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§ 0. Introduction

The abelian group theoretic property which was our original motivation is being
a splitter: G is a splitter if Ext(G,G) = 0 (i.e. if whenever G ⊆ H and H/G ∼= G
then G is a direct summand of H). In Göbel-Shelah [3] this was investigated and
it was claimed that no ℵ1-free (abelian) group of cardinality ℵ1 is a splitter, but
this was replaced by a weaker version [2] following suspicions of Eklof. Those works
deal with RP-modules where P is a proper subset of the set of primes and RP is
the sub-ring of Q generated by {1} ∪ {1/p : p a prime ∈ P}, so an RP-module is a
somewhat divisible abelian group. One problematic case was when G ∈ K = {G :
is ℵ1-free and for some G0 ⊆ G we have |G0| = ℵ0 and G/G0 is divisible}.

This issue is not resolved here (see also [4]), but the question reminds us of the
following problem : can there be a Whitehead group G of cardinality ℵ1 such that
for some countable G0 ⊆ G, G/G0 is divisible? This was shown to be consistent
(noting that but both CH and MAℵ1 contradict it) in [5] (see also [1]), using the
consistency of

�1 there exists an injective sequence ⟨ηα : α < ω1⟩ of elements of ωω which
has the 2-uniformization property, that is, such that if cα (α < ω1) are
elements of ω2 then for some h : ω>ω → 2, for every α < ω1 and every
sufficiently large n < ω we have h(ηα�n) = cα(n).

Our intended application (see [4]) deals with coloring with ℵ1 many colors (although
after analysis only ℵ0 many colors are used) and the parallel of �1 for this fails
(see [5, 1.2(3)]), but as the kernel is large we can weaken the demand in another
direction. This motivates us to formulate:

�2 there exists an injective sequence ⟨ηα : α < ω1⟩ of elements of ωω such that
for every countable group G = (G,+G) and every sequence ⟨cα : α < ω1⟩
of elements of ωG there exist functions h : ω>ω → G and ζ : ω1 → ω1 such
that for every α < ω1 and n < ω we have

cα(n) = h(ηα�n) +G h(ηζ(α)�n).

Note that we omit the restriction “for every large enough n” as we have the function
ζ. This is, so far, immaterial. Unfortunately this is not enough for any result on
Ext. This leads to the following relative but for it the proof does not work (contrary
to a claim in an earlier version), see [4]:

�3 for every infinite countable groupG = (G,+G), we can find pairwise distinct
ηα ∈ ωG for α < ω1 such that: given cα ∈ ωG for α < ω1 we can find
functions h : ω>G → G and ζ : ω1 → ω1 such that for any α < ω1 and n < ω
we have

cα(n) = h(ηα�(n+ 1)) +G ηζ(α)(n).

Our main result is the consistency of �2, which seems combinatorially interesting
by itself; we first thought of using non-meagreness of {ηα : α < ω1} but eventually
continued the ideas from [6, §1].

Our algebraic questions (and proofs) are on abelian groups but in the principle
�2 the groups are not necessarily commutative.
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§ 1. Consistency of a uniformization principle for ℵ1

Notation 1.1. For sequences η, ν, η E ν means that η is an initial segment of ν,
and η ▹ ν means that η is a proper initial segment of ν.

Notation 1.2. We let

(1) Fℵ0 denote the set of pairs (h, ν) for which there exist a non-zero n < ω
and a sequence η ∈ nω such that ν ∈ nω and h is a function from

{ρ : ρ E η ∨ ρ ▹ ν}
to ω (so (η, ν) can be reconstructed from dom(h));

(2) F∗,ℵ0 denote the set of functions from Fℵ0 to ω.

The “s.i.u.” defined in part (1) below is closely related to �2 from the introduction
(see Theorem 2.1). Note that the main case below is i∗1 = i∗2 = ℵ1.

