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A BRIEF HISTORY OF DETERMINACY

PAUL B. LARSON

§1. Introduction. Determinacy axioms are statements to the effect that
certain games are determined, in that each player in the game has an optimal
strategy. The commonly accepted axioms for mathematics, the Zermelo–
Fraenkel axioms with the Axiom of Choice (ZFC; see [Jec03, Kun83]), imply
the determinacy of many games that people actually play. This applies in
particular to many games of perfect information, games in which the
players alternate moves which are known to both players, and the outcome
of the game depends only on this list of moves, and not on chance or other
external factors. Games of perfect information which must end in finitely
many moves are determined. This follows from the work of Ernst Zermelo
[Zer13], Dénes Kőnig [Kőn27] and László Kálmar [Kal1928–29], and also
from the independent work of John von Neumann and Oskar Morgenstern
(in their 1944 book, reprinted as [vNM04]).

As pointed out by Stanis law Ulam [Ula60], determinacy for games of
perfect information of a fixed finite length is essentially a theorem of logic.
If we let x1,y1,x2,y2,. . . ,xn,yn be variables standing for the moves made by
players player I (who plays x1,. . . ,xn) and player II (who plays y1,. . . ,yn),
and A (consisting of sequences of length 2n) is the set of runs of the game
for which player I wins, the statement

∃x1∀y1 . . . ∃xn∀yn〈x1, y1, . . . , xn, yn〉 ∈ A(1)

essentially asserts that the first player has a winning strategy in the game,
and its negation,

∀x1∃y1 . . . ∀xn∃yn〈x1, y1, . . . , xn, yn〉 6∈ A(2)

essentially asserts that the second player has a winning strategy.1

The author is supported in part by NSF grant DMS-0801009. This paper is a revised
version of [Lar12].

1If there exists a way of choosing a member from each nonempty set of moves of

the game, then these statements are actually equivalent to the assertions that the
corresponding strategies exist. Otherwise, in the absence of the Axiom of Choice the
statements above can hold without the corresponding strategy existing.
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2 PAUL B. LARSON

We let ω denote the set of natural numbers 0, 1, 2, . . . ; for brevity we will
often refer to the members of this set as “integers”. Given sets X and Y ,
XY denotes the set of functions from X to Y . The Baire space is the
space ωω, with the product topology. The Baire space is homeomorphic to
the space of irrational real numbers (see [Mos09, p. 9], for instance), and
we will often refer to its members as “reals” (though in various contexts
the Cantor space ω2, the set of subsets of ω (℘(ω)) and the set of infinite
subsets of ω ([ω]ω) are all referred to as “the reals”).

Given A ⊆ ωω, we let Gω(A) denote the game of perfect information of
length ω in which the two players collaborate to define an element f of ωω
(with player I choosing f(0), player II choosing f(1), player I choosing f(2),
and so on), with player I winning a run of the game if and only if f is an
element of A. A game of this type is called an integer game, and the set
A is called the payoff set. A strategy in such a game for player player I
(player II) is a function Σ with domain the set of sequences of integers of
even (odd) length such that for each a ∈ dom(Σ), Σ(a) is in ω. A run of
the game (partial or complete) is said to be according to a strategy Σ for
player player I (player II) if every initial segment of the run of odd (nonzero
even) length is of the form a_〈Σ(a)〉 for some sequence a. A strategy Σ
for player player I (player II) is a winning strategy if every complete run
of the game according to Σ is in (out of) A. We say that a set A ⊆ ωω
is determined (or the corresponding game Gω(A) is determined) if there
exists a winning strategy for one of the players. These notions generalize
naturally for games in which players play objects other than integers (for
instance, real games, in which they play elements of ωω) or games which
run for more than ω many rounds (in which case player player I typically
plays at limit stages).

The study of determinacy axioms concerns games whose determinacy is
neither proved nor refuted by the Zermelo–Fraenkel axioms ZF (without the
Axiom of Choice). Typically such games are infinite. Axioms stating that
infinite games of various types are determined were studied by Stanis law
Mazur, Stefan Banach and Ulam in the late 1920s and early 1930s; were
reintroduced by David Gale and Frank Stewart [GS53] in the 1950s and
again by Jan Mycielski and Hugo Steinhaus [MS62] in the early 1960s; gained
interest with the work of David Blackwell [Bla67] and Robert Solovay in
the late 1960s; and attained increasing importance in the 1970s and 1980s,
finally coming to a central position in contemporary set theory.

Mycielski and Steinhaus introduced the Axiom of Determinacy (AD),
which asserts the determinacy of Gω(A) for all A ⊆ ωω. Work of Banach in
the 1930s shows that AD implies that all sets of reals satisfy the property of
Baire. In the 1960s, Mycielski and Stanis law Świerczkowski proved that AD
implies that all sets of reals are Lebesgue measurable, and Mycielski showed
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A BRIEF HISTORY OF DETERMINACY 3

that AD implies countable choice for reals. Together, these results show that
determinacy provides a natural context for certain areas of mathematics,
notably analysis, free of the paradoxes induced by the Axiom of Choice.

Unaware of the work of Banach, Gale and Stewart [GS53] had shown that
AD contradicts ZFC. However, their proof used a wellordering of the reals
given by the Axiom of Choice, and therefore did not give a nondetermined
game of this type with definable payoff set. Starting with Banach’s work,
many simply definable payoff sets were shown to induce determined games,
culminating in D. Anthony Martin’s celebrated 1974 result [Mar75] that all
games with Borel payoff set are determined. This result came after Martin
had used measurable cardinals to prove the determinacy of games whose
payoff set is an analytic sets of reals.

The study of determinacy gained interest from two theorems in 1967, the
first due to Solovay and the second to Blackwell. Solovay proved that under
AD, the first uncountable cardinal ω1 is a measurable cardinal, setting off a
study of strong Ramsey properties on the ordinals implied by determinacy
axioms. Blackwell used open determinacy (proved by Gale and Stewart) to
reprove a classical theorem of Kazimierz Kuratowski. This also led to the
application, by John Addison, Martin, Yiannis Moschovakis and others, of
stronger determinacy axioms to produce structural properties for definable
sets of reals. These axioms included the determinacy of ∆˜ 1

n sets of reals, for
n ≥ 2, statements which would not be proved consistent relative to large
cardinals until the 1980s.

The large cardinal hierarchy was developed over the same period, and
came to be seen as a method for calibrating consistency strength. In the
1970s, various special cases of ∆˜ 1

2 determinacy were located on this scale,
in terms of the large cardinals needed to prove them. Determining the
consistency (relative to large cardinals) of forms of determinacy at the
level of ∆˜ 1

2 and beyond would take the introduction of new large cardinal

concepts. Martin (in 1978) and W. Hugh Woodin (in 1984) would prove Π˜ 1
2-

determinacy and ADL(R) respectively, using hypotheses near the very top
of the large cardinal hierarchy. In a dramatic development, the hypotheses
for these results would be significantly reduced through work of Woodin,
Martin and John Steel. The initial impetus for this development was a
seminal result of Matthew Foreman, Menachem Magidor and Saharon Shelah
which showed, assuming the existence of a supercompact cardinal, that
there exists a generic elementary embedding with well-founded range and
critical point ω1. Combined with work of Woodin, this yielded the Lebesgue
measurability of all sets in the inner model L(R) from this hypothesis.
Shelah and Woodin would reduce the hypothesis for this result further, to
the assumption that there exist infinitely many Woodin cardinals below a
measurable cardinal.
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4 PAUL B. LARSON

Woodin cardinals would turn out to be the central large cardinal concept
for the study of determinacy. Through the study of tree representations for
sets of reals, Martin and Steel would show that Π˜ 1

n+1-determinacy follows
from the existence of n Woodin cardinals below a measurable cardinal,
and that this hypothesis was not sufficient to prove stronger determinacy
results for the projective hierarchy. Woodin would then show that the
existence of infinitely many Woodin cardinals below a measurable cardinal
implies ADL(R), and he would locate the exact consistency strengths of ∆˜ 1

2-

determinacy and ADL(R) at one Woodin cardinal and ω Woodin cardinals
respectively.

In the aftermath of these results, many new directions were developed,
and we give only the briefest indication here. Using techniques from inner
model theory, tight bounds were given for establishing the exact consistency
strength of many determinacy hypotheses. Using similar techniques, it
has been shown that almost every natural statement (i.e., not invented
specifically to be a counterexample) implies directly those determinacy
hypotheses of lesser consistency strength. For instance, by Gödel’s Second
Incompleteness Theorem, ZFC cannot prove that the AD holds in L(R),
as the latter implies the consistency of the former. Empirically, however,
every natural extension T of ZFC of sufficient consistency strength (i.e.,
such that Peano Arithmetic does not prove the consistency of of T from
the consistency of ZF+ AD) does appear to imply that AD holds in L(R).
This sort of phenomenon is taken by some as evidence that the statement
that AD holds in L(R), and other determinacy axioms, should be counted
among the true statements extending ZFC (see [KW], for instance).

The history presented here relies heavily on those given by Jackson
[Jac10], Kanamori [Kan95, Kan03], Moschovakis [Mos09], Neeman [Nee04]
and Steel [Ste08B]. As the title suggests, this is a selective and abbreviated
account of the history of determinacy. We have omitted many interesting
topics, including, for instance, Blackwell games [Bla69, Mar98, MNV03] and
proving determinacy in second-order arithmetic [LSR87, LSR88B, KW10].

§2. Early developments. The first published paper in mathematical
game theory appears to be Zermelo’s paper [Zer13] on chess. Although
he noted that his arguments apply to all games of reason not involving
chance, Zermelo worked under two additional chess-specific assumptions.
The first was that the game in question has only finitely many states, and
the second was that an infinite run of the game was to be considered a
draw. Zermelo specified a condition which is equivalent to having a winning
strategy in such a game guaranteeing a win within a fixed number of moves,
as well as another condition equivalent to having a strategy guaranteeing
that one will not lose within a given fixed number of moves. His analysis
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implicitly introduced the notions of game tree, subtree of a game tree,
and quasi-strategy.2

The paper states indirectly, but does not quite prove, or even define,
the statement that in any game of perfect information with finitely many
possible positions such that infinite runs of the game are draws, either one
player has a strategy that guarantees a win, or both players have strategies
that guarantee at least a draw. A special case of this fact is determinacy
for games of perfect information of a fixed finite length, which is sometimes
called Zermelo’s Theorem.

Kőnig [Kőn27] applied the fundamental fact now known as Kőnig’s
Lemma to the study of games, among other topics. While Kőnig’s formu-
lation was somewhat different, his Lemma is equivalent to the assertion
that every infinite finitely branching tree with a single root has an infinite
path (a path can be found by iteratively choosing any successor node such
that the tree above that node is infinite). Extending Zermelo’s analysis to
games in which infinitely many positions are possible while retaining the
condition that each player has only finitely many options at each point,
Kőnig used the statement above to prove that in such a game, if one player
has a strategy (from a given point in the game) guaranteeing a win, then
he can guarantee victory within a fixed number of moves. The application
of Kőnig’s Lemma to the study of games was suggested by von Neumann.

Kálmar [Kal1928–29] took the analysis a step further by proving Zermelo’s
Theorem for games with infinitely many possible moves in each round. His
arguments proceeded by assigning transfinite ordinals to nodes in the game
tree, a method which remains an important tool in modern set theory.
Kálmar explicitly introduced the notion of a winning strategy for a game,
though his strategies were also quasi-strategies as above. In his analysis,
Kálmar introduced a number of other important technical notions, including
the notion of a subgame (essentially a subtree of the original game tree),
and classifying strategies into those which depend only on the current
position in the game and those which use the history of the game so far.3

Games of perfect information for which the set of infinite runs is divided
into winning sets for each player appear in a question by Mazur in the
Scottish Book, answered by Banach in an entry dated August 4, 1935 (see
[Mau81, p. 113]). Following up on Mazur’s question (still in the Book),
Ulam asked about games where two players collaborate to build an infinite
sequence of 0’s and 1’s by alternately deciding each member of the sequence,
with the winner determined by whether the infinite sequence constructed

2As defined above, a strategy for a given player specifies a move in each relevant
position; a quasi-strategy merely specifies a set of acceptable moves. The distinction

is important when the Axiom of Choice fails, but is less important in the context of
Zermelo’s paper.

3See [SW01] for much more on these papers of Zermelo, Kőnig and Kálmar.
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6 PAUL B. LARSON

falls inside some predetermined set E. Essentially raising the issue of
determinacy for arbitrary Gω(E), Ulam asked: for which sets E does
the first player (alternately, the second player) have a winning strategy?
(Section 2.1 below has more on the Banach–Mazur game.)

Games of perfect information were formally defined in 1944 by von
Neumann and Morgenstern [vNM04]. Their book also contains a proof that
games of perfect information of a fixed finite length are determined (p. 123).

Infinite games of perfect information were reintroduced by Gale and
Stewart [GS53], who were unaware of the work of Mazur, Banach and
Ulam (Gale, personal communication). They showed that a nondetermined
game can be constructed using the Axiom of Choice (more specifically,
from a wellordering of the set of real numbers).4 They also noted that the
proof from the Axiom of Choice does not give a definable undetermined
game, and raised the issue of whether determinacy might hold for all games
with a suitably definable payoff set. Towards this end, they introduced a
topological classification of infinite games of perfect information, defining a
game (or the set of runs of the game which are winning for the first player)
to be open if all winning runs for the first player are won at some finite
stage (i.e., if, whenever 〈x0, x1, x2, . . .〉 is a winning run of the game for
the first player, there is some n such that the first player wins all runs of
the game extending 〈x0, . . . , xn〉). Using this framework, they proved a
number of fundamental facts, including the determinacy of all games whose
payoff set is a Boolean combination of open sets (i.e., in the class generated
from the open sets by the operations of finite union, finite intersection
and complementation). The determinacy of open games would become the
basis for proofs of many of the strongest determinacy hypotheses. Gale and
Stewart also asked a number of important questions, including the question
of whether all Borel games are determined (to be answered positively by
Martin [Mar75] in 1974).5 Classifying games by the definability of their
payoff sets would be an essential tool in the study of determinacy.

2.1. Regularity properties. Early motivation for the study of deter-
minacy was given by its implications for regularity properties for sets of

4Given a set Y , we let ACY denote the statement that whenever {Xa : a ∈ Y } is a

collection of nonempty sets, there is a function f with domain Y such that f(a) ∈ Xa
for all a ∈ Y . Zermelo’s Axiom of Choice (AC) [Zer04] is equivalent to the statement

that ACY holds for all sets Y . A linear ordering ≤ of a set X is a wellordering if every
nonempty subset of X has a ≤-least element. The Axiom of Choice is equivalent to the
statement that there exist wellorderings of every set.

Kőnig’s Lemma is a weak form of the Axiom of Choice and cannot be proved in ZF
(see [Lév79, Exercise IX.2.18]).

5The Borel sets are the members of the smallest class containing the open sets and

closed under the operations of complementation and countable union. The collection of
Borel sets is generated in ω1 many stages from these two operations. A natural process
assigns a measure to each Borel set (see, for instance, [Hal50]).



0259

0260

0261

0262

0263

0264

0265

0266

0267

0268

0269

0270

0271

0272

0273

0274

0275

0276

0277

0278

0279

0280

0281

0282

0283

0284

0285

0286

0287

0288

0289

0290

0291

0292

0293

0294

0295

0296

0297

0298

0299

0300

0301

A BRIEF HISTORY OF DETERMINACY 7

reals. In particular, determinacy of certain games of perfect information
was shown to imply that every set of reals has the property of Baire and
the perfect set property, and is Lebesgue measurable.6 These three facts
themselves each contradict the Axiom of Choice. We will refer to Lebesgue
measurability, the property of Baire and the perfect set property as the
regularity properties, the fact that there are other regularity properties
notwithstanding.

Question 43 of the Scottish Book, posed by Mazur, asks about games
where two players alternately select the members of a shrinking sequence of
intervals of real numbers, with the first player the winner if the intersection
of the sequence intersects a set given in advance. Banach posted an answer
in 1935, showing that such games are determined if and only if the given set
is either meager (in which case the second player wins) or comeager relative
to some interval (in which case the first player wins). The determinacy of
the restriction of this game to each interval implies then that the given
set has the Baire property (see [Oxt80, pp. 27–30], [Kan03, pp. 373–374]).
The game has come to be known as the Banach–Mazur game. Using an
enumeration of the rationals, one can code intervals with rational endpoints
with integers, getting a game on integers.

Morton Davis [Dav64] studied a game, suggested by Dubins, where the
first player plays arbitrarily long finite strings of 0’s and 1’s and the second
player plays individual 0’s and 1’s, with the payoff set a subset of the set
of infinite binary sequences as before. Davis proved that the first player
has a winning strategy in such a game if and only if the payoff set contains
a perfect set, and the second player has a winning strategy if and only
if the payoff set is finite or countably infinite. The determinacy of all
such games then implies that every uncountable set of reals contains a
perfect set (asymmetric games of this type can be coded by integer games
of perfect information). It follows that under AD there is no set of reals
whose cardinality falls strictly between ℵ0 and 2ℵ0 .7

Mycielski and Świerczkowski [MŚ64] showed that the determinacy of
certain integer games of perfect information implies that every subset of
the real line is Lebesgue measurable. Simpler proofs of this fact were later
given by Leo Harrington (see [Kan03, pp. 375–377]) and Martin [Mar03].

