1

m . . .

series n+1 : +0 +0 +0 +0 +0 +0 +0 +0 . . .

series n+2 : +0 +0 +0 +0 +0 +0 +0 +0 . . .

...
...

...
...

...
...

...
...

...

series n+j : + 1
bm

− 1
bm

+ 1
bm

− 1
bm

+ 1
bm

− 1
bm

+ 1
bm

− 1
bm

. . .

...
...

...
...

...
...

...
...

...

series 2n : +0 +0 +0 +0 +0 +0 +0 +0 . . .

Assuming limm→∞ bm = ∞, it is clear that each of these series converges
conditionally to 0.

Before proceeding with a detailed proof of why these 2n series have the
stated property, we describe the idea behind it; this paragraph can be omit-
ted by readers who just want the detailed proof. Suppose A ⊆ N sends
the series ān+1 to infinity. Because this series only has nonzero terms on
blocks of the form I`n+1, we must have A ∩ I`n+1 6= ∅ for infinitely many
`. In fact, we can say more: if

∑
(ān+1, A) = ∞, then A ∩ I`n+1 must

contain “significantly more” odds than evens, for infinitely many `. This
has an effect on the series ā1, ā2, . . . , ān. Specifically, we must include “sig-
nificantly more” positive than negative terms in the series ā2, ā3, . . . , ān on
the block I`n+1, and we must include “significantly more” negative than
positive terms in the series ā1 on the block I`n+1. By making b`n+1 large
enough, we can ensure that including “significantly more” positive terms
than negative will force the partial sum of a the series ā2, ā3, . . . , ān to be
above 0 by the end of block I`n+1, and including “significantly more” neg-
ative terms than positive will force the partial sum of a the series ā1 to be
below 0 at the end of block I`n+1. Thus having

∑
(ān+1, A) =∞ forces the

partial sums of
∑

(ā2, A), . . . ,
∑

(ān, A) to be positive infinitely often, but it
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forces the partial sums of
∑

(ā1, A) to be negative infinitely often. Thus, if∑
(ān+1, A) =∞, then we cannot have

∑
(ā1, A) =∞, and we cannot have∑

(āi, A) = −∞ for any 2 ≤ i ≤ n. Similarly, if
∑

(ān+1, A) = −∞, then we
cannot have

∑
(ā1, A) = −∞, and we cannot have

∑
(āi, A) = ∞ for any

2 ≤ i ≤ n. In other words, if A sends ān+1 to infinity, and also sends ā1 to
infinity and (some of the) āi as well for 2 ≤ i ≤ n, then

∑
(ā1, A) must be

different from all of the
∑

(āi, A) for 2 ≤ i ≤ n; i.e., if the one is ∞, then
the others are −∞, and vice versa. Similarly, sending any ān+j to infinity
(where 1 ≤ j ≤ n), along with āj and (some of the) āi for 1 ≤ i ≤ n, i 6= j,
forces

∑
(āj , A) to be different from all of the

∑
(āi, A) for 1 ≤ i ≤ n, i 6= j.

But of course, everyone cannot be “different” at the same time. If ` of the
series ān+1, ān+2, . . . , ā2n are sent to infinity by some A ⊆ N, then at most
n+ 2− ` of the series ā1, ā2, . . . , ān are sent to infinity by A.

We will employ the following notation: given A ⊆ N, let

◦ A+ =
{
i ∈ {1, 2, . . . , 2n} :

∑
(āi, A) =∞

}
,

◦ A− =
{
i ∈ {1, 2, . . . , 2n} :

∑
(āi, A) = −∞

}
,

◦ A∨ = A+ ∪A−.

Our goal is to show |A∨| ≤ n+ 1 for all A ⊆ N.
Let b1, b2, . . . , bm, . . . be an increasing sequence of even numbers, with

b1 = 2, satisfying the following recurrence relation:

bm+1 ≥ m3(b1 + b2 + · · ·+ bm)

Consider the 2n series defined above in terms of the bm, and let A ⊆ N.