Definition 1.3. 1) We say that (η̄1, η̄2) satisfies the ℵ0-strong inside uniformization
property (ℵ0-s.i.u.) when :

(a) η̄ℓ = ⟨ηℓi : i < i∗ℓ ⟩ for ℓ ∈ {1, 2}
(b) ηℓi ∈ ωω \ {ηℓj : j < i} for i < i∗ℓ and ℓ = 1, 2

(c) for each sequence ⟨fi : i < i∗1⟩ ∈ i∗1 (F∗,ℵ0) we can find functions h : ω>ω → ω
and g : i∗1 → i∗2 satisfying

(∗) for every i < i∗1 and for every non-zero n < ω the function h obeys fi
at ((η1i �n), η2g(i)�n) which means that

h(η2g(i)�n) = fi(h�{ρ : ρ E η1i �n or ρ ▹ η2g(i)�n}, η2g(i)�n).

2) We may replace (η̄1, η̄2) by η̄ if η̄1 = η̄2 = η̄.
3) We say that λ has the ℵ0-s.i.u.if some sequence η̄ ∈ λ(ωω) has the ℵ0-s.i.u..

Definition 1.4. A sequence η̄ is universally ℵ0 − s.i.u. if

(a) η̄ = ⟨ηi : i < i∗⟩ where ηi ∈ ωω \ {ηj : j < i} for i < i∗

(b) if η̄1 = ⟨η1i : i < i∗⟩ and η1i ∈ ωω \ {η1j : j < i} for i < i∗ then (η̄1, η̄) has
ℵ0 − s.i.u..

Our main result is the following.

Theorem 1.5. There is a c.c.c. partial order of cardinality 2ℵ1 forcing the exis-
tence of a universally ℵ0-s.i.u. sequence of length ω1.

The proof is broken to a series of definitions and claims. We fix for this section a

regular cardinal χ > 22
ℵ1
, and let λ be 2ℵ1 .

Definition 1.6. For α ∈ [1, λ], let Kα be the family of

q = ⟨(Pβ ,Q
˜

β , f̄
˜
β , N̄β) : β < α⟩

such that

(a) ⟨Pβ ,Q
˜

β : β < α⟩ is a finite support iteration;
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(b) Q0 is {p : p a finite function from ω1 to ω>ω}, ordered by

p ≤ q iff (∀i ∈ Dom(p))(i ∈ Dom(q) & p(i) E q(i));

(c) f̄
˜
0 = N̄0 = ∅;

(d) if β ∈ [1, α) then
(α) f̄

˜
β = ⟨f

˜
β,j : j < ω1⟩ is a Pβ - name for an ω1-sequence of members of

F
V[Pβ ]
∗,ℵ0

,

(β) η̄
˜

1
β = ⟨η

˜

1
β,j : j < ω1⟩ is a Pβ-name of pairwise distinct members of ωω

(γ) N̄β is a ⊆-increasing continuous sequence ⟨Nβ,i : i < ω1⟩ such that
• each Nβ,i is a countable elementary submodel of (H (χ),∈, <∗

χ),
• q�β, β ∈ Nβ,0,

• N̄β�(i+ 1) ∈ Nβ,i+1 for each i < ω1;

(e) if β ∈ (0, α) (and ωV
1 is uncountable in VPβ ; otherwise Q

˜
β is the trivial

forcing) then, in VPβ , the conditions of Q
˜

β are the triples p = (hp, wp, gp)
such that (letting, for each i < ω1, η

˜
i denote the name for the ith element

of ωω added by Q0 and ζβ(i) denote Nβ,i ∩ ω1):

(α) hp is a function with domain some finite subset of ω>ω closed under
initial segments and Rang(hp) ⊆ ω,

(β) wp is a finite subset of ω1,

(γ) gp is a function with domain wp and each value gp(j) in the corre-
sponding set {ζβ(ωj + n) : 0 < n < ω},