6A set of reals X has the property of Baire if X4O is meager for some open set O,

where the symmetric difference A4B of two sets A and B is the set (A\B)∪ (B \A),
where A \B = {x ∈ A : x 6∈ B}. A set of reals X has the perfect set property if it is
countable or contains a perfect set (an uncountable closed set without isolated points).

A set of reals X is Lebesgue measurable if there is a Borel set B such that X 4B is
a subset of a Borel measure 0 set. See [Oxt80].

7I.e., for every set X, if there exist injections f : ω → X and g : X → 2ω , then either

X is countable or there exists a bijection between X and 2ω .



0302

0303

0304

0305

0306

0307

0308

0309

0310

0311

0312

0313

0314

0315

0316

0317

0318

0319

0320

0321

0322

0323

0324

0325

0326

0327

0328

0329

0330

0331

0332

0333

0334

0335

0336

0337

0338

0339

0340

0341

0342

0343

0344

8 PAUL B. LARSON

By way of contrast, an argument of Vitali [Vit05] shows that under ZFC
there are sets of reals which are not Lebesgue measurable. Banach and
Tarski ([BT24], see also [Wag93]), building on work of Hausdorff [Hau14],
showed that under ZFC the unit ball can be partitioned into five pieces
which can be rearranged to make two copies of the same sphere, again
violating Lebesgue measurability as well as physical intuition. As with the
undetermined game given by Gale and Stewart, the constructions of Vitali
and Banach–Tarski use the Axiom of Choice and do not give definable
examples of nonmeasurable sets. Via the Mycielski–Świerczkowski theorem,
determinacy results would rule out the existence of definable examples, for
various notions of definability.

2.2. Definability. As discussed above, ZFC implies that open sets are
determined, and implies also that there exists a nondetermined set. The
study of determinacy was to merge naturally with the study of sets of reals
in terms of their definability (i.e., descriptive set theory), which can be
taken as a measure of their complexity. In this section we briefly introduce
some important definability classes for sets of reals. Standard references
include [Mos80, Kec95]. While we do mention some important results in
this section, much of the section can be skipped on a first reading and used
for later reference.

A Polish space is a topological space which is separable and completely
metrizable. Common examples include the integers ω, the reals R, the open
interval (0, 1), the Baire space ωω, the Cantor space ω2 and their finite and
countable products. Uncountable Polish spaces without isolated points are
a natural setting for studying definable sets of reals. For the most part we
will concentrate on the Baire space and its finite powers.

Following notation introduced by Addison [Add59B],8 open subsets of a
Polish space are called Σ˜ 0

1, complements of Σ˜ 0
n sets are Π˜ 0

n, and countable

unions of Π˜ 0
n sets are Σ˜ 0

n+1. More generally, given a positive α < ω1, Σ˜ 0
α

consists of all countable unions of members of
⋃
β<α Π˜ 0

β , and Π˜ 0
α consists

of all complements of members of Σ˜ 0
α. The Borel sets are the members of⋃

α<ω1
Σ˜ 0
α.

A pointclass is a collection of subsets of Polish spaces. Given a pointclass
Γ ⊆ ℘(ωω), we let Det(Γ) and Γ-determinacy each denote the statement
that Gω(A) is determined for all A ∈ Γ. Philip Wolfe [Wol55] proved
Σ˜ 0

2-determinacy in ZFC. Davis [Dav64] followed by proving Π˜ 0
3-determinacy.

Jeffrey Paris [Par72] would prove Σ˜ 0
4-determinacy. However, this result

was proved after Martin had used a measurable cardinal to prove analytic
determinacy (see Section 5.2).

8The papers [Add59B] and [Add59A] appear in the same volume of Fundamenta

Mathematicae. The front page of the volume gives the date 1958–1959. The individual

papers have the dates 1958 and 1959 on them, respectively.
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Continuous images of Π˜ 0
1 sets are said to be Σ˜ 1

1, complements of Σ˜ 1
n sets

are Π˜ 1
n, and continuous images of Π˜ 1

n sets are Σ˜ 1
n+1. For each i ∈ {0, 1}

and n ∈ ω, the pointclass ∆˜ in is the intersection of Σ˜ in and Π˜ in. The

boldface projective pointclasses are the sets Σ˜ 1
n, Π˜ 1

n, and ∆˜ 1
n for

positive n ∈ ω. These classes were implicit in work of Lebesgue as early as
[Leb18]. They were made explicit in independent work by Nikolai Luzin
[Luz25C, Luz25B, Luz25A] and Wac law Sierpiński [Sie25]. The notion of
a boldface pointclass in general (i.e., possibly non-projective) is used in
various ways in the literature. We will say that a pointclass Γ is boldface
(or closed under continuous preimages or continuously closed) if
f−1[A] ∈ Γ for all A ∈ Γ and all continuous functions f between Polish
spaces (where A is a subset of the codomain). The classes Σ˜ 0

α, Π˜ 0
α, ∆˜ 0

α are
also boldface in this sense.

The pointclass Σ˜ 1
1 is also known as the class of analytic sets, and was

given an independent characterization by Mikhail Suslin [Sus17]: A set of
reals A is analytic if and only if there exists a family of closed sets Ds (for
each finite sequence s consisting of integers) such that A is the set of reals
x for which there is an ω-sequence S of integers such that x ∈

⋂
n∈ωDS�n.9

Suslin showed that there exist non-Borel analytic sets, and that the Borel
sets are exactly the ∆˜ 1

1 sets.

We let ∃0 and ∃1 denote existential quantification over the integers
and reals, respectively, and ∀0 and ∀1 the analogous forms of universal
quantification. Given a set A ⊆ (ωω)k+1, for some positive integer k, ∃1A is
the set of (x1, . . . , xk) ∈ (ωω)k such that for some x ∈ ωω, (x, x1, . . . , xk) ∈
A, and ∀1A is the set of (x1, . . . , xk) ∈ (ωω)k such that for all x ∈ ωω,
(x, x1, . . . , xk) ∈ A. Given a pointclass Γ, ∃1Γ consists of ∃1A for all A ∈ Γ,
and ∀1Γ consists of ∀1A for all A ∈ Γ. It follows easily that for each positive
integer n, ∃1Π˜ 1

n = Σ˜ 1
n+1 and ∀1Σ˜ 1

n = Π˜ 1
n+1.

Given a pointclass Γ, Γ̆ is the set of complements of members of Γ, and
∆Γ is the pointclass Γ ∩ Γ̆; Γ is said to be selfdual if ∆Γ = Γ. A set A ∈ Γ
is said to be Γ-complete if every member of Γ is a continuous preimage of
A. If Γ is closed under continuous preimages and Γ-determinacy holds, then
Γ̆-determinacy holds. Each of the regularity properties for a set of reals A
are given by the determinacy of games with payoff set simply definable from
A (indeed, continuous preimages of A), but not necessarily with payoff A
itself. It follows that when Γ is a boldface pointclass, Γ-determinacy implies
the regularity properties for sets of reals in Γ.

A simple application of Fubini’s theorem shows that if Γ is a boldface
pointclass and there exists in Γ a wellordering of a set of reals of posi-
tive Lebesgue measure, then there is a non-Lebesgue measurable set in Γ.

9For S a function with domain ω, and n ∈ ω, S�n = 〈S(0), . . . , S(n− 1)〉.
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Skipping ahead for a moment, in the early 1970s Alexander Kechris and
Martin, using a technique of Solovay called unfolding, proved that for each
integer n, Π˜ 1

n-determinacy plus countable choice for sets of reals10

implies that all Σ˜ 1
n+1 sets of reals are Lebesgue measurable, have the Baire

property and have the perfect set property (see [Kan03, pp. 380–381]).
As developed by Stephen Kleene, the effective (or lightface) pointclasses

Σ0
n, Π0

n, ∆0
n [Kle43] and Σ1

n, Π1
n, ∆1

n [Kle55C, Kle55B, Kle55A] are formed
in the same way as their boldface counterparts, starting instead from Σ0

1,
the collection of open sets O such that the set of indices for basic open
sets contained in O (under a certain natural enumeration of the basic
open sets) is recursive (see [Mos09], for instance). Sets in Σ0

1 are called
semirecursive, and sets in ∆0

1 are called recursive. Given a ∈ ωω, Σ0
1(a)

is the collection of open sets O such that the set of indices for basic open sets
contained in O is recursive in a, and the relativized lightface projective
pointclasses Σ0

n(a), Π0
n(a), ∆0

n(a), Σ1
n(a), Π1

n(a), ∆1
n(a) are built from

Σ0
n in the manner above. It follows that each boldface pointclass is the

union of the corresponding relativized lightface classes (relativizing over
each member of ωω).

Following [Mos09], a pointclass is adequate if it contains all recursive
sets and is closed under finite unions and intersections, bounded universal
and existential integer quantification (see [Mos09, p. 119]) and preimages
by recursive functions.11 The relativized lightface projective pointclasses
are adequate (see [Mos09, pp. 118–120]).

Given a Polish space X, an integer k, a set A ⊆ Xk+1 and x ∈ X, Ax
is the set of (x1, . . . , xk) such that (x, x1, . . . , xk) ∈ A. A set A ⊆ Xk+1

in a pointclass Γ is said to be universal for Γ if each subset of Xk in Γ
has the form Ax for some x ∈ X. Pointclasses of the form Σ1

n, Π1
n have

universal members. Those of the form ∆1
n do not. Each member of each

boldface pointclass is of the form Ax for A a member of the corresponding
effective class. Conversely, as each member of each lightface projective
pointclass listed above is definable, each member of each corresponding
boldface pointclass is definable from a real number as a parameter.

A set of reals is said to be Σ2
1 (Π2

1) if is definable by a formula of the
form ∃X ⊆ Rϕ (∀X ⊆ Rϕ), where all quantifiers in ϕ range over the reals
or the integers.

In the Lévy hierarchy [Lév65B], a formula ϕ in the language of set
theory is ∆0 (equivalently Σ0, Π0) if all quantifiers appearing in ϕ are

10The statement that whenever Xn (n ∈ ω) are nonempty sets of reals, there is a
function f : ω → R such that f(n) ∈ Xn for each n. Countable choice for sets of reals is

a consequence of AD, as shown by Mycielski [Myc64] (see Section 2.3).
11A function f from a Polish space X to a Polish space Y is said to be recursive if

the set of pairs x ∈ X, n ∈ ω such that f(x) is in the nth basic open neighborhood of Y

is semi-recursive.
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bounded (see [Jec03, Chapter 13]); Σn+1 if it has the form ∃xψ for some Πn

formula ψ; and Πn+1 if it has the form ∀xψ for some Σn formula ψ. A set
is Σn-definable if it can be defined by a Σn formula (and similarly for Πn).
We say that a model M is Γ-correct, for a class of formulas Γ, if for all ϕ
in Γ and x ∈M , M |= ϕ(x) if and only if V |= ϕ(x). If M is a model of ZF,
we say that a set in M is ΣMn if it is definable by a Σn formula relativized
to M (and similarly for other classes of formulas).

Gödel’s inner model L is the smallest transitive model of ZFC containing
the ordinals. For any set A, Gödel’s constructible universe L generalizes to
two inner models L(A) and L[A], developed respectively by András Hajnal
[Haj56, Haj61] and Azriel Lévy [Lév57, Lév60] (see [Jec03, Chapter 13] or
[Kan03, p. 34]). Given a set A, L(A) is the smallest transitive model of ZF
containing the transitive closure of {A} and the ordinals,12 and L[A] is the
smallest transitive model of ZF containing the ordinals and closed under the
function X 7→ A ∩X. Alternately, L(A) is constructed in the same manner
as L, but introducing the members of the transitive closure of the set {A}
at the first level, and L[A] is constructed as L, but by adding a predicate
for membership in A to the language. When A is contained in L, L(A) and
L[A] are the same. While L[A] is always a model of AC, L(A) need not be.
Indeed, L(R) is a model of AD in the presence of suitably large cardinals,
and is thus a natural example of a “smaller universum” as described in the
quote from [MS62] in Section 2.3.

Though it can be formulated in other ways, we will view the set 0#

(“zero sharp”) as the theory of a certain class of ordinals which are indis-
cernibles over the inner model L. This notion was independently isolated
by Solovay [Sol67A] and by Jack Silver in his 1966 Berkeley Ph.D. thesis
(see [Sil71C]). The existence of 0# cannot be proved in ZFC, as it serves
as a sort of transcendence principle over L. For instance, if 0# exists then
every uncountable cardinal of V is a strongly inaccessible cardinal in L.13

For any set X there is an analogous notion of X# (“X sharp”) serving as a
transcendence principle over L(X) (see [Kan03]).

12A set x is transitive if z ∈ x whenever y ∈ x and z ∈ y. The transitive closure
of a set x is the smallest transitive set containing x.

13A cardinal κ is strongly inaccessible if it is uncountable, regular and a strong

limit (i.e., 2γ < κ for all γ < κ). If κ is a strongly inaccessible cardinal, then Vκ is

a model of ZFC. Hence, by Gödel’s Second Incompleteness Theorem, the existence of
strongly inaccessible cardinals cannot be proved in ZFC. See [Jec03] for the definition of

Vα, for an ordinal α.
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2.3. The Axiom of Determinacy. The Axiom of Determinacy, the
statement that all length ω integer games of perfect information are deter-
mined, was proposed by Mycielski and Steinhaus [MS62].14 In a passage
that anticipated a commonly accepted view of determinacy, they wrote

It is not the purpose of this paper to depreciate the classical
mathematics with its fundamental “absolute” intuitions on the
universum of sets (to which belongs the axiom of choice), but only
to propose another theory which seems very interesting although
its consistency is problematic. Our axiom can be considered as
a restriction of the classical notion of a set leading to a smaller
universum, say of determined sets, which reflect some physical
intuitions which are not fulfilled by the classical sets . . . Our
axiom could be considered as an axiom added to the classical set
theory claiming the existence of a class of sets satisfying (A) and
the classical axioms (without the axiom of choice).

Mycielski and Steinhaus summarized the state of knowledge of determinacy
at that time, including the fact that AD implies that all sets of reals are
Lebesgue measurable and have the Baire property, and they noted that by
results of Kurt Gödel and Addison [Add59B], there is in Gödel’s constructible
universe L (and thus consistently with ZFC) a ∆1

2 wellordering of the reals,
and thus a ∆1

2 set which is not determined.
In his [Myc64], Mycielski proved several fundamental facts about determi-

nacy, including the fact that AD implies countable choice for set of reals (he

credits this result to Świerczkowski, Dana Scott and himself, independently).
Thus, while AD contradicts the Axiom of Choice, it implies a form of Choice
which suffices for many of its most important applications, including the
countable additivity of Lebesgue measure. Via countable choice for sets of
reals, AD implies that ω1 is regular.15 Mycielski also showed that AD implies
that there is no uncountable wellordered sequence of reals. In conjunction
with the perfect set property, this implies that under determinacy, ωV

1 is a
strongly inaccessible cardinal in the inner model L (and even in L[a] for any
real number a), a fact which was to be greatly extended by Solovay, Martin
and Woodin. Harrington [Har78] would show that Π1

1-determinacy implies
that 0# exists, and thus that Π1

1-determinacy is not provable in ZFC.

14We continue to use the now-standard abbreviation AD for the Axiom of Determinacy;

it was called (A) in [MS62].
15The ordinal ω1 is the first uncountable ordinal. A cardinal κ is regular if, for every

γ < κ, every function f : γ → κ has range bounded in κ. Under ZFC, every successor

cardinal is regular. Solomon Feferman and Azriel Lévy [FL63] (see also [HR98, pp. 153–

154]) showed that the singularity of ω1 is consistent with ZF. Moti Gitik [Git80] showed
that it is consistent with ZF (relative to large cardinals) that ω is the largest regular

cardinal.
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In the same paper, Mycielski showed that ZF implies the existence of an
undetermined game of perfect information of length ω1 where the players
play countable ordinals instead of integers. An interesting aspect of the
proof is that it does not give a specific undetermined game. As a slight
variant on Mycielski’s argument, consider the game in which the first player
plays a countable ordinal α (and then makes no other moves for the rest
of the game) and the second player plays a sequence of integers coding α,
under some fixed coding of hereditarily countable sets by reals.16 Since
the first player cannot have a winning strategy in this game, determinacy
for the game implies the existence of an injection from ω1 into R, which
contradicts AD but is certainly by itself consistent with ZF, as it follows from
ZFC. Later results of Woodin would show that, assuming the consistency
of certain large cardinal hypotheses, ZFC is consistent with the statement
that every integer game of length ω1 with payoff set definable from real
and ordinal parameters is determined (see Section 6.3, and [Nee04, p. 298]).
Mycielski noted that under AD there are no nonprincipal ultrafilters17 on ω
(this follows from Lebesgue measurability for all sets of reals plus a result
of Sierpiński [Sie38] showing that nonprincipal ultrafilters on ω give rise to
nonmeasurable sets of reals), which implies that every ultrafilter (on any set)
is countably complete (i.e., closed under countable intersections). Finally, in
a footnote on the first page of the paper, Mycielski reiterated a point made
in the passage quoted above from his paper with Steinhaus, suggesting that
an inner model containing the reals could satisfy AD. In a followup paper,
Mycielski [Myc66] presented a number of additional results, including the
fact that there is a game in which the players play real numbers whose
determinacy implies uniformization (see Section 3.2) for subsets of the plane,
another weak form of the Axiom of Choice.