Claim. Let i ∈ {1, 2, . . . , n}.
◦ If n+ i ∈ A+, then i /∈ A+ and j /∈ A− for all j ∈ {1, 2, . . . , n} \ {i}.
◦ If n+ i ∈ A−, then i /∈ A− and j /∈ A+ for all j ∈ {1, 2, . . . , n} \ {i}.

Proof of claim. Suppose n + i ∈ A+. For each m, let ∆(m) denote the
imbalance of odd terms over even terms in A from block m:

∆(m) = |{` ∈ A ∩ Im : ` is odd}| − |{` ∈ A ∩ Im : ` is even}| .

Observe that we may use the quantity ∆(m) to compute the sum of our
(n+ i)th subseries on the mth block: if m ≡ j (modulo n), then

∑
(ān+i, A ∩ Im) =

{
∆(m)
bm

if j = i

0 if j 6= i.

It follows that ∆(m) > bm/m2 for infinitely many m ≡ i (modulo n) because,
if not, then ∑

(ān+i, A) =
∑∞

m=0

∑
(ān+i, A ∩ Im)
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cannot grow fast enough to sum to ∞. More precisely, if there were some
M such that ∆(`n+ i) ≤ b`n+i/(`n+i)2 for every ` ≥M , then∑

(ān+i, A ∩ [Mn,∞)) =
∑∞

m=Mn

∑
(ān+i, A ∩ Im)

=
∑∞

`=M
∆(`n+i)
b`n+i

≤
∑∞

`=M
1

(`n+i)2
< ∞,

which shows that
∑

(ān+i, A) converges on a tail, contradicting the assump-
tion that n+ i ∈ A+. Thus, for infinitely many m ≡ i (modulo n),

∆(m) >
bm
m2
≥ m(b1 + b2 + · · ·+ bm−1).

Now consider the ith subseries
∑

(āi, A) =
∑∞

`=0

∑
(āi, A ∩ I`). By the

definition of āi, if m ≡ i (modulo n), then∑
(āi, A ∩ Im) = −∆(m)

m ,

and in particular, if ∆(m) > m(b1 + b2 + · · ·+ bm−1) then∑
(āi, A ∩ Im) = −∆(m)

m < −b1 − b2 − · · · − bm−1.

This negative sum is greater in absolute value than all the preceding terms
of the subseries combined. To see this, note that |aik| =

1
j whenever k ∈ Ij ,

which implies
∣∣∑(āi, A ∩ Ij)

∣∣ ≤ |Ij |1j =
bj
j ; thus∣∣∑(āi, A ∩ [1,min Im))

∣∣ ≤ ∑j<m

∣∣∑(āi, A ∩ Ij)
∣∣

≤
∑

j<m
bj
j < b1 + b2 + · · ·+ bm−1.

Hence, if m ≡ i (modulo n) and ∆(m) > m(b1 + b2 + · · ·+ bm−1), then∑
(āi, A ∩ [0,max Im)) =

∑
(āi, A ∩ [0,min Im)) +

∑
(āi, A ∩ Im) < 0.

By the previous paragraph, ∆(m) > m(b1 + b2 + · · · + bm−1) for infinitely
many m ≡ i (modulo n). Thus the finite partial sums of

∑
(āi, A) are

negative infinitely often. It follows that i /∈ A+.
Next consider the jth subseries

∑
(āj , A) for some j ∈ {1, 2, . . . , n} \ {i}.

If m ≡ i (modulo n), then ajk = −aik for all k ∈ Im. Thus, if m ≡ i (modulo
n) and ∆(m) > m(b1 + b2 + · · ·+ bm−1) then∑

(āj , A ∩ Im) = −
∑

(āi, A ∩ Im) = ∆(m)
m > b1 + b2 + · · ·+ bm−1.

Just as in the previous paragraph, this positive sum is greater in absolute
value than all the preceding terms of the subseries combined. Hence, as
before, if m ≡ i (modulo n) and ∆(m) > m(b1 + b2 + · · ·+ bm−1) then∑

(āj , A ∩ [0,max Im)) > 0.