(δ) if n < ω and j ∈ wp then η
˜

1
j�n ∈ Dom(hp) ⇔ η

˜
gp(j)�n ∈ Dom(hp),

(ε) if j ∈ wp, then for some n we have

(i) η
˜

1
j�n, η

˜
gp(j)�n ∈ Dom(hp),

(ii) if i ∈ wp\{j} then η
˜
gp(i)�(n+ 1) ̸= η

˜
gp(j)�(n+ 1),

(ζ) if j ∈ wp, 0 < n < ω and η
˜

1
j�n ∈ Dom(hp), then hp obeys f

˜
β,j at

(η
˜

1
i �n, η

˜
gp(j)�n);

(i) if β ∈ (0, α) (and ωV
1 is uncountable in VPβ ) then in VPβ the order of Q

˜
β

is : p ≤ q iff hp ⊆ hq & wp ⊆ wq & gp ⊆ gq.

Notation 1.7. Given a q in Kα for some ordinal α, we let

⟨(Pq
β ,Q

˜

q
β , f̄
˜

q
β , N̄

q
β) : β < αq⟩

denote the components of q.

Notation 1.8. Given α ∈ [1, λ] and q in Kα, we let Lim(q) denote Pα, where Pα is
Pα−1 ∗Q

˜
α−1 if α is a successor ordinal and

∪
β<α

Pβ otherwise. When q is clear from

context, we let

• ζβ(i) (for β ∈ (0, α) and i < ω1) be Nβ,i ∩ ω1;
• η
˜
i (for i < ω) be the Q0-name for the ith element of ωω added by Q0 (i.e.,

the union of the sequences p(i), for p in the Q0-generic filter);
• h
˜
β (for β ∈ (0, α)) be the Pβ+1-name for ∪{hp(β) : p ∈ G

˜
Pα} (in the case

where ωV
1 is uncountable in VPβ ).
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The two following claims show that the partial orders Qα (α ∈ [1, λ)) force
instances of the universal ℵ0-s.i.u.. The proof of Claim 1.9 is routine.

Claim 1.9. If α ∈ [1, λ] and ⟨Pβ ,Q
˜

β , f̄
˜
β , N̄β : β < α⟩ ∈ Kα then Q0 “for all i <

j < ω1, η
˜
i, η
˜
j ∈ ωω and η

˜
i ̸= η

˜
j”.

Claim 1.10. If

• α ∈ [1, λ],
• ⟨Pβ ,Q

˜
β , f̄
˜
β , N̄β : β < α⟩ ∈ Kα,

• β ∈ (0, α),
• Pβ

“ωV
1 is uncountable”,

then

(1) Pβ+1
“h
˜
β is a function from ω>ω to ω”,

(2) in VPβ+1 the function h
˜
β witnesses the universal ℵ0-s.i.u.for ⟨η

˜
i : i < ω1⟩

with respect to f̄
˜
β and η̄

˜

1
β.

Proof. Let Gβ ⊆ Pβ be generic over V, with G0 its restriction to Q
˜

0. For each

i < ω1, let ηi = η
˜
i[G0], let η1i = η

˜

1
β,i[Gβ ] and let fi = f

˜
β,i[Gβ ]. For i ∈ wp, let

η2i = ηgp(i).
We prove the first part first. Trivially h

˜
β is forced to be a partial function from

ω>ω to ω. Let ν ∈ ω>ω; we shall prove that Q
˜

β [Gβ ] ν ∈ Dom(h
˜
β). Fix p ∈ Q

˜
β [Gβ ].

We need to find a condition q satisfying p ≤ q in Q
˜

β [Gβ ] such that ν ∈ Dom(hq).
If ν ∈ Dom(hp) we are done, so we suppose otherwise. Let n∗ ≥ ℓg(ν) be such that
n∗ > sup{ℓg(ρ) : ρ ∈ Dom(hp)}. By extending ν if necessary we may assume that
ℓg(ν) = n∗.