In 1964, a year after Paul Cohen’s invention of forcing, Solovay [Sol70]
proved that if there exists a strongly inaccessible cardinal, then in a forcing
extension there exists an inner model containing the reals in which every set
of reals satisfies the regularity properties from Section 2.1. Shelah [She84]
later showed that a strongly inaccessible cardinal is necessary, in the sense
that the Lebesgue measurability of all sets of reals (and even the perfect set
property for Π˜ 1

1 sets) implies that ω1 is strongly inaccessible in all models
of the form L[a], for a ⊆ ω. In the introduction to his paper, Solovay

16The hereditarily countable sets are those sets whose transitive closures are
countable. Such sets are naturally coded by sets of integers.

17An ultrafilter on a nonempty set X is a collection U of nonempty subsets of X

which is closed under supersets and finite intersections, and which has the property that

for every A ⊆ X, exactly one of A and X \ A is in U . An ultrafilter is nonprincipal
if it contains no finite sets. The existence of nonprincipal ultrafilters on ω follows from

ZFC, but (as this result shows) requires the Axiom of Choice.
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conjectured (correctly, as it turned out) that large cardinals would imply
that AD holds in L(R).

The year 1967 saw two major results in the study of determinacy, one by
Blackwell [Bla67] and the other by Solovay. Reversing chronological order
by a few months, we discuss Blackwell’s result and its consequences in the
next section, and Solovay’s in Section 4.

§3. Reduction and scales. Blackwell [Bla67] used open determinacy
to reprove a theorem of Kuratowski [Kur36] stating that the intersection of
any two analytic sets A, B in a Polish space Y is also the intersection of
two analytic sets A′ and B′ such that A ⊆ A′, B ⊆ B′, and A′ ∪B′ = Y.18

Briefly, the argument is as follows. Since A and B are analytic, there exist
continuous surjections f : ωω → A and g : ωω → B. For each finite sequence
〈n0, . . . , nk〉, let Ω(〈n0, . . . , nk〉) be the set of x ∈ ωω with 〈n0, . . . , nk〉 as
an initial segment; let R(〈n0, . . . , nk〉) be the closure (in Y) of the f -image
of Ω(〈n0, . . . , nk〉); and let S(〈n0, . . . , nk〉) be the closure of the g-image of
Ω(〈n0, . . . , nk〉). Then for each z ∈ Y, let G(z) be the game where players
player I and player II build x and y in ωω, with player I winning if for
some integer k, z ∈ R(x�k) \ S(y�k), player II winning if for some integer k,
z ∈ S(y�k) \R(x�(k + 1)), and the run of the game being a draw if neither
of these happens. Roughly, each player is creating a real (x or y) to feed
into his function, and trying to maintain for as long as possible that the
corresponding output can be made arbitrarily close to the target real z; the
loser is the first player to fail to maintain this condition. Let A′ be the set
of z for which player I has a strategy guaranteeing at least a draw, and let
B′ be the set of z for which player player II has such a strategy. Then the
determinacy of open games implies that ωω = A′ ∪B′, and A ⊆ A′, B ⊆ B′
and A′ ∩B′ = A ∩B follow from the fact that A is the range of f and B is
the range of g. The sets A′ and B′ are analytic, as A′ is a projection of the
set of pairs (ϕ, z) such that ϕ is (a code for) a strategy for player I in G(z)
guaranteeing at least a draw, which is Borel, and similarly for B′.19

3.1. Reduction, separation, norms and prewellorderings. In his
[Kur36], Kuratowski defined the reduction theorem (now called the
reduction property) for a pointclass Γ to be the statement that for any
A, B in Γ there exist disjoint A′, B′ in Γ with A′ ⊆ A, B′ ⊆ B and
A′ ∪ B′ = A ∪ B. He showed in this paper that Π˜ 1

1 and Σ˜ 1
2 have the

reduction property; Addison [Add59B] showed this for Π1
1(a) and Σ1

2(a), for
each real number a. Blackwell’s argument proves the reduction property
for Π˜ 1

1, working with the corresponding Σ˜ 1
1 complements.

18Blackwell describes the discovery of his proof in [AA85, p. 26].
19A projection of a set A ⊆ (ωω)k (for some integer k ≥ 2) is a set of the form

{(x0, . . . , xi−i, xi+1, . . . , xk−1) | ∃xi(x0, . . . , xk−1) ∈ A}, for some i < k.
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Kuratowski also defined the first separation theorem (now called the
separation property) for a pointclass Γ to be the statement that for
any disjoint A, B in Γ there exists C in ∆Γ with A ⊆ C and B ∩ C = ∅.
This property had been studied by Sierpiński [Sie24] and Luzin [Luz30A]
for initial segments of the Borel hierarchy. Kuratowski also noted that
the reduction property for a pointclass Γ implies the separation property
for Γ̆. Luzin [Luz27, pp. 51–55] proved that the pointclass Σ˜ 1

1 satisfies

the separation property, by showing that disjoint Σ˜ 1
1 sets are contained

in disjoint Borel sets. Petr Novikov [Nov35] showed that Π˜ 1
2 satisfies the

separation property and Σ˜ 1
2 does not. Novikov [Nov35] (in the case of Σ˜ 1

2

sets) and Addison [Add59B] showed that if Γ satisfies the reduction property
and has a so-called doubly universal member, and ∆Γ has no universal
member, then Γ does not have the separation property, so Γ̆ does not have
the reduction property.20 Addison [Add59A, Add59B] showed that if all
real numbers are constructible, then the reduction property holds for Σ˜ 1

k,
for all k ≥ 2.

Inspired by Blackwell’s argument, Addison and Martin independently
proved that ∆˜ 1

2-determinacy implies that Π˜ 1
3 has the reduction property.

Since the pointclass Σ˜ 1
3 has a doubly universal member, this shows that

∆˜ 1
2-determinacy implies the existence of a nonconstructible real. This fact

also follows from Gödel’s result (discussed in [Add59A]) that the Lebesgue
measurability of all ∆1

2 sets implies the existence of a nonconstructible real.
Determinacy would soon be shown to imply stronger structural properties
for the projective pointclasses.

The key technical idea behind the (pre-determinacy) results listed above
on separation and reduction for the first two levels of the projective hierarchy
was the notion of sieve (in French, crible). This construction first appeared
in a paper of Lebesgue [Leb05], in which he proved the existence of Lebesgue-
measurable sets which are not Borel. In Lebesgue’s presentation, a sieve is
an association of a closed subset Fr of the unit interval [0, 1] to each rational
number r in this interval. The sieve then represents the set of x ∈ [0, 1] such
that {r | x ∈ Fr} is wellordered, under the usual ordering of the rationals.
Using this approach, Luzin and Sierpiński [LS18, LS23] showed that Σ˜ 1

1

sets and Π˜ 1
1 sets are unions of ℵ1 many Borel sets.

Much of the classical work of Luzin, Sierpiński, Kuratowski and Novikov
mentioned here was redeveloped in the lightface context by Kleene [Kle43,
Kle55C, Kle55B, Kle55A], who was unaware of their previous work. The
two theories were unified primarily by Addison (for example, [Add59A]).

20Members U ,V of a pointclass Γ are doubly universal for Γ if for each pair A,B of

members of Γ there exist an x ∈ ωω such that Ux = A and Vx = B. The non-selfdual
projective pointclasses (e.g., Σ1

1(a), Π1
1(a), Σ1

2(a), Π1
2(a), . . . ) all have doubly universal

members.
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While Blackwell’s argument generalizes throughout the projective hierarchy,
Moschovakis ([Mos67, Mos69B, Mos69C, Mos70A, Mos71A], see also [Mos09,
pp. 202–206]) developed via the effective theory a generalization of the Luzin–
Sierpiński approach (decomposing a set of reals into a wellordered sequence
of simpler sets) which could be similarly propagated. Moschovakis’s goal
was to find a uniform approach to the theory of Π1

1 and Σ1
2; he was unaware

of either Kuratowski’s work or determinacy (personal communication). He
extracted the following notions, for a given pointclass Γ: a Γ-norm for a
set A is a function ρ : A→ On for which there exist relations R+ ∈ Γ and
R− ∈ Γ̆ such that for any y ∈ A,

x ∈ A ∧ ρ(x) ≤ ρ(y)↔ R+(x, y)↔ R−(x, y);

a pointclass Γ is said to have the prewellordering property if every A ∈ Γ
has a Γ-norm.21 The prewellordering property was first explicitly formulated
by Moschovakis in 1964; the definition just given is a reformulation due
to Kechris. Kuratowski [Kur36] and Addison [Add59B] had shown that a
variant of the property implies the reduction property; the same holds for the
prewellordering property as defined by Moschovakis. Moschovakis applied
Novikov’s arguments to show that if Γ is a projective pointclass such that
∀1Γ ⊆ Γ, and Γ has the prewellordering property, then so does the pointclass
∃1Γ. Martin and Moschovakis independently completed the picture in 1968,
proving what is now known as the First Periodicity Theorem.

Theorem 3.1 (First Periodicity Theorem). Let Γ be an adequate point-
class and suppose that ∆Γ-determinacy holds. Then for all A ∈ Γ, if A
admits a Γ-norm, then ∀1A admits a ∀1∃1Γ-norm.

Corollary 3.2 ([AM68, Mar68]). Let Γ be an adequate pointclass closed
under existential quantification over reals, and suppose that ∆Γ-determinacy
holds. If Γ satisfies the prewellordering property, then so does ∀1Γ.

Projective Determinacy (PD) is the statement that all projective sets
of reals are determined. By the First Periodicity Theorem, under Projective
Determinacy the following pointclasses have the prewellordering property,
for any real a:

Π1
1(a),Σ1

2(a),Π1
3(a),Σ1

4(a),Π1
5(a),Σ1

6(a), . . .

21A prewellordering is a binary relation which is wellfounded, transitive and total.

A function ρ from a set X to the ordinals induces a prewellording � on X by setting

a � b if and only if ρ(a) ≤ ρ(b). Conversely, a prewellordering � on a set X induces a
function ρ from X to the ordinals, where for each a ∈ X, ρ(a) (the �-rank of a) is the

least ordinal α such that ρ(b) < α for all b ∈ X such that b � a and a � b. The range of

ρ is called the length of �.
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By contrast (see [Kan03, pp. 409–410]), in L the pointclasses with the
prewellordering property are

Π1
1(a),Σ1

2(a),Σ1
3(a),Σ1

4(a),Σ1
5(a),Σ1

6(a), . . .

3.2. Scales. As noted above, the Axiom of Determinacy contradicts the
Axiom of Choice, but it is consistent with, and even implies, certain weak
forms of Choice. If X and Y are nonempty sets and A is a subset of the
product X × Y , a function f uniformizes A if the domain of f is the set
of x ∈ X such that there exists a y ∈ Y with (x, y) ∈ A, and such that for
each x in the domain of f , (x, f(x)) ∈ A. A consequence of the Axiom of
Choice, uniformization is the statement that for every A ⊆ R× R there
is a function f which uniformizes A.

Uniformization is not implied by AD, as it fails in L(R) whenever there
are no uncountable wellordered sets of reals ([Sol78B]; see Section 3.3).

Uniformization was implicitly introduced by Jacques Hadamard [Had05],
when he pointed out that the Axiom of Choice should imply the existence
of functions on the reals which disagree everywhere with every algebraic
function over the integers. Luzin [Luz30C] explicitly introduced the notion
of uniformization and showed that such functions exist. He also announced
several results on uniformization, including the fact that all Borel sets (but
not all Σ˜ 1

1 sets) can be uniformized by Π˜ 1
1 functions. The result on Borel

sets was proved independently by Sierpiński. Novikov [LN35] showed that
every Σ˜ 1

1 set of pairs has a Σ˜ 1
2 uniformization.

A pointclass Γ is said to have the uniformization property if every
set of pairs in Γ is uniformized by a function in Γ. Motokiti Kondô [Kon38]
showed that the pointclasses Π˜ 1

1 and Σ˜ 1
2 have the uniformization property.

The effective version of this result (i.e., for Π1
1 and Σ1

2) was proved by
Addison. In some sense this is as far as one can go in ZFC: Lévy [Lév65A]
would show that consistently there exist Π1

2 sets that cannot be uniformized
by any projective function. Remarkably, Luzin [Luz25B] has predicted that
the question of whether the projective sets are Lebesgue measurable and
satisfy the perfect set property would never be solved.

After studying Kondô’s proof, Moschovakis in 1971 isolated a property for
sets of reals which induces uniformizations. Given a set A and an ordinal
γ, a scale (or a γ-scale) on A into γ is a sequence of functions ρn : A→ γ
(n ∈ ω) such that whenever

• {xi : i ∈ ω} ⊆ A and limi→ω xi = x, and
• the sequence 〈ρn(xi) : i ∈ ω〉 is eventually constant for each n ∈ ω,

then x ∈ A and, for every n ∈ ω, ρn(x) is less than or equal to the eventual
value of 〈ρn(xi) : i ∈ ω〉. The scale is a Γ-scale if there exist R+ ∈ Γ and

R− ∈ Γ̆ such that for all y ∈ A and all n ∈ ω,

x ∈ A ∧ ρn(x) ≤ ρn(y)↔ R+(n, x, y)↔ R−(n, x, y).
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A pointclass Γ has the scale property if every A in Γ has a Γ-scale.
Moschovakis [Mos71A] proved the following three theorems about the scale
property.

Theorem 3.3. If Γ is an adequate pointclass, A ∈ Γ, and A admits a
Γ-scale, then ∃1A admits a ∃1∀1Γ-scale.

Theorem 3.4 (Second Periodicity Theorem). Suppose that Γ is an ade-
quate pointclass such that ∆Γ-determinacy holds. Then for all A ∈ Γ, if A
admits a Γ-scale, then ∀1A admits a ∀1∃1Γ-scale.

Theorem 3.5. Suppose that Γ is an adequate pointclass which is closed
under integer quantification. Suppose that Γ has the scale property, and
that ∆Γ-determinacy holds. Then Γ has the uniformization property.

Kondô’s proof of uniformization for Π˜ 1
1 shows that Π1

1(a) has the scale

property for every real a (see [Kan03, p. 419]). It follows that under ∆˜ 1
2n-

determinacy, Π˜ 1
2n+1 and Σ˜ 1

2n+2 have the scale property, and every Π˜ 1
2n+1

relation on the reals can be uniformized by a Π˜ 1
2n+1 relation (and similarly

for Σ˜ 1
2n+2). Furthermore, under Projective Determinacy, for any real a, the

projective pointclasses with the scale property are the same as those with
the prewellordering property: Π1

1(a), Σ1
2(a), Π1

3(a), Σ1
4(a), Π1

5(a), Σ1
6(a), etc.

A tree on a set X is a collection of finite sequences from X closed under
initial segments. Given sets X and Z, a positive integer k and a tree T on
Xk × Z, the projection of T , p[T ], is the set of x ∈ (Xω)k such that for
some z ∈ Zω, (x�n, z�n) ∈ T for all n ∈ ω (strictly speaking, this definition
involves the identification of finite sequences of k-tuples with k-tuples of
finite sequences). If one substitutes the Baire space ωω for R, Suslin’s
construction for analytic sets (see Section 2.2) essentially presents them as
projections of trees on ω × ω, modulo the representation of closed intervals.
Many descriptive set theorists, starting perhaps with Luzin and Sierpiński
[LS23], used trees to represent sets of reals, except that they converted
these trees to linear orders via what is now known as the Kleene–Brouwer
ordering (after [Bro24] and [Kle55C]). The explicit use of projections of
trees as we have presented them here is due to Richard Mansfield [Man70].
As pointed out in [KM78B], given an ordinal γ, a γ-scale for a subset A of
the Baire space naturally gives rise to a tree on ω × γ such that p[T ] = A.
Given a set Z, a subset of the Baire space is said to be Z-Suslin if it is the
projection of a tree on ω × Z. Suslin’s representation of analytic sets shows
that a set is analytic if and only if it is ω-Suslin. Some authors use “Suslin”
to mean “analytic”. We will follow a different usage, however, and say that
a subset of the Baire space is Suslin if is γ-Suslin for some ordinal γ.

Given a tree T on ω × Z and a wellordering of Z, a member of p[T ] can
be found by following the so-called leftmost infinite branch through T
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(similar to the proof of Kőnig’s Lemma, one picks a path through the tree
by taking the least next step which is the initial segment of an infinite path
through the tree). In a similar manner, a tree on (ω × ω) × γ, for some
ordinal γ, induces a uniformization of the projection of the tree.

3.3. The game quantifier. Given a Polish space X and a set B ⊆
X× ωω, we let

G

B denote the set of x ∈ X such that player I has a winning
strategy in Gω(Bx). If Γ is a pointclass,

G

Γ is the class {

G

B | B ∈ Γ}. The
following facts appear in [Mos09, pp. 245–246].