Thus the finite partial sums of
∑

(āj , A) are positive infinitely often, and it
follows that j /∈ A−.

An essentially identical argument shows that if n+ i ∈ A−, then i /∈ A−
and j /∈ A+ for all j ∈ {1, 2, . . . , n} \ {i}. �
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Let X =
{
i ∈ {1, 2, . . . , n} : i, n+ i ∈ A∨

}
. The previous claim implies

that either A+∩{1, 2, . . . , n} = {i} or else A−∩{1, 2, . . . , n} = {i}, depend-
ing on whether n+ i ∈ A− or n+ i ∈ A+. It follows that |X| ≤ 2, and from
this is follows that |A∨| ≤ n+ 2. �

6. The infinite version

In this section we prove an infinite version of Theorem 5.2:

Theorem 6.1. Let
{
āi : i ∈ ω

}
be a countably infinite collection of condi-

tionally convergent series. There is some set A ⊆ N such that
∑

(āi, A) =∞
for infinitely many i.

As in the previous section, we will write āi to denote the infinite sequence〈
ain : n ∈ N

〉
.

Definition 6.2. Suppose C =
{
āi : i ∈ ω

}
is a collection of conditionally

convergent series. A ⊆ N is called tame with respect to C if for each i ∈ ω,
all the terms of the subseries

∑
(āi, A) have the same sign, with at most

finitely many exceptions (not counting zeros). If the collection C is clear
from context, we simply say that A is tame.

Note that the tameness of A can be expressed in terms of incompatible
pairs of ideals: A ⊆ N is tame if for every i ∈ ω, A is a member of at least
one of the incompatible ideals I =

{
X ⊆ N :

{
n ∈ X : ain > 0

}
is finite

}
and J =

{
X ⊆ N :

{
n ∈ X : ain < 0

}
is finite

}
.

Notation. Given a collection C =
{
āi : i ∈ ω

}
of conditionally convergent

series and A ⊆ N, we define (as in the proof of Theorem 5.3)

◦ A+ =
{
i ∈ I :

∑
(āi, A) =∞

}
,

◦ A− =
{
i ∈ I :

∑
(āi, A) = −∞

}
, and

◦ A∨ = A+ ∪A−.

Definition 6.3. Suppose C =
{
āi : i ∈ ω

}
is a collection of conditionally

convergent series. If f is a function from a subset of ω to {1,−1}, we say
that f is represented by A ⊆ N if f−1(1) = A+ and f−1(−1) = A−. For
each A ⊆ N, let fA denote the function represented by A; that is, define

fA(i) =

{
1 if

∑
(āi, A) =∞,

−1 if
∑

(āi, A) = −∞

and leave fA(i) undefined otherwise.

Lemma 6.4. Let ā be a conditionally convergent series, and let A ⊆ N. If∑
(ā, A) = −∞ then

∑
(ā,N \A) =∞.

Lemma 6.5. Let
{
āi : i ∈ ω

}
be a countable collection of conditionally con-

vergent series. For each i ≤ ω, there is a tame A ⊆ N with i ∈ A+.
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Proof. For convenience, let us set i = 0 and show that there is some tame
A ⊆ N with

∑
(ā0, A) =∞. An essentially identical argument works for any

other value of i.
We begin with a recursive construction of a decreasing sequence C0 ⊇

C1 ⊇ C2 ⊇ . . . of subsets of N and an increasing sequence k0 < k1 < k2 < . . .
of non-negative integers. In the end, we will take A =

⋃
n∈ω Cn ∩ (kn, kn+1].

To begin, take C0 =
{
n ∈ N : a0

n ≥ 0
}

. Let k0 = 0 and let k1 be the
smallest natural number with the property that∑

(ā0, C0 ∩ [1, k1]) ≥ 1.