Our condition q will have wq = wp and gq = gp. It remains to define hq, which
will extend hp. We let Dom(hq) = {ρ : ρ E ν or ρ ∈ Dom(hp) or (∃j ∈ w)(∃ℓ ∈
{1, 2})(ρ E ηℓj&ℓg(ρ) ≤ n∗)}. If ρ ∈ Dom(hq) \ Dom(hp) and ρ is not of the form
ηgp(j) � m for some j ∈ wp and m ≤ n∗, then we let hq(ρ) = 0. For the remaining
sequences ρ, we define hq(ρ) by recursion on j, and for each j by m, letting

hq(ηgp(j) � m) = fj(h
q�{ρ′ : (ρ′ ▹ ηgp(j) � m) ∨ (ρ′ E ηj�m)}, ηgp(j) � m).

By part (e)(ϵ)(ii) of Definition 1.6 there are no conflicts in doing this. This com-
pletes the proof of the first part of the claim.

We now prove the second part. By the definition of the order on Q
˜

β , and Claim

1.10, it suffices to prove that, in VPβ for every i < ω1 the set of p ∈ Q
˜

β with i ∈ wp

is a dense subset of Q
˜

β . Fix i < ω1 and p ∈ Q
˜

β [Gβ ].
By genericity,

Q0 “ω>ω = {ηj�n : j ∈ {Nβ,ωε+k ∩ ω1 : k ∈ (0, ω)} and n < ω}”.
It follows that we can find j ∈ {Nβ,ωi+k ∩ ω1 : k ∈ (0, ω)} such that {ρ : ρ ▹
ηj and ℓg(ρ) > 0} is disjoint from Dom(hp) ∪ {ρ : ρ ▹ η2k, k ∈ Dom(gp)} (it is
enough to choose a suitable value for ηj(0)).

Choose n∗ > 0 such that ρ ∈ Dom(hp) ⇒ ℓg(ρ) < n∗. As in the proof of the
first part we can find h∗, a function from Dom(hp) ∪ {ρ : ρ E η1i �n∗ or ρ E ηℓk�n∗

for some ℓ ∈ {1, 2} and k ∈ Dom(gp)} to ω such that hp ⊆ h∗ and h∗ obeys fk
at (η1k�m, ηgp(k)�m) for all k ∈ wp and m ∈ [1, n∗]. Next we choose h∗∗ ⊇ h∗ with
domain Dom(h∗) ∪ {ηj�m : m ≤ n∗}, as in the proof of Claim 1.10 so that h∗∗

obeys fi at (η
1
i �m, ηj�m) for all m ∈ [1, n∗].
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Lastly, we let gq = gp ∪ {⟨i, j⟩}, wq = wp ∪ {i} and hq as h∗∗. Easily p ≤ q and
i ∈ wq so we are done. �1.10

We make one additional observation about the successor stages of our iterations
(Claim 1.12 below).

Definition 1.11. 1) Let Q∗ be defined by

(A) p ∈ Q∗ iff p = (h,w, g) = (hp, wp, gp) satisfies

(α) hp is a function from some finite subset of ω>ω closed under initial
segments and Rang(hp) ⊆ ω

(β) wp is a finite subset of ω1

(γ) gp is an increasing function from wp to ω1, α < gp(α)

(B) Q∗ is ordered by p ≤ q ⇔ hp ⊆ hq & wp ⊆ wq & gp ⊆ gq.

The following claim is straightforward.

Claim 1.12. For each β ≤ λ, Pβ
Q
˜

β ⊆ V. Furthermore, in V Pβ , for all p, q ∈ Q
˜

β

we have p ≤Q
˜

β
q ⇔ p ≤Q∗ q”.

We now move to an analysis of the initial segments of our iterations.

Definition 1.13. Let K+
α be the set of q ∈ Kα such that for every β < α, the

forcing notion Pq
β satisfies the c.c.c.