Theorem 3.6. If Γ is an adequate pointclass then the following hold.

•

G

Γ is adequate and closed under ∃0 and ∀0.
• ∃1Γ ⊆

G

Γ and ∀1Γ ⊆

G

Γ.
• If Det(Γ) holds, then

G

Γ ⊆ ∀1∃1Γ.

The First Periodicity Theorem can be stated more generally as the fact
that if an adequate pointclass Γ has the prewellordering property, then so
does

G

Γ, and the Second Periodicity Theorem can be similarly stated as
saying that if an adequate pointclass Γ has the scale property, then so does

G

Γ (see [Mos09, pp. 246,267]). The propagation of these properties through
the projective pointclasses then follows from Theorem 3.6, given that they
hold for Π˜ 1

1 (and its variants).
Modifying the notion of Γ-scale by dropping the requirement that ρn(x)

is less than or equal to the eventual value of 〈ρn(xi) : i ∈ ω〉, one gets the
notion of Γ-semiscale. Moschovakis’s Third Periodicity Theorem [Mos73]
concerns the definability of winning strategies and is stated using the game
quantifier and the notion of semiscale.

Theorem 3.7 (Third Periodicity Theorem). Suppose that Γ is an ade-
quate pointclass, and that Det(Γ) holds. Fix A ⊆ ωω in Γ, and suppose
that A admits a Γ-semiscale and that player I has a winning strategy in
the game Gω(A). Then player I has a winning strategy coded by a subset
of ω in

G

Γ.

One consequence the Third Periodicity Theorem in conjunction with
Theorem 3.6 is the following [Mos73]: for any n ∈ ω, if Σ˜ 1

2n-determinacy

holds, A ⊆ ωω is Σ1
2n(a) for some real a and player I has a winning strategy

in the game with payoff A, then player I has a winning strategy coded by a
subset of ω in ∆1

2n+1(a).

Let

G1 denote the game quantifier for real games, games of length ω
where the players alternate playing real numbers. Then

G1Σ˜ 0
1 defines the

inductive sets of reals.22 Moschovakis [Mos78] showed that the inductive
sets have the scale property. Moschovakis [Mos83] showed that, assuming

22Formally, this definition requires a definable association of ω-sequences of reals to

individual reals. Alternately, a set of reals is inductive if it is in Σ
JκR (R)
1 , where J refers
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the determinacy of all games with payoff in the class built from the inductive
sets by the operations of projection and complementation, coinductive sets
have scales in this class. Building on this work, Martin and Steel [MS83]
showed that the pointclass Σ˜ 2

1 has the scale property in L(R). Kechris and
Solovay had shown that if there is no wellordering of the reals in L(R), then
there exists in L(R) a set of reals that cannot be uniformized, the set of
pairs (x, y) such that y is not ordinal definable from x (i.e., definable from
x and some ordinals). This set is Π2

1 in L(R).
The Solovay Basis Theorem says that if P (A) is a Σ2

1 relation on
subsets of ωω and there exists a witness to P (A) in L(R), then there is a
∆2

1 witness. This reflection result, along with the Martin–Steel theorem on
scales in L(R), compensates in many circumstances for the fact that not
every set of reals has a scale in L(R).

Steel [Ste83A] applied Jensen’s fine structure theory [Jen72] to the study
of scales in L(R), refining and unifying a great deal of work on scales and
Suslin cardinals. Extending [MS83], he showed that for each positive ordinal
α, determinacy for all sets of reals in Jα(R) implies that the pointclass

Σ
Jα(R)
1 has the scale property.
Martin [Mar83B] showed how to propagate the scale property using the

game quantifier for integer games of fixed countable length (this subsumes
propagation by the quantifier

G1), and Steel [Ste88, Ste08C] did the same
for certain games of length ω1.

3.4. Partially playful universes. The periodicity theorems showed
that determinacy axioms imply structural properties for sets of reals beyond
the classical regularity properties. It remained to show that these hypotheses
were necessary. Towards this end, Moschovakis (see [Bec78]) identified for
each integer n (under the assumption of ∆˜ 1

k-determinacy, where k is the

greatest even integer less than n) the smallest transitive Σ1
n-correct model

of ZF+Dependent Choices (DC) which contains all the ordinals (Joseph
Shoenfield [Sho61] had shown that L is Σ1

2-correct).23 This model satisfies
AC and ∆˜ 1

k-determinacy and has a Σ1
n+1 wellordering of the reals. In this

model, Π1
i has the scale property for all odd i ≤ n, and Σ1

i has the scale
property for all other positive integers i.

to Ronald Jensen’s constructibility hierarchy and κR is the least κ such that Jκ(R) is a
model of Kripke–Platek set theory.

23The Axiom of Dependent Choices (DC) is the statement that if R is a binary relation

on a nonempty set X, and if for each x ∈ X there is a y ∈ X such that xRy, then there

exists an infinite sequence 〈xi : i < ω〉 such that xiRxi+1 for all i ∈ ω. This statement is
a weakening of the Axiom of Choice, sufficient to prove Kőnig’s Lemma, the regularity of

ω1 and the wellfoundedness of ultrapowers by countably complete ultrafilters. See [Jec03].
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Kechris and Moschovakis [KM78B] introduced the models L[T2n+1], where
T2n+1 denotes the tree for a Π1

2n+1-scale for a complete Π1
2n+1 set. Moscho-

vakis showed that L[T1] = L, and conjectured that L[T2n+1] is independent
of the choice of complete set and scale when for all n. This conjecture was
proved by Howard Becker and Kechris in [BK84].

Solovay [Sol66] showed that if L ∩ R is countable, then it is the largest
countable Σ1

2 set of reals (i.e., a countable Σ1
2 set which contains all other

such sets). Kechris and Moschovakis [KM72] showed that for each positive
integer n, if Det(∆1

2n) holds then there exists a largest countable Σ1
2n+2 set.

The largest countable Σ1
2n set came to be called C2n. Kechris [Kec75B]

showed that under Projective Determinacy there is for each integer n a
largest countable Π1

2n+1 set, which he also called C2n+1. The case n = 0
follows from ZF+DC and was shown independently by David Guaspari,
Kechris and Gerald Sacks [Sac76]. Kechris also showed that under Projective
Determinacy there are no largest countable Σ1

2n+1 or Π1
2n sets. It follows

that under Projective Determinacy the lightface projective pointclasses with
a largest countable set are the same as those in the zig-zag pattern above for
the prewellording property and the scale property. Harrington and Kechris
[HK81] showed (under the assumption that AD holds in L(R)) that the
reals of each L[T2n+1] are exactly C2n+2, for all integers n (the case n = 1
was due to Kechris and Martin).

Kechris showed (assuming Projective Determinacy) that each model
L[C2n] satisfies Det(∆˜ 1

2n−1) but not Det(Σ˜ 1
2n−1), and has a ∆1

2n wellordering

of its reals. Martin would show that Det(∆˜ 1
2n) implies Det(Σ˜ 1

2n) for each
positive integer n.

3.5. Wadge degrees. In 1968, William Wadge considered the following
game, given two sets of reals A and B: player I builds a real x, player II
builds a real y, and player II wins if x ∈ A ↔ y ∈ B. Determinacy for
this class of games is known as Wadge determinacy. Given two sets of
reals A, B, we say that A ≤W B (A has Wadge rank less than or equal
to B, or is Wadge reducible to B) if there is a continuous function f
such that for all reals x, x ∈ A if and only if f(x) ∈ B (i.e., such that
A = f−1[B]). Wadge determinacy implies that for any two sets of reals
A, B, either A ≤W B (in the case that player II has a winning strategy)
or ωω \ B ≤W A (in the case that player I does), from which it follows
that for any two pointclasses closed under continuous preimages, either the
two classes are dual (i.e., a pair of the form Γ, Γ̆) or one is contained in
the other. Wadge showed that ≤W is wellfounded on the Borel sets, and
Martin, using an idea of Leonard Monk, extended this to all sets of reals
under AD+DC (see [Van78B]).

Wadge determinacy and the wellfoundedness of the Wadge hierarchy
divide ℘(ωω) into equivalence classes by Wadge reducibility and order these
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classes into a wellfounded hierarchy, where each level consists either of one
selfdual equivalence class, or two non-selfdual classes, one consisting of all
the complements of the members of the other. Wadge determinacy also
implies that every non-selfdual adequate pointclass has a universal set (see
[Van78B, p. 162]).

The discovery of Wadge determinacy led to further progress on separation
and reduction. Robert Van Wesep [Van78A] proved that under AD, if Γ
is a non-selfdual pointclass which is closed under continuous preimages,
then Γ and Γ̆ cannot both have the separation property. Kechris, Solovay
and Steel [KSS81] showed that under AD+DC, if Γ ⊆ L(R) is nonselfdual
boldface pointclass and Γ is closed under countable intersections and unions
and either ∃1 or ∀1, but not complements, then either Γ or Γ̆ has the
prewellordering property. In 1981, Steel [Ste81B] showed that under AD, if
Γ is a nonselfdual pointclass closed under continuous preimages, then either
Γ or Γ̆ has the separation property, and if one assumes in addition that ∆Γ

is closed under finite unions, then either Γ or Γ̆ has the reduction property.

§4. Partition properties and the projective ordinals. A cardinal
κ is measurable if there is a nonprincipal κ-complete ultrafilter on κ,
where κ-completeness means closure under intersections of fewer than
κ many elements. In ZFC measurable cardinals are strongly inaccessible.
In 1967, Solovay (see [Jec03, p. 633] or [Kan03, p. 348]) showed that AD
implies that the club filter on ω1 is an ultrafilter, which implies that ω1 is a
measurable cardinal.24 Ulam had shown that under ZFC there are stationary,
co-stationary subsets of ω1; Solovay’s result shows the opposite under AD.
Solovay also showed that under AD every subset of ω1 is constructible from
a real (i.e., exists in L[a] for some real number a). Since the measurability
of ω1 implies that the sharp of each real exists, this gives another proof that
the club filter on ω1 is an ultrafilter, since for any real a, if a# exists, then
every subset of ω1 in L[a] either contains or is disjoint from a tail of the
a-indiscernibles below ω1, which is a club set.

A Turing degree is a nonempty subset of ℘(ω) closed under equicom-
putability. A cone of Turing degrees is the set of all degrees above (or
computing) a given degree.25 Martin [Mar68] showed that under AD the
cone measure on Turing degrees is an ultrafilter, i.e., that every set of
Turing degrees either contains or is disjoint from a cone. This important
fact has a relatively short and simple proof: the two players collaborate to
build a real, with the winner decided by whether the Turing degree of the

24A subset of an ordinal is closed unbounded (or club) if it is unbounded and

closed in the order topology on the ordinals, and stationary if it intersects every club
set. The club filter on an ordinal γ consists of all subsets of γ containing a club set.

25See [Soa87, Coo04] for more on the Turing degrees, including a more precise statement

of their definition.
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real falls inside the payoff set; the cone above the degree of any real coding
a winning strategy must contain or be disjoint from the payoff set. Martin
used this result to find a simpler proof of the measurability of ω1. Solovay
followed by showing that ω2 is measurable as well. Turing determinacy
is the restriction of AD to payoff sets closed under Turing equivalence. This
form of determinacy is easily seen to suffice for Martin’s result. In the early
1980s, Woodin would show that, in L(R), AD and Turing determinacy are
equivalent.

Given an ordered set X and an ordinal β, [X]β denotes the set of subsets
of X of ordertype β. Given ordinals α, β, δ, and γ, the expression α→ (β)γδ
denotes the statement that for every function f : [α]γ → δ, there exists
an X ∈ [α]β such that f is constant on [X]γ . Frank Ramsey [Ram30]
proved that ω → (ω)n2 holds for each positive n ∈ ω (this fact is known as
Ramsey’s Theorem). For infinitary partitions, Paul Erdős and András
Hajnal [EH66] showed (in ZFC) that for any infinite cardinal κ there is a
function f : [κ]ω → κ such that for every X ∈ [κ]κ, the range of f�X is all
of κ.

In 1968, Adrian Mathias [Mat68, Mat77] showed that ω → (ω)ω2 holds in
Solovay’s model from [Sol70], in which all sets of reals satisfy the regularity
properties. A set Y ⊆ [ω]ω is said to be Ramsey if there exists an
X ∈ [ω]ω such that either [X]ω ⊆ Y or [X]ω ∩ Y = ∅. The statement
ω → (ω)ω2 is equivalent to the statement that every subset of [ω]ω is Ramsey.
Prikry [Pri76] showed that under ADR (determinacy for games of perfect
information of length ω for which the players play real numbers) every
subset of [ω]ω is Ramsey. It follows from the main theorem of [MS83] that
AD + V=L(R) implies that every such set is Ramsey. Whether AD alone
suffices is still an open question.

In late 1968, Martin (see [Kan03, p. 392]) showed that AD implies
ω1 → (ω1)ω2 (this implies for instance that the club filter on ω1 is an
ultrafilter). Kenneth Kunen then showed that AD implies that ω1 satisfies
the weak partition property, where a cardinal κ satisfies the weak partition
property if κ→ (κ)α2 holds for every α < κ. Martin followed by showing
that ω1 → (ω1)ω1

2 , again under AD. The proof actually shows ω1 → (ω1)ω1
2ω

and ω1 → (ω1)ω1
α for every countable ordinal α. Martin and Paris (in an

unpublished note [MP71], see [Kec78A]) showed that under AD+DC, ω2

has the weak partition property.
Before continuing with this line of results, we briefly discuss the Coding

Lemma and the projective ordinals.

4.1. Θ, the Coding Lemma and the projective ordinals. Follow-
ing convention, we let Θ denote the least ordinal that is not a surjective
image of R. Under ZFC, Θ = c+, but under AD, Θ is a limit cardinal, as
noted by Harvey Friedman (see [Kan03, p. 398]). This fact follows from
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a theorem known as the Coding Lemma, due to Moschovakis [Mos70A],
extending earlier work of Friedman and Solovay.

Given a subset P of some Polish space, let Σ˜ 1
1(P ) denote the pointclass

of sets which are Σ1
1-definable using P and individual reals as parameters.

Theorem 4.1 (Coding Lemma). Assume ZF+AD. Let � be a prewell-
ordering of a set of reals X. Let ξ be the length of � and let A be a subset
of ξ. Then there exists a Y ⊆ X in Σ˜ 1

1(�) such that A is the set of �-ranks
of elements of Y .

As an immediate consequence, under AD, if ξ < Θ, then there is a
surjection from R onto ℘(ξ) (furthermore, if α < ΘM for some wellfounded
model M of ZF containing the reals, then such a surjection can be found in
M). The proof of the Coding Lemma uses a version of Kleene’s Recursion
Theorem (first proved in [Kle38] for partial recursive functions on the
integers), which can be stated as saying that given a suitable coding under
which each real x codes a continuous partial function x̂ (our notation) on
the reals, for each two-variable continuous partial function g on the reals
there is a real x such that x̂(w) = g(x,w) for all reals w.

If Γ is a pointclass, δΓ denotes the supremum of the lengths of the
prewellorderings of the reals in ∆Γ. The notation δ˜1

n is used to denote δΣ˜1
n

(which is the same as δΠ˜1
n
). The projective ordinals are the ordinals δ˜1

n,

for n ∈ ω\{0}. It follows from the results of [LS23] that Σ˜ 1
1 prewellorderings

of the reals have countable length, and therefore that the ordinal δ˜1
1 is equal

to ω1. Moschovakis [Mos70A] showed (under AD, using the Coding Lemma)
that for each n ∈ ω, δ˜1

n+1 is a cardinal, and that δ˜1
2n+1 is regular and (using

just PD) strictly less than δ˜1
2n+2. Martin showed (without AD) that δ˜1

2 ≤ ω2

(see [KM78B]); together these results show that under AD, δ˜1
2 = ω2.

Kunen and Martin (see [KM78B]) independently established from ZF+DC
that every wellfounded κ-Suslin prewellordering has length less than κ+

(this fact is sometimes called the Kunen–Martin Theorem). Moschovakis
([Mos70A]; see [Mos09, 4C.14]) showed (from PD) that any Π˜ 1

2n+1-norm

on a complete Π˜ 1
2n+1 set has length δ˜1

2n+1 (this result also uses Kleene’s

Recursion Theorem). By the scale property for Π˜ 1
2n+1 sets (under the

assumption of DC + ∆˜ 1
2n-determinacy, given n ∈ ω [Mos71A]), every

Π˜ 1
2n+1 set (and thus every Σ˜ 1

2n+2 set) is δ˜1
2n+1-Suslin, and, since δ˜1

2n+1

is regular, every Σ˜ 1
2n+1 set is λ-Suslin for some λ < δ˜1

2n+1. It follows

that under the same hypothesis, δ˜1
2n+2 ≤ (δ˜1

2n+1)+, and under AD that

δ˜1
2n+2 = (δ˜1

2n+1)+ for each n ∈ ω.

Kechris [Kec74] proved (assuming AD) that δ˜1
2n+1 is a successor cardinal

(its predecessor is called λ2n+1). It follows from his arguments, and those of
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the previous paragraph, that the pointclasses Σ˜ 1
2n+2 and Σ˜ 1

2n+1 are exactly

the δ˜1
2n+1-Suslin and λ2n+1-Suslin sets respectively.