Some such number k1 must exist by our choice of C0.
For the recursive step, we begin with sets C0 ⊇ C1 ⊇ · · · ⊇ C`−1, and

with natural numbers 0 = k0 < k1 < k2 < · · · < k` satisfying the following
inductive hypotheses:

◦ C0 ⊇ C1 ⊇ · · · ⊇ C`−1 and k0 < k1 < k2 < · · · < k`.
◦ For each i ≤ j < `, all the numbers in

{
ain : n ∈ Cj

}
have the same

sign.
◦
∑

(ā0, C`−1) =∞.
◦ For each i < `,

∑
(ā0, Ci ∩ (ki, ki+1]) ≥ 1.

We then partition C`−1 into two sets as follows:

C≥`−1 =
{
n ∈ C`−1 : a`n ≥ 0

}
,

C<`−1 =
{
n ∈ C`−1 : a`n < 0

}
.

Because
∑

(ā0, C`−1) = ∞, and because every term in this sum is positive,

we must have either
∑

(ā0, C≥`−1) =∞ or
∑

(ā0, C<`−1) =∞ (possibly both).

We choose C` to be either of C≥`−1 or C<`−1, so long as
∑

(ā0, C`) =∞. Then
let k`+1 be the smallest natural number with the property that∑

(ā0, C` ∩ (k`, k`+1]) ≥ 1.

Some such number k`+1 must exist by our choice of C`. This completes the
recursive step of the construction, and it is not difficult to see that all four
of the above hypotheses remain true for the next stage of the recursion.

The result of this construction is a decreasing sequence C0 ⊇ C1 ⊇ C2 ⊇
C3 ⊇ . . . of subsets of N and an increasing sequence k0 < k1 < k2 < k3 < . . .
of non-negative integers such that

◦ for each i ≤ j ∈ ω, all the numbers in
{
ain : n ∈ Cj

}
have the same

sign, and
◦ for each i ∈ ω,

∑
(ā0, Ci ∩ (ki, ki+1]) ≥ 1.

Let A =
⋃
n∈ω Cn ∩ (kn, kn+1]. For each i ∈ ω, the series

∑
(āi, A) con-

sists of terms all having the same sign, with a finite number of exceptions
(specifically, the possible exceptions are only the terms with index < ki).
Hence A is tame. Also,

∑
(ā0, A) = ∞ because each term of this sum is
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positive, and for each i ∈ N the finite partial sum
∑

(ā, A ∩ [1, ki+1]) is at

least
∑i

j=0

∑
(ā, A ∩ (kj , kj+1]) =

∑i
j=0

∑
(ā, Cj ∩ (kj , kj+1]) ≥ i+ 1. �

Proof of Theorem 6.1. Let
{
āi : i ∈ ω

}
be a countably infinite collection of

conditionally convergent series. Suppose for some A ⊆ N that the domain
of fA is infinite. If f−1

A (1) is infinite, then
∑

(āi, A) =∞ for infinitely many

i, and we are done. If not, then f−1
A (−1) must be infinite, in which case∑

(āi,N \ A) = ∞ for infinitely many i by Lemma 6.4, and again we are
done.

Thus, in order to prove the theorem, it suffices to show that for some
A ⊆ N, the function fA has infinite domain. Aiming for a contradiction, let
us suppose the opposite: that every A ⊆ N has finite domain.

Let F = {fA : A ⊆ N is tame}. Let us say that a subset G of F is large
if for infinitely many i ∈ ω, there exists some f ∈ G such that f(i) = 1.
Observe that F is large by Lemma 6.5, and that if a large subset of F is
partitioned into finitely many pieces, then one of those pieces must also be
large.

We now use recursion to define a function g : ω → {−1, 0, 1}. This func-
tion is constructed via a recursively defined sequence of increasingly large
approximations to g, namely finite partial functions g0, g1, g2, . . . . Along
with the gi, we also construct a decreasing sequence F0 ⊇ F1 ⊇ F2 ⊇ . . . of
large subsets of F .