Claim 1.14. For proving Theorem 1.5 it suffices to prove that for all α < λ and
all q ∈ K+

α the forcing notion Pq
α satisfies the c.c.c.

Proof. By bookkeeping, as λℵ1 = λ there is q ∈ Kλ such that

(∗) if β < λ and f̄
˜
is a Pβ - name of a member of ω1(F∗,ℵ0

) and η̄
˜

1 is a Pβ-name

of a member of ω1(ωω), then for some γ ∈ [β, λ) we have Pγ “f̄
˜

q̄
γ = f̄

˜
and

η̄
˜

1
γ = η̄

˜

1”.

Then one gets by induction for all α ∈ [1, λ], Lim(q�α) satisfies the c.c.c., noting
that the c.c.c. is preserved by finite support iterations. �1.14

For the rest of the section we fix α ∈ [1, λ) and q ∈ K+
α .

By the definition of finite support iterations, for each β ≤ λ, Pβ is the set of
finite functions p with domain contained in β such that for each γ ∈ Dom(p), p(γ)
is a Pγ-name of a member of Q

˜
γ . We define some dense subsets of Pα.

Definition 1.15. Fix β ≤ α.

(1) We let D0
β be the set of p ∈ Pβ such that

(a) 0 ∈ Dom(p);
(b) for each γ ∈ Dom(p), there exists a set x ∈ V such that p(γ) = x̌”;
(c) for all γ ∈ Dom(p)\{0} and i ∈ wp(γ), if j = gp(i) then j ∈ Dom(p(0)),

and, letting n∗ be the length of the largest initial segment of p(0)(j)
in Dom(hp(γ)),

(i) for some ν ∈ (n∗)2 ∩Dom(hp(γ)), (p � γ)  (η
˜

1
γ,i � n∗) = ν̌,

(ii) n∗ < ℓg(p(0)(j)),
(iii) p(0)(j)�(n + 1) is not equal to p(0)(gp(γ)(k))�(n + 1), for any

k ∈ wp(γ) with gp(γ)(k) < j.
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(2) We let D1
β be the set of finite functions with domain ⊆ β such that

(a) 0 ∈ Dom(p);

(b) for γ ∈ Dom(p) we have :

(α) if γ = 0 then p(γ) ∈ Q0,

(β) if γ > 0, then

• p(γ) is (hp(γ), wp(γ), gp(γ)) ∈ Q∗,

• Rang(gp(γ)) ⊆ Dom(p(0)).

(3) The order ≤D1
β
on D1

β is: p ≤D1
β
q iff

(a) Dom(p) ⊆ Dom(q),

(b) Q0 |= “p(0) ≤ q(0)”,

(c) ∀γ ∈ Dom(p) \ {0}, Q∗ |= “p(γ) ≤ q(γ)”.

(4) We let D0,∗
β be the set of p ∈ D1

β such that for all γ ∈ Dom(p)\{0} and i ∈
wp, if j = gp(γ)(i) then then j ∈ Dom(p(0)), and, letting n∗ = ℓg(p(0)(j)),
(a) p(0)(j) ∈ Dom(hp(γ));
(b) there is q ∈ D0

γ ∩Nγ+1,i+1 satisfying q ≤D1
β
p�γ such that

(i) for some ν ∈ (n∗)2 ∩Dom(hp(γ)), q  (η
˜

1
γ,i � n∗) = ν̌,

(ii) q forces that hp(γ) obeys f
˜
γ,i at (ν�m, p(0)(j)�m), for all m ∈

(0, n].

(5) For p ∈ D0,∗
β and n < ω we let p⟨n⟩ be the following function:

(a) Dom(p⟨n⟩) = Dom(p),

(b) ∀γ ∈ Dom(p) \ {0}, p⟨n⟩(γ) = p(γ),

(c) Dom(p⟨n⟩(0)) = Dom(p(0)),

(d) i ∈ Dom(p(0)) ⇒ (p⟨n⟩(0))(i) = (p(0)(i))ˆ⟨n+ otp(i ∩Dom(p(0)))⟩.