Given an ordinal λ, the λ-Borel sets of reals are those in the smallest class
containing the open sets and closed under complements and well-ordered
unions of length less than λ. Martin showed that if κ is a cardinal of
uncountable cofinality, then all κ-Suslin sets are κ+-Borel. He also showed
(using AD+DC, the Coding Lemma and Wadge determinacy) that the δ˜1

2n+1-

Borel sets are ∆˜ 1
2n+1, for each n ∈ ω (the reverse inclusion follows from

the results of Moschovakis [Mos71A] mentioned above). Using this fact,
Kechris proved (again, under AD) that λ2n+1 has cofinality ω. It follows
(under AD) that δ˜1

2n < δ˜1
2n+1 for each n ∈ ω, so that under AD the sequence

〈δ˜1
n+1 : n ∈ ω〉 is a strictly increasing sequence of successor cardinals.

Kunen [Kun71E] showed that δ˜1
n is regular for each positive n ∈ ω.

Solovay noted that under AD, Θ is the Θth cardinal, and that under
the further assumption of V = L(R), Θ is regular (see [Kan03, p. 398]).
He showed [Sol78B] that under DC, Θ has uncountable cofinality, and also
that ZFC + ADR + cf(Θ)>ω proves the consistency of ZF+ADR, so that by
Gödel’s Second Incompleteness Theorem, if ZF+ADR is consistent, then so
is ZFC + ADR + cf(Θ)=ω.26 Kechris [Kec84], using the proof of the Third
Periodicity Theorem and work of Martin, Moschovakis and Steel on scales
[MMS82A], showed that DC follows from AD + V=L(R). Woodin (see
[Kec84]) strengthened Solovay’s result that DC does not follow from AD by
showing that, assuming AD + V=L(R) there is an inner model of a forcing
extension satisfying ZF+AD+¬ACω (DC directly implies ACω). Whether
AD implies DC(ωω) (DC for relations on ωω) is still open.

4.2. Partition properties and ultrafilters. Kunen in an unpublished
note [Kun71F] proved that δ˜1

2n → (δ˜1
2n)λ2 for all positive n ∈ ω and λ < ω1,

under AD. He also showed [Kun71G] (under the same hypothesis) that

δ˜1
2n → (δ˜1

2n)
δ˜1
2n

2 is false. Martin, in another unpublished note from 1971,

showed that δ˜1
2n+1 → (δ˜1

2n+1)λ2 for all positive n ∈ ω and λ < ω1, under AD.
While Erdős and Hajnal [EH58] had shown how to derive partition

properties from measurable cardinals, Eugene Kleinberg proved the following
result in the other direction, which shows (via λ = ω) that δ˜1

n is measurable

for each positive n ∈ ω.27

Theorem 4.2 ([Kle70]). If λ < κ, λ is regular, and κ → (κ)λ+λ
2 holds,

then Cλκ is a normal ultrafilter over κ.

26The end of Section 6.2 continues this line of results.
27We let Cλκ denote the filter generated by the set of λ-closed unbounded subsets of κ.

A filter is normal if every regressive function on a set in the filter is constant on a set in

the filter.
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In 1970, Kunen proved, using Martin’s result on the cone measure on the
Turing degrees, that under AD, any ω1-complete filter on an ordinal λ < Θ
can be extended to an ω1-complete ultrafilter, and that every ultrafilter on an
ordinal less than Θ is definable from ordinal parameters (see [Kan03, pp. 399–
400]). Solovay [Sol78B] proved that under ADR, there is a normal ultrafilter
on ℘ℵ1(R): for each A ⊆ ℘ℵ1(R), consider the game where player I and
player II collaborate to build a sequence 〈si : i < ω〉 consisting of finite sets
of reals, and player I wins if and only if

⋃
{si : i ∈ ω} ∈ A.28 This implies

(again, under ADR) that for each ordinal γ < Θ there is a normal ultrafilter
on ℘ℵ1γ (i.e., that ω1 is γ-supercompact). It is not known whether AD
suffices for this result, though Harrington and Kechris [HK81] showed that
if AD holds and γ is less than a Suslin cardinal, then there is a normal
ultrafilter on ℘ℵ1γ.29 Extending work of Becker [Bec81A] (who proved it in
the case that γ is a Suslin cardinal), Woodin [Woo83B] showed that there
is just one such ultrafilter for each γ < Θ, if either ADR holds or AD holds
and γ is below a Suslin cardinal. The end of Section 6.4 mentions more
recent progress on these topics.

A cardinal κ is said to have the strong partition property if κ→ (κ)κµ
holds for every µ < κ. As mentioned above, Martin showed that under
AD, ω1 has the strong partition property. In late 1977, Kechris adapted
Martin’s argument to show that under AD there exists a cardinal κ with
the strong partition property such that the set of λ < κ with the strong
partition property is stationary below κ (see [Kan03, p. 432]). Pushing this
further, Kechris, Kleinberg, Moschovakis and Woodin [KKMW81] showed
(using a uniform version of the Coding Lemma) that AD implies that
unboundedly many cardinals below Θ have the strong partition property
and are stationary limits of cardinals with the strong partition property.
They also showed that whenever λ is an ordinal below a cardinal with the
strong partition property, all λ-Suslin sets are determined. Using work of
Steel [Ste83A] and Martin [Mar83B], Kechris and Woodin [KW83] showed
that in L(R), AD is equivalent to the assertion that Θ is a limit of cardinals
with the strong partition property, and also to the statement that all Suslin
sets are determined. James Henle, Mathias and Woodin [HMW85] later
showed that the first equivalence does not follow from ZF+DC, since the
existence of a nonprincipal ultrafilter on ω is consistent with Θ being a limit
of cardinals with the strong partition property.

28Given a cardinal κ and a set X, ℘κX denotes the collection of subsets of X of
cardinality less than κ. An ultrafilter U on ℘κX is normal if for each Y ∈ U , if f is a

regressive function on Y (i.e., if dom(f) = Y and f(A) ∈ A for all nonempty A ∈ Y )
then f is constant on a set in U .

29An ordinal (necessarily a cardinal) κ is said to be Suslin if there is a set of reals

which is κ-Suslin but not λ-Suslin for any λ < κ.
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A key step in the proof of the Kechris–Woodin theorem was a transfer the-
orem extending results of Harrington and Martin (discussed in Section 5.3).
Harrington and Martin had shown from ZF+DC that, for each real a,
Π1

1(a)-determinacy is equivalent to determinacy for the larger class
⋃
β<ω2 β-

Π1
1(a). Kechris and Woodin showed, from the same hypothesis, that for all

positive integers k, ∆˜ 1
2k-determinacy is equivalent to

G(2k−1) ⋃
β<ω2 β-Π˜ 1

1-

determinacy, where

G(2k−1) indicates an application of 2k−1 many instances
of the game quantifier

G

. By Theorem 3.6, this means that ∆˜ 1
2k-determinacy

implies Π˜ 1
2k-determinacy. Martin had proved the lightface version in 1973

(see [KS85]). Later results of Woodin and Itay Neeman [Nee95] would show

that Π˜ 1
n+1-determinacy is equivalent to

G(n) ⋃
β<ω2 β-Π˜ 1

1-determinacy for
all n ∈ ω.

4.3. Cardinals, uniform indiscernibles and the projective ordi-
nals. A cardinal κ is Ramsey if for every function f : [κ]<ω → {0, 1}
(where [κ]<ω denotes the finite subsets of κ) there exists A ∈ [κ]κ such that
for each n ∈ ω, f�[κ]n is constant. Measurable cardinals are Ramsey, and if
there exists a Ramsey cardinal then the sharp of each real number exists.
Assuming the existence of a Ramsey cardinal, Martin and Solovay [MS69]
showed that nonempty Σ˜ 1

3 subsets of the plane have ∆˜ 1
4 uniformizations.

As mentioned above, Lévy [Lév65A] had shown that ZFC does not suffice
for this result. Martin and Solovay used an analysis of sharps for reals,
and modeled their argument after the proof of the Kondô–Addison the-
orem. Mansfield [Man71] extended the Martin–Solovay analysis to show
(using a measurable cardinal) that nonempty Π˜ 1

2 sets are uniformized by

Π˜ 1
3 functions.
Given a positive ordinal α, uα denotes the αth uniform indiscernible,

the αth ordinal which is a Silver indiscernible for each real number. As
bijections between ω and countable ordinals can be coded by reals, the first
uniform indiscernible, u1, is ω1. It follows from the basic analysis of sharps
that all uncountable cardinals are uniform indiscernibles, so u2 ≤ ω2. By
applying the Kunen–Martin theorem inside models of the form L[a], for a a
real number, and applying the basic analysis of sharps, Martin showed that
δ˜1

2 = u2 if the sharp of every real exists (see [Kec78A]). Recall that by the

results of Section 4.1, δ˜1
2 = ω2, under AD.

Martin showed from ZF plus the assumption that the sharp of each real
exists that every Σ˜ 1

3 set is uω-Suslin, and from AD that uω = ωω (see
[Kan03, pp.203–204]). By the Kunen–Martin Theorem, then, AD implies
that δ˜1

3 ≤ ωω+1. Solovay had shown that if the sharp of every real exists,
then uξ+1 has the same cofinality as u2, for every positive ordinal ξ (see
[Kec78A]). Since uω = ωω, it follows that each ωn (n ≥ 2) is of the form
uk+1 for some positive integer k, and thus that each such ωn has cofinality
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ω2. It follows that under AD+DC, δ˜1
3 = ωω+1, since δ˜1

3 is a regular cardinal,

and therefore that δ˜1
4 = ωω+2. Kunen and Solovay would then show that

un = ωn for all n satisfying 1 ≤ n ≤ ω.
In 1971, Kunen reduced the computation of δ˜1

5 to the analysis of certain

ultrapowers of δ˜1
3 (see [Kec78A]; as part of his analysis, Kunen showed that

δ˜1
3 has the weak partition property, see [Sol78A]). The completion of this

project was to take another decade. In the early 1980s, Martin proved new
results analyzing these ultrapowers, and Steve Jackson, using joint work
with Martin, computed δ˜1

5. The following theorem [Jac88, Jac99] completes

the calculation of the δ˜1
n’s.

Theorem 4.3 (Jackson). Assume AD. Then for n ≥ 1, δ˜1
2n+1 has the

strong partition property and is equal to ωw(2n−1)+1, where w(1) = ω and

w(m+ 1) = ωw(m) in the sense of ordinal exponentiation.

Jackson’s proof of this theorem was over 100 pages long. Elements of
his argument (as presented in [Jac99]) include the Kunen–Martin theorem,
Kunen’s ∆˜ 1

3 coding for subsets of ωω [Sol78A], Martin’s theorem that ∆˜ 1
2n+1

is closed under intersections and unions of sequences of sets indexed by
ordinals less than δ˜1

3, and so-called homogeneous trees, a notion which
traces back to [MS69] and a result of Martin discussed in the next section.

§5. Determinacy and large cardinals. As discussed above, a strongly
inaccessible cardinal is an uncountable regular cardinal which is closed
under cardinal exponentiation. If κ is strongly inaccessible, then Vκ is a
model of ZFC, so that the existence of strongly inaccessible cardinals is
not a consequence of ZFC. While there is no technical definition of large
cardinal, a typical large cardinal notion (in the context of the Axiom of
Choice) specifies a type of strongly inaccessible cardinal. Examples of this
type include Ramsey cardinals, measurable cardinals, Woodin cardinals
and supercompact cardinals. The large cardinal hierarchy orders large
cardinals by consistency strength. That is, large cardinal notion A is
below large cardinal notion B in the hierarchy if the existence of cardinals
of type B implies the consistency of cardinals of type A. It is a striking
empirical fact that the large cardinal hierarchy is linear, modulo open
questions (the examples just given were listed in increasing order, for
instance). Even more striking is the fact that many set-theoretic statements
having no ostensible relationship to large cardinals are equiconsistent with
some large cardinal notion.30

By results of Mycielski (discussed in Section 2.3), AD implies that ω1

is strongly inaccessible in L, which means that AD cannot be proved in
ZFC. Moreover, Solovay’s result that AD implies the measurability of ω1

30[Kan03] is the standard reference for the large cardinal hierarchy.
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implies that under AD, ω1 (as computed in the full universe) is a measurable
cardinal in certain inner models of AC, such as HOD.31 As we shall see
in this section, the relationship between large cardinals and determinacy
runs in both directions: Various forms of determinacy imply the existence
of models of ZFC containing large cardinals, and the existence of large
cardinals can be used to prove the determinacy of certain definable sets of
reals.

5.1. Measurable cardinals. Solovay [Sol66] showed in 1965 that if
there exists a measurable cardinal then every uncountable Σ˜ 1

2 set of reals
contains a perfect set. This result was proved independently by Mansfield
(see [Sol66]). Martin [Mar70A] showed that in fact analytic determinacy
follows from the existence of a Ramsey cardinal.

Roughly, the idea behind Martin’s proof is that if A is the projection of
a tree T on ω × ω and χ is a Ramsey cardinal, one can modify the original
game for A to require the second player to play, in addition to his usual
moves, a function G∗ : ω<ω → χ witnessing (via the wellfoundedness of the
ordinal χ) that the fragment of T corresponding to the real produced by the
two players in their moves from the original game has no infinite branches,
and thus that this real is not in the projection of T . This modified game
is closed, and thus determined, by Gale–Stewart. If the second player has
a winning strategy in the modified game, then he has a winning strategy
in the original game by ignoring his extra moves. In general there is no
reason that a winning strategy for the first player in the modified game
will induce a winning strategy for the original game. However, if χ is a
Ramsey cardinal, then there is uncountable X ⊆ χ such that, as long as the
range of G∗ is contained in X, the first player’s strategy does not depend on
the extra moves for the second player. Using this fact, the first player can
convert his winning strategy in the modified game into a winning strategy
in the original game. The notion of a determined (often closed) auxiliary
game and a method for transferring strategies from the auxiliary game to
the original game is the basis of many determinacy proofs.

Martin later proved the following refinement.

Theorem 5.1. If the sharp of every real exists, then Π˜ 1
1-determinacy

holds.

In the 1970s Kunen and Martin independently developed the notion of a
homogeneous tree, following a line of ideas deriving from Martin’s proof
of Π˜ 1

1-determinacy (see [Kec81A]). Given a set Z and a cardinal κ, a tree

on ω × Z is said to be κ-homogeneous if for each σ ∈ ω<ω there is a
κ-complete ultrafilter µσ on Z |σ| such that

31The inner model HOD (a model of ZFC) consists of all sets x such that every

member of the transitive closure of {x} is ordinal-definable (see [Jec03, Chapter 13]).
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• for each σ ∈ ω<ω, {z : (σ, z) ∈ T} ∈ µσ;
• p[T ] is the set of x ∈ ωω such that the sequence 〈µx�i : i ∈ ω〉 is

countably complete.32

A tree is said to be homogeneous if it is ℵ1-homogeneous. A set of reals is
said to be homogeneously Suslin if it is the projection of a homogeneous
tree. There are related notions of weakly homogeneous tree and weakly
homogeneously Suslin set of reals, involving a more involved relationship
with a set of ultrafilters. Though it was not the original definition, let us
just say that a tree on a set of the form ω× (ω×Z) is weakly homogeneous
if and only if the corresponding tree on (ω × ω)× Z is homogeneous, and
note that a set of reals is weakly homogeneously Suslin if and only if it is
the projection of a homogeneously Suslin set of pairs.

Martin’s proof then shows the following.

Theorem 5.2 (Martin). Homogeneously Suslin sets are determined.

The unfolding argument mentioned in Section 2.2 then shows that weakly
homogeneously Suslin sets satisfy the regularity properties.

In retrospect, Martin’s proof of analytic determinacy can be broken into
two parts, the fact that homogeneously Suslin sets are determined, and the
fact that if there is a Ramsey cardinal then Π˜ 1

1 sets are homogeneously
Suslin.

The results of [MS69] can similarly be reinterpreted. If Π˜ 1
1 sets are

homogeneously Suslin, then Σ˜ 1
2 sets are weakly homogeneously Suslin. The

Martin–Solovay construction can be seen as a method for taking a γ-weakly
homogeneous tree T (for some cardinal γ) and producing a tree S on ω× γ′,
for some ordinal γ′, projecting to the complement of the projection of T .
From this follows that all Π˜ 1

2 sets, and thus all Σ˜ 1
3 sets, are projections of

trees on the product of ω with some ordinal. More sophisticated arguments
can be carried out from the existence of sharps, using the fact that sharps
give ultrafilters over certain inner models.

5.2. Borel determinacy. In 1968, Friedman [Fri71B] showed that the
Replacement axiom is necessary to prove Borel determinacy, even for sets
invariant under Turing degrees (he also showed that analytic determinacy
cannot hold in a forcing extension of L). As refined by Martin, his results
show (for each α < ω1) that ZFC − PowerSet − Replacement + “the αth
iteration of the power set of ωω exists” does not prove the determinacy of
all Σ˜ 0

1+α+3 sets.