To begin, let F0 = F and g0 = ∅. At stage ` of the recursion, we begin
with a finite partial function g` : {0, 1, 2, . . . , `− 1} → {−1, 0, 1} and a large
F` ⊆ F . Partition F` into three parts as follows:

F1
` = {f ∈ F` : f(`) = 1} ,

F−1
` = {f ∈ F` : f(`) = −1} ,

F0
` = {f ∈ F` : ` /∈ dom(f)} .

Because F` is large, at least one of these three pieces is large as well; choose

some such piece F j` . Then set F`+1 = F j` and set g` = g`−1 ∪ {(`, j)}.
The result of this construction is a function g : ω → {−1, 0, 1} with the

property that, for every ` ∈ ω, the set of all f ∈ F satisfying

(∗) For i < `, i ∈ dom(f) if and only if g(i) 6= 0, and furthermore
f(i) = g(i) for i ∈ dom(f).

is large, because it contains F`.
We now use g as a “guide” for recursively constructing some A ⊆ N with

dom(fA) infinite. There are three cases to consider.

Case 1: Suppose g(i) = 1 for infinitely many i ∈ ω.

In this case, we recursively construct a sequence A0, A1, A2 . . . of tame
subsets of N. These sets can then be combined to form the desired set A.
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To begin the construction, let i0 be the first natural number for which
g(i0) = 1, and choose some tame A0 ⊆ N such that fA0(i0) = 1. Some such
A0 exists by property (∗) above, and because g(i0) = 1.

For the recursive step, we begin with natural numbers i0 < i1 < · · · < ik−1

such that g(i0) = g(i1) = . . . = g(ik−1) = 1, and withA0, A1, . . . , Ak−1 ⊆ N.
Let ik denote the first natural number such that

ik > max
(⋃

j<k dom(fAj )
)

(recalling that, by assumption, fA has finite domain for every A ⊆ N) and
such that g(ik) = 1. Then choose some tame Ak ⊆ N such that

fAk
(i0) = fAk

(i1) = . . . = fAk
(ik) = 1.

Some such Ak exists because g(i0) = g(i1) = g(i2) = . . . = g(ik) = 1. In
fact, our choice of g ensures that a “large” set of fAk

have this property.
The result of this construction is a sequence A0, A1, A2, . . . of tame subsets

of N with the property that, for all k, fAk
(i0) = fAk

(i1) = . . . = fAk
(ik) = 1,

and i` /∈ dom(fAk
) for all ` > k. In particular, we have

◦ for each ` ≤ k,
∑

(āi` , Ak) = ∞, and all but finitely many terms of
this sum have the same sign (necessarily positive), and
◦ for each ` > k,

∑
(āi` , Ak) converges absolutely. (This follows from

the tameness of Ak together with the fact that i` /∈ dom(fAk
).)

The first bullet point implies that for each k ∈ ω, there is some Mk ∈ N
such that ai`n ≥ 0 for all ` ≤ k and n ≥Mk. Let

A =
⋃
k∈ω Ak ∩ [Mk,∞).

We claim that
∑

(āik , A) = ∞ for every ik, k ∈ ω. To see this, fix k ∈ ω
and partition A into the following two sets:

A<k =
⋃
`<k A` ∩ [M`,∞)

A≥k =
⋃
`≥k A` ∩ [M`,∞).

It is clear that
∑

(āik , A<k) converges absolutely and that
∑

(āik , A≥k) =∞.
Because A = A<k ∪A≥k, it follows that

∑
(āik , A) =∞, as desired.

Case 2: Suppose g(i) = −1 for infinitely many i ∈ ω.

Proceeding just as in Case 1, we may find a set A ⊆ N such that∑
(āi, A) = −∞ for infinitely many i ∈ ω.

Case 3: Suppose g(i) = 0 for infinitely many i ∈ ω.

As in case 1, we construct a sequence A0, A1, A2 . . . of tame subsets of N
along with a sequence i0 < i1 < i2 < . . . of natural numbers, and afterward
these will be used to define A.