(6) Given β ≤ α, p ∈ D1
β and a countable elementary submodel N of

(H (χ),∈, <∗
χ),

we let p � N denote the element q of D1
β such that:

(a) Dom(q) = Dom(p) ∩N

(b) q(0) = p(0) � (N ∩ ω1)

(c) for all γ ∈ Dom(q)\{0}, q(γ) = (hq(γ), wq(γ), gw(γ)) is defined by:

(α) hq(γ) = hp(γ)

(β) wq(γ) = {i ∈ wp(γ) : gp(γ)(i) ∈ N}
(γ) gq(γ) = gp(γ)�wq(γ).

Remark 1.16. (1) Each member of D0
β has a clear description but the satisfac-

tion of “p ∈ D0
β” is complicated; it depends on the bookkeeping involved

in the definition of q.
(2) The set D0

β can be viewed as a subset of D1
β (it is not literally a subset

but we ignore this distinction in what follows, and above). Unlike with D0
β ,

membership in D1
β is simply defined.
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(3) The set of D0,∗
β consists of p ∈ D1

β which are in some sense close to being

in D0
β , needing only to be strengthened in coordinate 0 (i.e., Q0). Clause

(d) is crucial; having such q ∈ Nγ+1,i+1 will hold densely often.

Claim 1.17 lays out some of the basic properties of the terms defined in Definition
1.15.

Claim 1.17. Fix β ≤ α.
0) For all γ < β,

• D0
γ = {p ∈ D0

β : Dom(p) ⊆ γ} = {p�γ : p ∈ D0
β};

• D1
γ = {p ∈ D1

β : Dom(p) ⊆ γ} = {p�γ : p ∈ D1
β};

• D0,∗
γ = {p ∈ D0,∗

β : Dom(p) ⊆ γ} = {p�γ : p ∈ D0,∗
β };

• ≤D1
γ
=≤D1

β
�D1

γ .

1) D0
β is a dense subset of Pβ.

2) If p ∈ D1
β , v ⊆ Dom(p) and 0 ∈ v then p�v ∈ D1

β.

3) If β ≤ α, p ∈ D0,∗
β and i < ω1 then p � Nβ,i ∈ D0,∗

β and D1
β |= “p � Nβ,i ≤ p”.

4) If p, q ∈ D0
β then p ≤Pβ

q iff p ≤D1
β
q.

5) ≤D1
β
is a partial order on D1

β.

Proof. Parts (0), (2), (4) and (5) follow immediately from the definitions, and part
(1) is routine.

For part (3), let p′ = p � Nβ,i. Clauses (4a) of Definition 1.15(4) should be clear,

so the main issue is clause (4b). So assume that γ1 ∈ Dom(p′)\{0} and hp′(γ1)(i1) =
j1, hence γ1 ∈ Nβ,i ∩ β and i1, j1 ∈ Nβ,i ∩ ω1. Now as p satisfies clause (4b) there
is q as there; in particular, q ∈ D0

γ1
∩ Nγ1+1,i1+1. But γ1 ∈ Dom(p′) ⊆ Nβ,i and

i1 ∈ Nβ,i (as g
p′(γ1)(i1) = ji) and ⟨Nγ1,ε : ε < ω1⟩ is in Nβ,i hence Nγ1+1,i1+1 ∈ Nβ,i

recalling Definition 1.6(e), so easily q ≤D1
β
p�γ implies q ≤D1

β
p′ � γ. �1.17

Extending a p ∈ D0,∗
β to an element of D0

β (for some β ≤ α) requires only

extending the members of p(0) to make them distinct. Claim 1.18 records one way
of doing this.