James Baumgartner mixed the method of Martin’s Π˜ 1
1-determinacy proof

with Davis’s Σ˜ 0
3-determinacy proof to give a new proof of Σ˜ 0

3-determinacy in

ZFC. Using a similar approach, Martin proved Det(Σ˜ 0
4) from the existence

32i.e., for each sequence 〈Ai : i ∈ ω〉 such that each Ai ∈ µx�i there exists a t ∈ Zω
such that t�i ∈ Ai for each i.
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of a weakly compact cardinal,33 and then Paris [Par72] proved it in ZFC.
Paris noted at the end of his paper that his argument could be carried out
without the power set axiom, assuming instead only that the ordinal ω1

exists.
Andreas Blass [Bla75] and Mycielski (1967, unpublished) independently

proved that ADR is equivalent to determinacy for integer games of length
ω2. The key idea in Blass’s proof was to reduce determinacy in the given
game to determinacy in another, auxiliary, game in such a way that one
player’s moves in the auxiliary game correspond to fragments of his strategy
in the original game. Martin [Mar75] used this basic idea to prove Borel
determinacy in 1974 (the auxiliary game was in fact an open game). In
his [Mar85], Martin gave a short, inductive, proof of Borel determinacy,
and introduced the notion of unraveling a set of reals—roughly, finding
an association of the set to a clopen set in a larger domain with a map
sending strategies in one game to strategies in the other. In his [Mar90],
Martin extended this method to games of length ω played on any (possibly
uncountable) set, with Borel payoff (in the corresponding sense). Neeman
[Nee00, Nee06B] would unravel Π˜ 1

1 sets from the assumption of a measurable

cardinal κ of Mitchell rank κ++ (proved to be an optimal hypothesis by
Steel [Ste82B]; see [Jec03, pp. 357–360] for the definition of Mitchell rank).
Complementing Friedman’s theorem, Martin proved that for each α < ω1,
the determinacy of each Boolean combination of Σ˜ 0

α+2 sets follows from
ZF−PowerSet−Replacement+ Σ1-Replacement + “the αth iteration of the
power set of ωω exists”.

5.3. The difference hierarchy. Given a countable ordinal α and a
real a, a set of reals X is said to be α-Π1

1(a) if there is wellordering of ω of
length α recursive in a with corresponding rank function R : ω → α and a
Π1

1(a) subset A of ω × ωω such that

• for all n,m ∈ ω, if R(n) < R(m) then

{x : (m,x) ∈ A} ⊆ {x : (n, x) ∈ A};(3)

• X is the set of reals x for which the least ξ such that either ξ = α or
ξ < α and (R−1(ξ), x) 6∈ A is odd.

This notation has its roots in [Hau08]. When a is itself recursive one writes
α-Π1

1. The union of the sets α-Π1
1(a) for all reals a is denoted α-Π˜ 1

1. The

union of the sets α-Π˜ 1
1 for all α < ω1 is denoted Diff(Π˜ 1

1). Note that

Diff(Π˜ 1
1) is a proper subclass of ∆˜ 1

2.

Friedman [Fri71A] extended Theorem 5.1 to show that Det(3-Π˜ 1
1) follows

from the existence of the sharp of every real. Martin in 1975 then extended

33A cardinal κ is weakly compact if κ→ (κ)22. Weakly compact cardinals are below

the existence of 0# and above strongly inaccessible cardinals in the consistency strength

hierarchy (see [Kan03, pp. 76,472]).
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this result to show that the existence of 0# is equivalent to Det(
⋃
β<ω2 β-Π1

1)

(see [DuB90]). Harrington [Har78] then proved the converse to Theorem 5.1
by showing that Det(Π1

1(a)) implies the existence of a#, for each real a.
For the purposes of the next theorem, say that a model has α measurable

cardinals and indiscernibles if there exists a set of ordertype α consisting
of measurable cardinals of the model, and there exist uncountably many
ordinal indiscernibles of the model above the supremum of these measurable
cardinals. Martin proved the following theorem after Harrington’s result.

Theorem 5.3. For any real a and any ordinal α recursive in a, the
following are equivalent.

• Det(
⋃
β<ω2(ω2 · α+ β)-Π1

1(a)).

• Det((ω2 · α+ 1)-Π1
1(a)).

• There is an inner model of ZFC containing a and having α many
measurable cardinals and indiscernibles.

Still, a large-cardinal consistency proof of Det(∆˜ 1
2), the hypothesis used

by Addison and Martin in their extension of Blackwell’s argument, remained
beyond reach. John Green [Gre78] showed that Det(∆1

2) implies the existence
of an inner model with a measurable cardinal of Mitchell rank 1.

5.4. Larger cardinals. In Section 4 we defined a measurable cardinal
to be a cardinal κ such that there exists a nonprincipal κ-complete ultrafilter
on κ. Equivalently, under the Axiom of Choice, κ is measurable if and
only if there is a nontrivial elementary embedding j from the full universe
V into some inner model M whose critical point is κ, i.e., such that κ is
the least ordinal not mapped to itself by j. Many large cardinal notions
can be expressed both in terms of ultrafilters and in terms of embeddings,
though in the Choiceless context (without the corresponding form of  Loś’s
Theorem, see [Jec03, p. 159]) it is the definition in terms of ultrafilters which
is relevant. For instance, a cardinal κ is supercompact if for each λ > κ
there exists a normal fine ultrafilter on ℘κλ.34 Under the Axiom of Choice,
κ is supercompact if and only if for every λ > κ there is an elementary
embedding j from V into an inner model M such that the critical point of
j is κ and M is closed under sequences of length λ. Every supercompact
cardinal is a limit of measurable cardinals. An even larger large cardinal
notion is the huge cardinal, where an uncountable cardinal κ is huge if for
some cardinal λ > κ there is a κ-complete normal fine ultrafilter on [λ]κ

(where “normal” and “fine” are defined in analogy with the supercompact
case, see [Kan03, p. 331]). Under AC, κ is huge if and only if there is an
elementary embedding j : V → M with critical point κ such that M is
closed under sequences of length j(κ). The existence of huge cardinals does

34Given a cardinal κ and a set X, a collection U of subsets of ℘κX is fine if it contains

the collection of supersets of each element of ℘κX.
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not imply the existence of supercompact cardinals, but it does imply their
consistency.

Kunen [Kun71A] put a limit on the large cardinality hierarchy, showing
in ZFC that there is no nontrivial elementary embedding from V into itself.
A corollary of the proof is that for any elementary embedding j of V into
any inner model M , if δ is the least ordinal above the critical point of
j sent to itself by j, then Vδ+2 * M . In 1978, Martin [Mar80] proved
Π˜ 1

2-determinacy from the hypothesis I2, which states that for some ordinal
δ there is a nontrivial elementary embedding of V into an inner model M
with critical point less than δ such that Vδ ⊆M and j(δ) = δ.

In 1979, Woodin proved that for each n ∈ ω, Π˜ 1
n+1 follows (in ZF) from

the existence of an n-fold strong rank-to-rank embedding.35 For n = 1, this
is essentially the theorem of Martin just mentioned. For n > 1, these axioms
are incompatible with the Axiom of Choice, by Kunen’s theorem, though
they are not known to be inconsistent with ZF.

In 1984, Woodin proved ADL(R) from I0, the statement that for some
ordinal δ there is a nontrivial elementary embedding from L(Vδ+1) into
itself with critical point below δ, thus verifying Solovay’s conjecture that
ADL(R) would follow from large cardinals. I0 is one of the strongest large
cardinal hypotheses not known to be inconsistent. The inner model program
at the time had produced models for many measurable cardinals, hypotheses
far short of I2, and so there was little hope of showing that I2 and I0 were
necessary for these results.

New large cardinal concepts would prove to be the missing ingredient.
Given an ideal I on a set X, forcing with the Boolean algebra given by
the power set of X modulo I gives a V-ultrafilter on the power set of X.36

The ideal I is said to be precipitous if the ultrapower of V by this generic
ultrafilter is wellfounded in all generic extensions. If the underlying set X
is a cardinal κ, the ideal I is said to be saturated if the Boolean algebra
℘(κ)/I has no antichains of cardinality κ+.37 If κ is a regular cardinal,

35For positive n ∈ ω, an n-fold strong rank-to-rank embedding is a sequence of
elementary embeddings j1, . . . , jn such that for some cardinal λ,

• ji : Vλ+1 → Vλ+1 whenever 1 ≤ i ≤ n,

• κω(ji) < κω(ji+1) for all i < n,

where κω(j) denotes the first fixed point of an elementary embedding j above the critical

point.
36An ideal is a collection of sets closed under subsets and finite unions. Given a

model M and a set X in M , an M-ultrafilter is a subset of ℘(X) ∩M closed under
supersets and finite intersections such that for every A ⊆ X in M , exactly one of A and

X \A is in U . Note that U does not need to be an element of M .
37An antichain in a partial order (or a Boolean algebra) is a set of pairwise incom-

patible elements. In the case of a Boolean algebra of the form ℘(κ)/I, an antichain is a

collection of subsets of κ not in I which pairwise have intersection in I.
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saturation of I implies precipitousness. Huge cardinals were invented by
Kunen [Kun78], who used them to produce a saturated ideal on ω1.

In early 1984, Matthew Foreman, Menachem Magidor and Shelah [FMS88]
showed that if there exists a supercompact cardinal—a hypothesis much
weaker than I0 or I2—then there is an ω1-preserving forcing making the
nonstationary ideal on ω1 (NSω1

) saturated.
Foreman (see [For86]) and Magidor [Mag80] had earlier made a connection

between generic elementary embeddings38 and regularity properties for reals.
Magidor [Mag80] in particular had shown that the Lebesgue measurability
of Σ1

3 sets followed from the existence of a generic elementary embedding
with critical point ω1 and wellfounded image model (the existence of such
an embedding follows from the Foreman–Magidor–Shelah result mentioned
above). Woodin noted that these arguments plus earlier work of his (see
[Woo86]) could be used to extend this to Lebesgue measurability for all
projective sets. Woodin also noted that arguments from [FMS88] could be
used to prove the Lebesgue measurability of all sets of reals in L(R), if one
could force to produce a saturated ideal on ω1 without adding reals. Shelah
then noted that techniques from [She98] could be modified to do just that.
It followed then that the existence of a supercompact cardinal implies that
all sets of reals in L(R) are Lebesgue measurable.

Woodin and Shelah then addressed the problem of weakening the hy-
potheses needed for the Lebesgue measurability of all projective sets of
reals.39 Woodin noted that a superstrong cardinal sufficed. Shelah then
isolated a weaker notion now known as a Shelah cardinal, and showed
that the existence of n + 1 Shelah cardinals implies that Σ˜ 1

n+2 sets are
Lebesgue measurable.

Definition 5.4. A cardinal κ is a Shelah cardinal if for every f : κ→ κ
there is an elementary embedding j : V→ N with critical point κ such that
Vj(f)(κ) ⊆ N .

Woodin noted that by modifying Shelah’s definition one obtained a weaker,
still sufficient, hypothesis, now known as a Woodin cardinal.

Definition 5.5. A cardinal δ is a Woodin cardinal if for each function
f : δ → δ there exists an elementary embedding j : V → M with critical
point κ < δ closed under f such that Vj(f)(κ) ⊆M .

Woodin proved that the existence of n Woodin cardinals below a mea-
surable cardinal implies the Lebesgue measurability of Σ˜ 1

n+2 sets, the same

amount of measurability that would follow from Π˜ 1
n+1-determinacy. All of

this work was done within a few weeks of the Foreman–Magidor–Shelah

38A generic elementary embedding is an elementary embedding of the universe
V into some class model M which is definable in a forcing extension of V.

39We follow the account in [Nee04].
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result on the saturation of NSω1
. In [SW90] the hypothesis for the statement

that all sets of reals in L(R) are Lebesgue measurable and have the property
of Baire was reduced to the existence of ordertype ω + 1 many Woodin
cardinals. The hypothesis was to be reduced even further.

Woodin extracted from the Foreman–Magidor–Shelah results a one-step
forcing for producing generic elementary embeddings with critical point
ω1, and developed it into a general method, now known as the stationary
tower. Using this he showed (by the fall of 1984, see his [Woo88]) that
if there exists a supercompact cardinal (or a strongly compact cardinal),
then every set of reals in L(R) is weakly homogeneously Suslin. (Steel and
Woodin would show in 1990 that this conclusion in turn implies ADL(R).)

Steel had been working on the problem of finding inner models for
supercompact cardinals. Inspired by the results of Foreman, Magidor,
Shelah and Woodin, he begin to work on producing models for Woodin
cardinals, and had some partial results by the spring of 1985, producing
inner models with certain weak variants of Woodin cardinals. These models
were generated by sequences of extenders, directed systems of ultrafilters
which collectively generate elementary embeddings whose images contain
more of V than possible for embeddings generated by a single ultrafilter.
Special cases of extenders had appeared in Jensen’s proof of the Covering
Lemma. The general notion (which first appeared in [Dod82]) is Jensen’s
simplification of the notion of hypermeasure, which was introduced by
Mitchell [Mit79]. Steel and Martin saw that the problem of building models
with Woodin cardinals was linked to the problem of proving determinacy,
and they set their sights on this problem in the late spring of 1985.

One key combinatorial problem related to elementary embeddings is
whether infinite iterations of these embeddings produce wellfounded models.
Kunen [Kun70] had shown that the answer was positive for iterations derived
from a single ultrafilter. With extenders the situation was more complicated,
as the iterations did not need to be linear but could produce trees of models
with no rule for finding a path through the tree leading to a wellfounded
model (indeed, this nonlinearity was essential, since otherwise the models
would have simply definable wellorderings of their reals). The simplest such
tree, a so-called alternating chain, is countably infinite and consists of two
infinite branches. Martin and Steel saw that the issue of wellfoundedness
for the direct limits along the two branches was linked. This observation
led to the following theorem, proved in August of 1985.

Theorem 5.6 (Martin–Steel [MS89]). Suppose that λ is a Woodin car-
dinal and A is a λ+-weakly homogeneously Suslin set of reals. Then for any
γ < λ, ωω \A is γ-homogeneously Suslin.

It follows from this and the fact that analytic sets are homogeneously
Suslin in the presence of a measurable cardinal that if there exist n Woodin
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cardinals below a measurable cardinal, then Π˜ 1
n+1 sets are determined, and

that Projective Determinacy follows from the existence of infinitely many
Woodin cardinals.

Combined with Woodin’s application of the stationary tower mentioned
above, the Martin–Steel theorem implied that ADL(R) follows from the
existence of a supercompact cardinal. By the end of 1985, Woodin had
improved the hypothesis to the existence of infinitely many Woodin cardinals
below a measurable cardinal (see [Lar04]).

Theorem 5.7 (Woodin). If there exist infinitely many Woodin cardinals
below a measurable cardinal, then AD holds in L(R).

In the spring of 1986, Martin and Steel [MaS94] produced extender

models (i.e., models of the form L[ ~E], with ~E a sequence of extenders)
with n Woodin cardinals and ∆1

n+2 wellorderings of the reals. Such a model
necessarily has a Σ1

n+2 set which is not Lebesgue measurable, and fails to
satisfy Π1

n+1-determinacy.
Skipping ahead for a moment, let (∗)n be the statement that for each real

x there exists an iterable model M containing x and n Woodin cardinals
plus the sharp of VM

δ , for δ the largest of these Woodin cardinals. For odd
n, the equivalence of Π˜ 1

n+1-determinacy and (∗)n was proved by Woodin

in 1989. That (∗)n implies Π˜ 1
n+1-determinacy for all n was proved by

Neeman [Nee95] in 1994. Roughly, Neeman’s methods work by considering
a modified game in which one player builds an iteration tree and makes
moves in the image of the original game by the embeddings given by the
tree. In 1995, Woodin proved that Π˜ 1

n+1-determinacy implies (∗)n for even
n > 0.

Woodin followed his Theorem 5.7 by determining the exact consistency
strength of AD. The forward direction of Theorem 5.8 below (proved
in [KW10]) shows from ZF+AD that there exist infinitely many Woodin
cardinals in an inner model of a forcing extension (HOD of the forcing
extension with respect to certain parameters) of V. The proof built on a
sequence of results, starting with Solovay’s theorem that AD implies that ω1

is a measurable cardinal, which, as mentioned above, also shows that ω1 (as
defined in V) is measurable in the inner model HOD. Becker (see [BM81])
had shown that, under AD, ωV

1 is the least measurable in HOD. Becker,
Martin, Moschovakis and Steel then showed that under AD+V=L(R), δ˜2

1 is

β-strong in HOD, where β is the least measurable cardinal greater than δ˜2
1

in HOD.40 In the 1980s, Woodin showed under the same hypothesis that

40The cardinal δ˜21 is the supremum of the lengths of the ∆˜ 2
1 prewellorderings of the

reals; under AD+ V=L(R) it is also the largest Suslin cardinal. A cardinal κ is β-strong

if there is an elementary embedding j : V→M with critical point κ such that Vβ ⊆M ,

and <δ-strong if it is β-strong for all β < δ.
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δ˜2
1 is β-strong in HOD for every β < Θ (and that δ˜2

1 is the least ordinal
with this property), and that Θ is Woodin in HOD.

Theorem 5.8 (Woodin). The following are equiconsistent.

• ZF+AD.
• There exist infinitely many Woodin cardinals.