To begin, let i0 be the least natural number such that g(i0) = 0, and
choose some tame A0 ⊆ N such that fA0(i0) = 1. Some such A0 exists by
Lemma 6.5.
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For the recursive step, we begin with natural numbers i0 < i1 < · · · < ik−1

and with A0, A1, . . . , Ak−1 ⊆ N. Recall that, by the definition of g, there is a
large set G of functions fA such that fA(i0) = fA(i1) = . . . = fA(ik−1) = 0.
By the definition of “large” we may find some tame Ak ⊆ N such that

fAk
(i0) = fAk

(i1) = . . . = fAk
(ik−1) = 0

and such that fAk
(ik) = 1 for some ik > max

(⋃
j<k dom(fAj )

)
.

The result of this construction is a sequence A0, A1, A2, . . . of tame subsets
of N with the property that, for all k, fAk

(ik) = 1, and i` /∈ dom(fA`
) for all

` 6= k. In particular, we have

◦
∑

(āik , Ak) =∞ for each k, and
◦
∑

(āi` , Ak) converges absolutely for each ` 6= k.

For each k, choose Mk ∈ N large enough so that∑(〈
|ai`n | : n ∈ N

〉
, Ak ∩ [Mk,∞)

)
< 1/2k

for each ` < k, which is possible because each of the finitely many series∑
(āi` , Ak), for ` < k, converges absolutely. Let

A =
⋃
k∈ω Ak ∩ [Mk,∞).

To finish the proof, we claim that
∑

(āik , A) = ∞ for every ik, k ∈ ω. To
see this, fix k ∈ ω and partition A into the following three sets:

A<k =
⋃
`<k A` ∩ [M`,∞)

Ak = Ak ∩ [Mk,∞)

A>k =
⋃
`>k A` ∩ [M`,∞).

The series
∑

(āik , A>k) converges absolutely, because∑(〈
|ai`n | : n ∈ N

〉
, A>k

)
≤
∑
`>k

∑(〈
|ai`n | : n ∈ N

〉
, A` ∩ [M`,∞)

)
≤
∑
`>k

1/2` =
1

2k−1
.

The series
∑

(āik , A<k) converges absolutely, as A<k =
⋃
`<k A` ∩ [M`,∞)

and each of the (finitely many) series
∑

(āik , A` ∩ [M`,∞)), where ` < k,
converges absolutely. On the other hand,

∑
(āik , Ak) = ∞. Because A =

A<k ∪Ak ∪A>k, it follows that
∑

(āik , A) =∞ as desired. �

This theorem raises the question of whether there is a corresponding infi-
nite version of the main theorem, dealing with arbitrary pairs of incompat-
ible ideals:

◦ Given an infinite sequence (I1,J1), (I2,J2), (I2,J2), . . . of incom-
patible ideals on some set X, is there a single A ⊆ X that chooses
between infinitely many of these pairs?

The answer to this question is negative, as the following example shows.
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Example 6.6. Let X = 2ω denote the set of all functions ω → {0, 1}, and
let X be endowed with its usual product topology as the Cantor space. For
each n ∈ ω, let In denote the set of all A ⊆ X that are nowhere dense in
{x ∈ X : x(n) = 0}, and let Jn denote the set of all A ⊆ X that are nowhere
dense in {x ∈ X : x(n) = 1}.

It is not difficult to check that In and Jn are incompatible ideals on X for
all n ∈ ω. We claim that any given A ⊆ X cannot choose between infinitely
many of the pairs (In,Jn). Indeed, if A chooses between In and Jn for any
n, then A is somewhere dense in X, i.e., A contains a basic open subset of
X. In other words, A contains a set of the form

[s] = {x ∈ X : x� length(s) = s} ,
where s is a function m → {0, 1} for some m ∈ ω. But this implies A /∈ Ik
and A /∈ Jk for all k ≥ m. Thus A does not choose between Ik and Jk for
any k ≥ m. �

Note that this example can be modified to make the set X countable:
simply replace 2ω with a countable dense subset of 2ω in the example above.
We can also modify the example to make the ideals In and Jn into P -ideals:
simply replace “nowhere dense” with “meager” in the example above, and
note that if A ⊆ 2ω is non-meager, then there is some open U such that
A ∩ V is non-meager for every open V ⊆ U .