Claim 1.18. Suppose that β ≤ α and p ∈ D0,∗
β . For all but finitely many n ∈ ω,

p ≤D1
β
p⟨n⟩ ∈ D0

β.

Definition 1.19. Conditions p1, p2 ∈ D0,∗
β are a ∆-system pair when:

(a) if 0 ∈ Dom(pi)∩Dom(p2) then for all i ∈ dom(p1)∩dom(p2(0)), p1(0)(i) =
p2(0)(i);

(b) dom(p1(0)) ∩ dom(p2(0)) is an initial segment of both dom(p1(0)) and
dom(p2(0));

(c) for all γ ∈ Dom(p1) ∩Dom(p2)\{0},
(α) hp1(γ) = hp2(γ),

(β) wp1 ∩ wp2 is an initial segment of both wp1 and wp2 ,

(γ) for all i ∈ wp1 ∩ wp2 , gp1(γ)(i) = gp2(γ)(i).

Remark 1.20. If β ≤ α and p1, p2 in D1
β are compatible, then they have a least

upper bound in D1
β , which we call p1 + p2. A If p1, p2 are a ∆-system pair then

they are compatible.
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Claim 1.21 is used in the proof of Crucial Claim 1.23.

Claim 1.21. Suppose that

• β∗ ≤ β ≤ α,
• i < ω1,
• q, r ∈ D0,∗

β∗
,

• r ∈ Nβ,i,
• r ≥ q � Nβ,i.

Then r and q are compatible, and r + q is in D0,∗
β∗

.

Proof. For each γ ∈ Dom(q), Nβ,i ∩ω1 = Nγ,(Nβ,i∩ω1) ∩ω1 is a limit ordinal, so for

all i ∈ Nβ,i ∩ Dom(gq(γ)), gq(γ)(i) ∈ Nβ,i ∩ ω1. Given this, the compatibility of r
and q is straightforward. �

Definition 1.22. We say p is (β, δ)-good when :

(i) p ∈ D0
β+1

(ii) if β ∈ Dom(p) \ {0}, gp(β)(i) = j and δ < j then for some n the demands in

Definition 1.15(4) of D0,∗
β hold.

Crucial Claim 1.23. If p ∈ D0
β then for some q ∈ D0,∗

β we have p ≤ q.

Proof. By induction on β. For β ∈ {0, 1} this is trivial, and limit steps follow from
the fact that our iteration is by finite support. So fix β∗ for which the claim holds,
and let β = β∗ + 1. We prove by induction on limit δ < ω1 that

�δ if p ∈ D0
β is (β∗, δ)-good then for some q ∈ D0,∗

β we have
• p ≤ q,
• q(β∗) = p(β∗),
• q(0)�[δ, ω1) = p(0)�[δ, ω1).

This is enough because trivially every p ∈ D0
β is (β∗, δ)-good for all sufficiently large

δ.
If δ = ω then we apply the induction hypothesis for β∗ to obtain a q0 ∈ D0,∗

β∗

above p � β∗ with q0(0) � [δ, ω1) = p(0) � [δ, ω1). Then q0 ∪ (β∗, p(β∗)) is as desired,
as ζγ(i) > ω + ω for all γ, i.

Fix then a countable limit ordinal δ such that �δ′ holds for all limit δ′ < δ, and
fix a (β∗, δ)-good p ∈ D0

β . If there is no i ∈ Dom(gp(β∗)) with gp(β∗)(i) = δ then p

is (β∗, δ
′)-good for some limit δ′ < δ and we are done, so suppose otherwise. Let p0

be p with i removed from wp(β∗) (and thus Dom(gp(β∗))). Then p0 is (β∗, δ
′)-good

for some limit δ′ < δ, so there exists a q0 as in �δ′ relative to p0. By Claim 1.17(1)
there is p1 ∈ D0