The following theorem illustrates the reverse direction of the equiconsis-
tency (see [Ste09]). It can be seen as a special case of the Derived Model
Theorem, discussed in Section 6.2. The partial order Col(ω,<δ) consists
of all finite partial functions p from ω × δ to δ, with the requirement that
p(n, α) ∈ α for all (n, α) in the domain of p. The order is inclusion. If δ is
a regular cardinal, then δ is the ω1 of any forcing extension by Col(ω,<δ).

Theorem 5.9 (Woodin). Suppose that λ is a limit of Woodin cardinals,
and G ⊆ Col(ω,<λ) is V-generic filter. Let R∗ =

⋃
{RV[G�α] : α < λ}.

Then AD holds in L(R∗).

The results of Section 5.3 illustrate the difficulties in proving the deter-
minacy of Π1

2 sets. Woodin resolved this problem in 1989. The forward
direction of Theorem 5.10 is proved in [KW10]. The proof was inspired in
part by a result of Kechris and Solovay [KS85], saying that in models of the
form L[a] for a ⊆ ω, ∆1

2-determinacy implies the determinacy of all ordinal
definable sets of reals. Standard arguments show that if ∆1

2 determinacy
holds, then it holds in L[x] for some real x. Woodin showed that if V is L[x]

for some real x, and ∆1
2-determinacy holds, then ω

L[x]
2 is a Woodin cardinal

in HOD. Recall (from the end of Section 4.2) that ∆1
2-determinacy and

Π1
2-determinacy are equivalent, by a result of Martin.

Theorem 5.10 (Woodin). The following are equiconsistent.

• ZFC+Det(∆1
2).

• ZFC+There exists a Woodin cardinal.

The following theorem illustrates the reverse direction. Its proof can be
found in [Nee10, p. 1926]. The partial order Col(ω, δ) is the natural one for
making δ countable : it consists of all finite partial functions from ω to δ,
ordered by inclusion.

Theorem 5.11 (Woodin). If δ is a Woodin cardinal and G ⊆ Col(ω, δ)
is a V-generic filter, then ∆1

2-determinacy holds in V[G].

§6. Later developments. In this final section we briefly review some
of the developments that followed the results of the previous section. As
discussed in the introduction, the set of topics presented here is by no means
complete. The first subsection briefly introduces a regularity property for
sets of reals which is induced by forcing-absoluteness. The second and third
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discuss forms of determinacy ostensibly stronger than AD, in models larger
than L(R). The next subsection discusses applications of determinacy to
the realm of AC, via producing models of AC by forcing over models of
determinacy. In the last two we present some results which derive forms of
determinacy from their ostensibly weak consequences, or from statements
having no obvious relationship to determinacy. Many of the results of the
last two subsections are applications of the study of canonical inner models
for large cardinals.

6.1. Universally Baire sets. As discussed above in Sections 5.1 and 5.4,
homogeneously Suslin and weakly homogeneously Suslin sets of reals played
an important role in applications of large cardinals to regularity properties
for sets of reals, as early as the 1969 results of Martin and Solovay. Qi Feng,
Magidor, and Woodin [FMW92] introduced a related tree representation
property for sets of reals. Given a cardinal κ, a set A ⊆ ωω is κ-universally
Baire if there exist trees S, T such that p[S] = A and S and T project to
complements in every forcing extension by a partial order of cardinality less
than or equal to κ.41

Woodin (see [Kan03, Lar04]) showed that if δ is a Woodin cardinal,
then δ-universally Baire sets of reals are <δ-weakly homogeneously Suslin.
It follows from the arguments of [MS69] that if A ⊆ ωω is κ+-weakly
homogeneously Suslin, then it is κ-universally Baire. Combining these facts
with Theorem 5.6 gives the following.

Theorem 6.1. If δ is a limit of Woodin cardinals, then the following are
equivalent, for all sets of reals A.

• A is <δ homogeneously Suslin.
• A is <δ weakly homogeneously Suslin.
• A is <δ-universally Baire.

Feng, Magidor, and Woodin showed that if δ0 < δ1 are Woodin cardinals,
then every δ1-universally Baire set is determined (this follows from Theo-
rem 5.6 and the result of Woodin mentioned before the previous paragraph).
Neeman later improved this, showing that if δ is a Woodin cardinal, then
all δ-universally Baire sets are determined. In addition to the following
theorem, Feng, Magidor and Woodin showed that Det(Π˜ 1

1) is equivalent to

the statement that every Σ˜ 1
2 set of reals is universally Baire.

Theorem 6.2 (Feng, Magidor, and Woodin [FMW92]). Assume ADL(R).
Then the following are equivalent.

• ADL(R) holds in every forcing extension.
• Every set of reals in L(R) is universally Baire.

41The set A is <κ-universally Baire if it is γ-universally Baire for all γ < κ, and

universally Baire if it is universally Baire for all κ.
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Woodin’s Tree Production Lemma is a powerful means for showing that
sets of reals are universally Baire (see [Lar04]). Woodin’s proof of Theo-
rem 5.7 proceeded by applying the lemma to the set R#. Informally, the
lemma can be interpreted as saying that a set of reals A is δ-universally
Baire if for every real r generic for a partial order in Vδ, either r is in the
image of A for every Q<δ-embedding42 for which r is in the image model,
or r is in the image of A for no such embedding.

Theorem 6.3 (Tree Production Lemma). Suppose that δ is a Woodin
cardinal. Let ϕ and ψ be binary formulas, and let x and y be arbitrary sets,
and assume that the empty condition in the stationary tower Q<δ forces
that for each real r,

M |= ψ(r, j(y))⇔ V[r] |= ϕ(r, x),(4)

where j : V→M is the induced elementary embedding. Then {r : ψ(r, y)}
is <δ-universally Baire.

6.2. AD+ and ADR. Moschovakis [Mos81] proved that under AD, if λ is
less than Θ, A is a set of functions from ω to λ and A is Suslin and co-Suslin,
then the game Gω(A) is determined, where here the players play elements
of λ. Woodin formulated the following axiom, which, assuming AD, holds
in every inner model containing the reals whose sets of reals are all Suslin
(in V). A set of reals A is said to be ∞-Borel if there exist a set of ordinals
S and binary formula ϕ such that A = {x ∈ R : L[x, S] |= ϕ(x, S)}. For
example, a Suslin representation for a set of reals witnesses that the set
∞-Borel.

Definition 6.4. AD+ is the conjunction of the following statements.

• DC(ωω).
• Every set of reals is ∞-Borel.
• If λ < Θ and π : λω → ωω is a continuous function, then π−1[A] is

determined for every A ⊆ ωω.

It is an open question whether AD implies AD+, though it is known that
AD+ holds in all models of AD of the form L(A,R), where A is a set of
reals (some of the details of the argument showing this appear in [Jac10]).
It is not known whether ADR implies AD+, though AD+ does follow from
ADR+DC.

The following consequences of AD+ were announced in [Woo99].

Theorem 6.5 (ZF+DC(ωω)). If AD+ holds and V = L(℘(R)), then

• the pointclass Σ2
1 has the scale property,

• every Σ2
1 set of reals is the projection of a tree in HOD,

42The partial order Q<δ is one form of Woodin’s stationary tower, mentioned after

Definition 5.5.
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• every true Σ1-sentence is witnessed by a ∆˜ 2
1 set of reals.

Woodin’s Derived Model Theorem, proved around 1986, gives a means
of producing models of AD+. The model L(R∗, Hom∗) in the following
theorem is said to be a derived model (over the ground model). A tree T
is said to be <λ-absolutely complemented if there is a tree S such that
p[T ] = R \ p[S] in all forcing extensions by partial orders of cardinality less
than λ.

Given an ordinal λ, G ⊆ Col(ω,<λ) and α < λ, we let G�α denote
G ∩Col(ω,<α). The model V(R∗) in the following theorem can be defined

as either
⋃
α∈Ord L(Vα,R∗) or HOD

V [G]
V ∪R∗ . Given a pointclass Γ, MΓ de-

notes the collection of transitive sets x such that 〈x,∈〉 is isomorphic to
〈R/E, F/E〉, for some E,F ∈ Γ such that E is an equivalence relation on R
and F is an E-invariant binary relation on R. Models of the form L(Γ,R∗)
below are called derived models. See [Ste09] for an earlier version of the
theorem.

Theorem 6.6 (Derived Model Theorem; Woodin). Let λ be a limit of
Woodin cardinals. Let G ⊆ Col(ω,<λ) be a V-generic filter. Let

• R∗ be
⋃
α<λRV[G�α];

• Hom∗ be the collection of sets of the form p[T ] ∩ R∗, for T a <λ-
absolutely complemented tree in V[G�α] for some α < λ;

• Γ be the collection of sets of reals A in V[G] such that L(A,R∗) |= AD+.

Then

1. L(Γ,R∗) |= AD+.
2. Hom∗ is the collection of Suslin, co-Suslin sets of reals in L(Γ,R∗).
3. MΓ ≺Σ1

L(Γ,R∗).
Woodin also showed that item (3) above is equivalent to AD+, assuming

AD + V=L(℘(R)). The Derived Model Theorem has a converse, also due
to Woodin, which says that all models of AD+ arise in this fashion.

Theorem 6.7 (Woodin). Let M be a model of AD+, and let Γ be the
collection of sets of reals which are Suslin, co-Suslin in M . Then in a forcing
extension of M there is an inner model N such that L(Γ,R∗) is a derived
model over N .

In unpublished work, Woodin has shown that over AD, ADR is equivalent
to some of its ostensibly weak consequences (see [Woo99]). The implication
from (2) to (1) in the following theorem is due independently to Martin.
The implication from (1) to (2) relies heavily on work of Becker [Bec85].
Recall that Mycielski (see Section 2.3) showed that (1) implies (3); the
implication from (2) to (3) is mentioned in Section 3.2.

Theorem 6.8 (Woodin). Assume ZF+DC. Then the following are equiv-
alent.
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1. ADR.
2. AD+Every set of reals is Suslin.
3. AD+Uniformization.

Woodin would also produce models of ADR from large cardinals.

Theorem 6.9 (Woodin). Suppose that there exists a cardinal δ of cofi-
nality ω which is a limit of Woodin cardinals and <δ-strong cardinals. Then
there is a forcing extension in which there is an inner model containing the
reals and satisfying ADR.

Steel, using earlier work of Woodin, completed the equiconsistency with
the following theorem.

Theorem 6.10 (Steel). If ADR holds, then in a forcing extension there
is a proper class model of ZFC in which there exists a cardinal δ of cofinality
ω which is a limit of Woodin cardinals and <δ-strong cardinals.

Recall from Section 4.1 that Θ is defined to be the least ordinal which
is not a surjective image of the reals. Consideration of ordinal definable
surjections gives the Solovay sequence, 〈ϑα : α ≤ Ω〉. This sequence is
defined by letting ϑ0 be the least ordinal which is not the surjective image of
an ordinal definable function on the reals, and, for each α < Ω, letting ϑα+1

be the least ordinal which is not a surjective image of ℘(ϑα) via an ordinal
definable function. Taking limits at limit stages and continuing until ϑΩ = Θ
completes the definition. The consistency strength of AD+ + “ϑα = Θ”
increases with α.

In L(R), ϑ0 = Θ. Woodin proved that, assuming AD+, ADR is equivalent
to the assertion that the Solovay sequence has limit length. Woodin also
showed, under the same assumption, ϑα is a Woodin cardinal in HOD, for
all nonlimit α ≤ Ω.

In unpublished work, Woodin showed that if it is consistent that there
exists a Woodin limit of Woodin cardinals, then it is consistent that there
exist sets of reals A and B such that the models L(A,R) and L(B,R) each
satisfy AD but L(A,B,R) does not. Woodin also showed that in this case
L(Γ,R) |= ADR+DC, where Γ = ℘(R)∩L(A,R)∩L(B,R). Grigor Sargsyan
showed that if there exist models L(A,R) and L(B,R) as above then there
is a proper class model of ADR containing the reals in which Θ is regular.

6.3. Long games. As mentioned above, Blass [Bla75] and Mycielski
showed that determinacy for games of length ω2 is equivalent to ADR. For
each n ∈ ω, determinacy for games of length ω + n is equivalent to AD
(think of the game as being divided in two parts, where in the first part
(of length ω) the players try to obtain a position from which they have a
winning strategy in the second; the winning strategy in the second part can
be coded by an integer, and thus uniformly chosen).
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Martin and Woodin independently showed that ADR is equivalent to
determinacy for games of length α for each countable α ≥ ω2. Determinacy
for games of length ω · 2 easily gives uniformization. It follows from this
and Theorem 6.8 that ADR is equivalent to determinacy for games of length
α for each countable α ≥ ω · 2.

While AD does not imply uniformization, the Second Periodicity Theorem
(Theorem 3.4) shows that PD implies the uniformization of projective sets.
It follows that PD is equivalent to PD for games of length less than ω2. As
noted by Neeman [Nee05], the techniques from the Blass–Mycielski result
above can be used to prove the determinacy of games of length ω2 with
analytic payoff from ADL(R) plus the existence of R#.

Steel [Ste88] considered continuously coded games, games where each
stage of the game is associated with an integer, and the game ends when
an associated integer is repeated. Such a game must end after countably
many rounds, but runs of the game can have any countable length. Steel
proved that ZF + AD + DC + “every set of reals has a scale” + “ω1 is
℘(R)-supercompact” implies the determinacy of all continuously coded
games.

None of the results mentioned so far in this section involves proving
determinacy directly from large cardinals. Instead they show that some form
of determinacy for short games with complicated payoff implies determinacy
for longer games with simpler payoff. Proving long game determinacy from
large cardinals was pioneered, and extensively developed, by Neeman, who
established a number of results on games of variable countable length, and
even length ω1 (see [Nee04, Nee05, Nee06A]). Neeman’s techniques built on
the proof of PD from Woodin cardinals by Martin and Steel, using iteration
trees. In many cases, his proofs proceed from essentially optimal hypotheses.
The proofs of many of these results reduced the determinacy of long games
to the iterability of models containing large cardinals.

For example, given C ⊆ R<ω1 , let Glocal(L,C) be the game where players
player I and player II alternate playing natural numbers so as to define
elements zξ of the Baire space. The game ends at the first γ such that
γ is uncountable in L[zξ : ξ < γ], with player I winning if the sequence
〈zξ : ξ < γ〉 is in C. It follows from mild large cardinal assumptions (for
instance, the existence of the sharp of every subset of ω1) that γ must be
countable.

Given a pointclass Γ, a set C consisting of countable sequences of reals is
said to be Γ in the codes if the set of reals coding members of C (under a
suitably definable coding) is in Γ.

Theorem 6.11 (Neeman). Suppose that there exists a measurable cardi-
nal above a Woodin limit of Woodin cardinals. Then the games Glocal(L,C)
are determined for all C which are

G

ω(<ω2-Π1
1) in the codes.
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The preceding theorem is obtained by combining the results of [Nee04]
and [Nee02A]. The proof proceeds by constructing an iterable class model
M with a cardinal ϑ such that ϑ is a Woodin limit of Woodin cardinals
in M and countable in V [Nee02A]. Using inner model theory, Neeman
then transformed the iteration strategy of M into a winning strategy in
Glocal(L,C).

Adapting Kechris and Solovay’s proof that ∆1
2-determinacy implies the

existence of a real x such that L[x] satisfies the determinacy of all ordinal
definable sets of reals (discussed before Theorem 5.10), Woodin proved
that the amount of determinacy in the conclusion of Theorem 6.11 implies
that there exists a set A ⊆ ω1 such that in L[A], all games on integers
of length ω1 with payoff definable from reals and ordinals are determined
(see [Nee04, Exercise 7F.15]). Larson and Shelah [LS08] showed that it is
possible to force that some integer game of length ω1 with definable payoff
is undetermined.

We give one more result of Neeman, proving the determinacy of certain
games of length ω1. In Theorem 6.12 below, L+ is the language of set theory
with one additional unary predicate. Given an integer k and a sequence
S̄ of stationary sets indexed by [ω1]<k, [S̄] is the collection of increasing
k-tuples 〈α0, . . . , αk−1〉 from ω1 such that each initial segment of length
j ≤ k is in S〈α0,... ,αj−l〉. The game Gω1,k(S̄, ϕ) is a game of length ω1 in
which the players collaborate to build a function f : ω1 → ω1. Then player
I wins if there is a club C such that

〈Lω1
, r〉 |= ϕ(α0, . . . , αk−1)(5)

for all 〈α0, . . . , αk−1〉 ∈ [S̄] ∩ [C]k, and player II wins if there is a club C
such that

〈Lω1
, r〉 |= ¬ϕ(α0, . . . , αk−1)(6)

for all 〈α0, . . . , αk−1〉 ∈ [S̄] ∩ [C]k. Though there can be runs of the game
for which neither player wins, determinacy for this game in the sense of
Theorem 6.12 refers to the existence of a strategy for one player or the other
that guarantees victory.

The model 0W is the minimal iterable fine structural inner model M
which has a top extender predicate whose critical point is Woodin in M .
The existence of such a model is not known to follow from large cardinals.

The last part of the conclusion of Theorem 6.12 extends a result of Martin,
who showed that for any recursive enumeration 〈Bi : i < ω〉 of the <ω2-Π1

1

sets, the set of i such that player I has a winning strategy in Gω(Bi) is
recursively isomorphic to 0#.