In closing, let us point out that the ideas in this paper emerged from set-
theoretic investigations into cardinal characteristics of the continuum in [3].
In the course of these investigations, the question arose: How small can a
collection C of conditionally convergent series be with the property that every
A ⊆ N fails to send some member of C to infinity? (Specifically, the answer
to this question is the so-called “Galois-Tukey dual” – see [14], or [1, Section
4] – of the uncountable cardinal ßi as defined in [3].) We suspected that the
answer to this question should be an uncountable cardinal number. It was
a surprise to discover that the correct answer is 4, or, in the terminology of
Section 5, the least n such that n 6= ß(n). This surprise led us to investigate
the function ß(n) generally, and its upper bounds I(n) and H(n).

In the same way that the function ß(n) is related to the cardinal invari-
ant ßi from [3], the function I(n) suggests a new cardinal invariant of the
continuum, a natural upper bound for ßi . Namely, this cardinal invariant is
defined as the answer to the following question: How small can a collection
A of subsets of N be with the property that for every pair of incompatible
ideals on N, some A ∈ A chooses between them? To end our paper, we show
that this “new” cardinal invariant is not really new at all:

Theorem 6.7. Suppose A is a collection of subsets of N such that for every
pair of incompatible ideals on N, some A ∈ A chooses between them. Then
|A| = c.

Proof. Let A be any collection of subsets of N such that for every pair of
incompatible ideals on N, some A ∈ A chooses between them. Let C denote
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the closure of A under the Boolean operations of taking complements, finite
unions, and finite intersections. Because |C| = max{ℵ0, |A|}, to prove the
theorem it suffices to show that |C| = c.

Our proof uses the topological space N∗, the space of all non-principal
ultrafilters on N. Recall that if A ⊆ N, then A∗ = {u ∈ N∗ : A ∈ u} is a
clopen subset of N∗, and the sets of this form constitute a basis for N∗.

For each u ∈ N∗, let û = {A ⊆ N : N \A ∈ u} = {A ⊆ N : A /∈ u}. Each
û is an ideal on N. Furthermore, if u, v ∈ N∗ and u 6= v, then there is some
A ⊆ N such that N \ A ∈ û and A ∈ v̂. Thus for any distinct u, v ∈ N∗, û
and v̂ are incompatible ideals on N.

Therefore, whenever u, v ∈ N∗ with u 6= v, some A ∈ C chooses between û
and v̂. This could mean that A ∈ û \ v̂, in which case A ∈ v̂ and N \A ∈ û,
or else that A ∈ v̂ \ û, in which case A ∈ û and N \ A ∈ v̂. In either
case (because C is closed under taking complements), we see that there are
A,A′ ∈ C such that u ∈ A∗ and v ∈ (A′)∗.

Let C∗ = {A∗ : A ∈ C}. By the previous paragraph, C∗ separates points
in N∗, meaning that for any two distinct points of N∗, there are disjoint sets
in C∗ each containing one of the two points. We claim that this implies C∗
is a basis for N∗. To see this, first note that, because C is closed under finite
unions and intersections, C∗ is as well (because (A ∪ B)∗ = A∗ ∪ B∗ and
(A ∩ B)∗ = A∗ ∩ B∗ for any A,B ⊆ N). Thus C∗ forms the basis for some
topology τ on N∗. The topology τ is Hausdorff (because C∗ separates points),
and is coarser than the usual topology on N∗. But the usual topology on N∗
is compact and Hausdorff, and it is well-known that no Hausdorff topology
is strictly coarser than a compact Hausdorff topology [5, Corollary 3.1.14].
Thus τ is coarser than the usual topology on N∗, but not strictly coarser:
that is, they are the same. Hence C∗ is a basis for the usual topology on N∗.

The usual topology on N∗ has no basis of size <c [5, Theorem 3.6.14], so
the previous paragraph implies |C| = c as claimed. �
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