Theorem 6.12 (Neeman [Nee07A]). Suppose that 0W exists. Let k < ω.
Let S̄ be a sequence of mutually disjoint stationary sets indexed by [ω1]<k.
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Let ϕ be a L+ formula with k free variables. Then the game Gω1,k(S̄, ϕ) is
determined. Furthermore, the winner of each such game depends only on
ϕ and not on S̄, and the set of ϕ for which the first player has a winning
strategy is recursively equivalent to the canonical real coding 0W .

If one allows the members of S̄ all to be ω1, then there are undetermined
games of this type, as observed by Greg Hjorth (see [Nee07A]). If one allows
the members of S̄ all to be ω1 and changes the winning condition for player
player II to be simply the negation of the winning condition for player I
then one can force from a strongly inaccessible limit of measurable cardinals
that some game of this type is not determined [Lar05].

Given a set A ⊆ <ω1ω, Gopen−ω1
(A) is the game of length ω1 in which

player I and player II collaborate to build a function from ω1 to ω, with
player I winning if some proper initial segment of the play is in A. The
determinacy result in Theorem 6.12 includes the determinacy of all games
Gopen−ω1(A) for sets A which are Π1

1 in the codes. Combining Neeman’s
proof of Theorem 6.12 with his own theory of hybrid strategy mice, Woodin
proved that if there exist proper class many Woodin limits of Woodin
cardinals then AD+ holds in the Chang Model, the smallest inner model
of ZF containing the ordinals and closed under countable sequences.

6.4. Forcing over models of determinacy. Steel and Van Wesep
[SVW82] showed that by forcing over a model of ADR + “Θ is regular” (the
hypothesis they used was actually weaker) one can produce a model of ZFC
in which NSω1 is saturated and δ˜1

2 = ω2. This was the first consistency proof
of either of these two statements with ZFC. Martin had conjectured that
“∀n ∈ ω δ˜1

n = ℵn” is consistent with ZFC, and this verified the conjecture
for the case n = 2. Woodin [Woo83B] subsequently reduced the hypothesis
to AD.

Shelah [She98] later showed that it was possible to force the saturation of
NSω1 from a Woodin cardinal. Woodin [Woo99] proved that the saturation
of NSω1

plus the existence of a measurable cardinal implies that δ˜1
2 = ω2.

Woodin then turned his proof into a general method for producing models of
ZFC by forcing over models of determinacy. The most general form of this
method, a partial order called Pmax, consists roughly of a directed system
containing all countable models of ZFC with a precipitous ideal on ω1. In
the presence of large cardinals, the resulting extension satisfies all forceable
Π2 sentences in H(ω2), even with predicates for NSω1

and each set of reals
in L(R). In this model, NSω1

is saturated and δ˜1
2 = ω2. There are many

variants of Pmax. One of these variants, called Qmax, produces a model in
which NSω1

is ℵ1-dense (i.e., ℘(ω1)/NSω1
has a dense subset of cardinality

ℵ1; this implies saturation), from the assumption that AD holds in L(R).
No other method is known for producing a model of ZFC in which NSω1 is
ℵ1-dense.
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Steel [Ste95A] showed that under AD, HODL(R) is an extender model

below Θ. Woodin then showed that the entire model HODL(R) is a model
of the form L[ ~E,Σ], where ~E is a sequence of extenders and Σ is an iteration
strategy corresponding to this sequence. Using this approach, Steel showed
that for every regular κ < Θ, the ω-club filter over κ is an ultrafilter in L(R).
Woodin used this to show that ω1 is <Θ-supercompact in L(R). Previously
it was known only that ω1 is λ-supercompact for λ below the supremum of
the Suslin cardinals (see the paragraph after Theorem 4.2).

Woodin also used the inner models approach to show that, in L(R), ω1 is
huge to κ for each measurable κ < Θ, improving results of Becker. Neeman
[Nee07B] used this approach to prove, for each λ < Θ, the uniqueness of
the normal ultrafilter on ℘ℵ1λ witnessing the λ-supercompactness of ω1.
Previously this too was known only for λ < δ˜2

1 (this is also discussed in the
paragraph after Theorem 4.2). Neeman [Nee07B] and Woodin independently
used this approach to show that, assuming AD + V=L(R), one could force
without adding reals to obtain ZFC + δ˜1

n = ω2, for any n ≥ 3. It is still

unknown whether δ˜1
m can equal ωn for any m ≥ n ≥ 2 (under ZFC).

6.5. Determinacy from its consequences. Woodin [Woo82] conjec-
tured that Projective Determinacy follows from the statement that all
projective sets are Lebesgue measurable, have the Baire property and can
be uniformized by projective functions (all consequences of PD). This
conjecture was refuted by Steel in 1997. If one requires the uniformization
property for the scaled projective pointclasses, then the conjecture is still
open. Woodin did prove the following version of the conjecture in the late
1990s, using work of Steel in inner model theory. Recall that AD implies
the three statements below (see Sections 2.1 and 3.3).

Theorem 6.13 (Woodin). Assuming ZF + DC + V=L(R), the Axiom of
Determinacy follows from the conjunction of the following three statements.

• Every set of reals is Lebesgue measurable.
• Every set of reals has the property of Baire.
• Every Σ2

1 subset of
2
(ωω) can be uniformized.

Woodin had proved another equivalence in the early 1980s.

Theorem 6.14 (Woodin). Assume ZF + DC + V=L(R). Then the fol-
lowing are equivalent.

• AD.
• Turing determinacy.

It is apparently an open question whether AD follows from ZF + DC +
V=L(R) plus either of (a) for every α < Θ there is a surjection of ωω onto
℘(α); (b) Θ is inaccessible.
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Determinacy would turn out to be necessary for some of its earliest
applications. For instance, Steel [Ste96] showed that Σ˜ 1

3-separation plus the

existence of sharps for all reals implies ∆˜ 1
2-determinacy. Applying related

work of Steel, Hjorth [Hjo96A] showed that Π˜ 1
2-determinacy follows from

Wadge determinacy for Π˜ 1
2 sets. Earlier, Harrington had shown that, for

each real x, Π˜ 1
1(x)-Wadge determinacy implies that x# exists. It is open

whether Wadge determinacy for the projective sets implies PD.

6.6. Determinacy from other statements. Determinacy axioms such

as PD and ADL(R) imply the consistency of ZFC (plus certain large cardinal
statements) and so cannot be proved in ZFC. Empirically, however, these
statements appear to follow from every natural statement of sufficient con-
sistency strength. This includes a number of statements ostensibly having
little relation to determinacy. In this section we give a few examples of this
phenomenon. Most of these arguments use inner model theory, and our
presentation relies heavily on [Sch10].

The following theorem shows, among other things, that in the presence
of large cardinals, even mere forcing-absoluteness for the theory of L(R)

implies ADL(R). The theorem is due to Steel and Woodin independently
(see [Ste02]).

Theorem 6.15. Suppose that κ is a measurable cardinal. Then the
following are equivalent.

• For all partial orders P ∈ Vκ, the theory of L(R) is not changed by
forcing with P.

• For all partial orders P ∈ Vκ, AD holds in L(R) after forcing with P.
• For all partial orders P ∈ Vκ, all sets of reals in L(R) are Lebesgue

measurable after forcing with P.
• For all partial orders P ∈ Vκ, there is no ω1-sequence of reals in L(R)

after forcing with P.

A sequence C = 〈Cα : α < λ〉 (for some ordinal λ) is said to be coherent
if each Cβ is a club subset of β, and Cα = α ∩ Cβ whenever α is a limit
point of Cβ . A thread of such a coherent sequence C is a club set D ⊆ λ
such that Cα = α ∩D for all limit points α of D. The principle �(λ) says
that there is a coherent sequence of length λ with no thread. The principle
�κ says that there is a coherent sequence C of length κ+ such that the
ordertype of Cα is at most κ, for each limit α < λ (in which case there
cannot be a thread). These principles were isolated in the 1960s by Jensen
[Jen72], who showed that �κ holds in L for all infinite cardinals κ (see
[Dev84, p. 141]).

Todorcevic [Tod84] showed that the Proper Forcing Axiom (PFA) implies
that �(κ) fails for all cardinals κ of cofinality at least ω2, from which it
follows that �κ fails for all uncountable cardinals. The failure of these
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square principles implies the failure of covering theorems for certain inner
models, from which one can derive inner models with large cardinals. Using
this general approach, Ernest Schimmerling [Sch95] proved that PFA implies
∆˜ 1

2-determinacy. Woodin extended this proof to show that PFA implies PD.
In 1990, Woodin also showed that PFA plus the existence of a strongly

inaccessible cardinal implies ADL(R). His proof introduced a technique
known as the core model induction, an application of descriptive set theory
and inner model theory. Roughly, the idea is to inductively work through
the Wadge degrees to build canonical inner models which are correct for each
Wadge class. The induction works through the gap structure highlighted in
[Ste83A]. This general approach had previously been used by Kechris and
Woodin [KW83] (see the end of Section 4.2).

Alessandro Andretta, Neeman, and Steel [ANS01] showed that PFA plus
the existence of a measurable cardinal implies the existence of a model of
ADR containing all the reals and ordinals. Steel [Ste05] showed that if �κ
fails for a singular strong limit cardinal κ, then AD holds in L(R). Building
on Steel’s work, Sargsyan produced a model of ADR+“Θ is regular” from
the same hypothesis.

The following theorem is due to Steel. Schimmerling [Sch07] had previ-
ously obtained PD from the same assumption.

Theorem 6.16. If κ ≥ max{ℵ2, c} and �(κ) and �κ fail, then ADL(R)

holds.

Todorcevic (see [Bek91]) and Boban Veličković [Vel92] showed that PFA
implies that 2ℵ0 = 2ℵ1 = ℵ2. This gives another route towards showing
that PFA implies that the AD holds in L(R). In May 2011, Andrés Caicedo,
Larson, Sargsyan, Ralf Schindler, Steel and Martin Zeman showed that the
hypothesis of Theorem 6.16 (with κ = ℵ2) can be forced (using Pmax) over a
model of ADR in which Θ and some other member of the Solovay sequence
are both regular.

Schimmerling and Zeman used the core model induction to prove the
following theorem [SZ01]. They had previously derived Projective Deter-
minacy from the failure of a weaker version of �κ at a weakly compact

cardinal; Woodin had then derived ADL(R) from the same hypothesis.

Theorem 6.17. If κ is a weakly compact cardinal and �κ fails, then AD
holds in L(R).

As discussed in Section 6.4, Woodin showed using a variation of Pmax

that over a model of AD one can force to produce a model of ZFC in which
the nonstationary ideal on ω1 is ℵ1-dense. Using the core model induction,

he showed that the ℵ1-density of NSω1 implies ADL(R).
Steel had previously shown, using inner models, that Projective Determi-

nacy follows from CH plus the existence of a homogeneous ideal on ω1 (a
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weaker assumption that the ℵ1-density of NSω1
, which is in fact inconsis-

tent with CH, by a theorem of Shelah). He had also shown [Ste96] that if
NSω1 is saturated and there is a measurable cardinal, then ∆˜ 1

2-determinacy
holds. The hypothesis of the measurable cardinal was later removed in
collaboration with Jensen.

Using the core model induction, Richard Ketchersid showed that if the
restriction of NSω1

to some stationary set S ⊆ ω1 is ℵ1-dense, and the re-
striction of the generic elementary embedding corresponding to forcing with
℘(S)/NSω1 to each ordinal is an element of the ground model, then there is
a model of AD+ + ϑ0<Θ containing the reals and the ordinals. Also using
this method, Sargsyan would deduce the consistency of ADR+“Θ is regular”
from the same hypothesis. This gives an equiconsistency, as Woodin has
shown how to force the hypothesis over a model of ADR+“Θ is regular”. In
yet another application of the core model induction, Steel and Stuart Zoble
[SZ] derived ADL(R) from a consequence of Martin’s Maximum isolated by
Todorcevic, known as the Strong Reflection Principle at ω2.

We conclude with three more examples. Silver [Sil75] proved that if κ is
a singular cardinal of uncountable cofinality and 2α = α+ for club many
α < κ, then 2κ = κ+. Gitik and Schindler (see [GSS06]) showed that if κ is
a singular cardinal of uncountable cofinality and the set of α < κ for which
2α = α+ is stationary and costationary, then PD holds. Schindler (in the
same paper) showed that if ℵω is a strong limit cardinal and 2ℵω > ℵω1

,
then PD holds. It is not known whether either of these results can be
strengthened to obtain ADL(R).

A cardinal κ is said to have the Tree Property if every tree of height κ
with all levels of cardinality less than κ has a cofinal branch (i.e., if there are
no κ-Aronszajn trees). Foreman, Magidor and Schindler [FMS01] showed
that if there exist infinitely many cardinals δ above the continuum such that
the tree property holds at δ and at δ+, then PD holds. The hypothesis of this
statement had been shown consistent relative to the existence of infinitely
many supercompact cardinals by James Cummings and Foreman [CF98]. It

is not known whether the conclusion can be strengthened to ADL(R).
Finally, as mentioned in Section 2.3, Gitik showed that if there is a proper

class of strongly compact cardinals, then there is a model of ZF in which all
infinite cardinals have cofinality ω. Using the core model induction, Daniel
Busche and Schindler [BS09] showed that this statement implies that PD
holds, and that AD holds in the L(R) of a forcing extension of HOD.
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Boston, MA, 1981.

William J. Mitchell
[Mit79] Hypermeasurable cardinals, Logic Colloquium ’78 (Mons, 1978), Studies in

Logic and the Foundations of Mathematics, vol. 97, North-Holland, Amsterdam, 1979,
pp. 303–316.

Yiannis N. Moschovakis
[Mos67] Hyperanalytic predicates, Transactions of the American Mathematical So-

ciety, vol. 129 (1967), pp. 249–282.

[Mos69B] Abstract first order computability I, Transactions of the American Mathe-
matical Society, vol. 138 (1969), pp. 427–463.

[Mos69C] Abstract first order computability II, Transactions of the American Mathe-
matical Society, vol. 138 (1969), pp. 464–504.

[Mos70A] Determinacy and prewellorderings of the continuum, Mathematical logic and
foundations of set theory. Proceedings of an international colloquium held un-
der the auspices of the Israel Academy of Sciences and Humanities, Jerusalem,
11–14 November 1968 (Y. Bar-Hillel, editor), Studies in Logic and the Foundations

of Mathematics, North-Holland, Amsterdam-London, 1970, pp. 24–62.
[Mos71A] Uniformization in a playful universe, Bulletin of the American Mathemat-

ical Society, vol. 77 (1971), pp. 731–736.
[Mos73] Analytical definability in a playful universe, Logic, methodology, and philoso-

phy of science IV (Patrick Suppes, Leon Henkin, Athanase Joja, and Gr. C. Moisil,
editors), North-Holland, 1973, pp. 77–83.

[Mos78] Inductive scales on inductive sets, in Kechris and Moschovakis [Cabal i], pp. 185–
192, reprinted in [Cabal I], pp. 94–101.

[Mos80] Descriptive set theory, Studies in Logic and the Foundations of Mathematics,

no. 100, North-Holland, Amsterdam, 1980.
[Mos81] Ordinal games and playful models, in Kechris et al. [Cabal ii], pp. 169–201,

reprinted in [Cabal III], pp. ??–??
[Mos83] Scales on coinductive sets, in Kechris et al. [Cabal iii], pp. 77–85, reprinted in

[Cabal I], pp. 102–109.

[Mos09] Descriptive set theory, second ed., Mathematical Surveys and Monographs,
vol. 155, American Mathematical Society, 2009.



2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

58 PAUL B. LARSON

Jan Mycielski
[Myc64] On the axiom of determinateness, Fundamenta Mathematicae, vol. 53 (1964),

pp. 205–224.
[Myc66] On the axiom of determinateness. II, Fundamenta Mathematicae, vol. 59

(1966), pp. 203–212.

Jan Mycielski and Hugo Steinhaus

[MS62] A mathematical axiom contradicting the axiom of choice, Bulletin de l’Académie
Polonaise des Sciences, vol. 10 (1962), pp. 1–3.

Jan Mycielski and Stanis law Świerczkowski

[MŚ64] On the Lebesgue measurability and the axiom of determinateness, Fundamenta
Mathematicae, vol. 54 (1964), pp. 67–71.

Itay Neeman
[Nee95] Optimal proofs of determinacy, The Bulletin of Symbolic Logic, vol. 1 (1995),

no. 3, pp. 327–339.

[Nee00] Unraveling Π˜ 1
1 sets, Annals of Pure and Applied Logic, vol. 106 (2000), no. 1-3,

pp. 151–205.

[Nee02A] Inner models in the region of a Woodin limit of Woodin cardinals, Annals of
Pure and Applied Logic, vol. 116 (2002), no. 1-3, pp. 67–155.

[Nee04] The determinacy of long games, de Gruyter Series in Logic and its Applica-
tions, vol. 7, Walter de Gruyter, Berlin, 2004.

[Nee05] An introduction to proofs of determinacy of long games, Logic Colloquium ’01
(Matthias Baaz, Sy-David Friedman, and Jan Kraj́ıček, editors), Lecture Notes in
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