β above q0, and again we may assume that p1(β∗) = q0(β∗). As
β∗ < α, Pβ∗ satisfies the c.c.c., there exists an r0 ∈ Pβ∗ ∩Nβ,i+1 above q0 � Nβ,i+1

deciding enough of f
˜
β∗,i and η

˜

1
β∗,i

, in agreement with p1, to satisfy Definition 1.15(4)

with respect to β∗ and i (we may also do this in such a way that r0(0) = p1(0) �
Nβ,i+1 ∩ω1). We can strengthen r0 inside Nβ,i+1 to a condition r1 ∈ D0

β∗
and then

again to a condition r2 ∈ D0,∗
β∗

. Now let q = q0 + r2, which is in D0,∗
β∗

, by Claim

1.21. Then q ∪ (β∗, p(β∗)) is as desired. �1.23

Conclusion 1.24. Pα satisfies the c.c.c.
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Proof. Let pε ∈ Pα for ε < ω1, without loss of generality pε ∈ D0
α (see 1.17(1)).

Applying Crucial Claim 1.23, choose qε (ε < ω1) such that pε ≤ qε ∈ D0,∗
α holds

for each ε. Use the ∆-system lemma to fix ε < ζ such that (qε, qζ) form a ∆-system
pair, as in Definition 1.19, so they have a common upper bound q ∈ D0,∗

α .
By Claim 1.18 there is a p ∈ D0

α such that q ≤ p has pε ≤ qε ≤ q ≤ p, pζ ≤ qζ ≤
q ≤ p, and so by Claim 1.17(5), Pα |= “pε ≤ p ∧ pζ ≤ p”, so we are done. �1.24

§ 2. Conclusion

In this section we show that an ℵ0-s.i.u. sequence witnesses the principle �2 from
the introduction. We prove this in slightly greater generality, modifying Definition
1.3 by replacing ωω with ωµ and making the obvious changes. For any set X, we
let FX = {(h, ν1): for some n, ν0 ∈ nX, ν1 ∈ n+1X we have h is a function from
{ρ : ρ ▹ ν0 ∨ ρ ▹ ν1} to X} and define F∗,X and the X-s.i.u. analogously.

Theorem 2.1. Let λ1 and λ2 be ordinals, and let µ be a cardinal. Suppose that

(a) ηℓα ∈ ωµ for α < λℓ and η̄ℓ = ⟨ηℓα : α < λℓ⟩ for ℓ = 1, 2,

(b) (η̄1, η̄2) has the µ-s.i.u.,

(c) G is a group of cardinality µ.

Then

�2
η̄,G given cα ∈ ωG (α < λ1) we can find functions h : ω>µ → G and ζ : λ1 → λ2

such that
cα(n) = h(η1α�n) ·G h(η2ζ(α)�n)

for all α < λ1 and n ∈ (0, ω).

Proof. For notational simplicity, we suppose that µ is the set of elements of G.
Given cα ∈ ωµ (α < λ1) we define functions fα (α < λ1) as follows. If n < ω,
ν ∈ nµ and h is a function from

{ρ : ρ ▹ η1α�(n+ 1) or ρ ▹ ν}

to µ, we let fα(h) be the unique x ∈ µ such that

cα(n) = h(η1α�n) ·G x.

Since (η̄1, η̄2) has the µ-s.i.u. there exist h : ω>µ → µ and ζ : λ1 → λ2 such that:

(∗) for all α < λ1 and every non-zero n < ω, h obeys fi at n, i.e.,

h(η2ζ(α)�n) = fα(h�{ρ ▹ η1α�(n+ 1) or ρ ▹ η2ζ(α)�n}).
It follows that for all α < λ1 and all n ∈ (0, ω),

cα(n) = h(η1α�n) ·G h(η2ζ(α)�n)

as required. �2.1

Corollary 2.2. If ℵ1 has the ℵ0-s.i.u., then �2 holds.

We briefly discuss further generalizations.
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Definition 2.3. Let µ and κ be cardinals.

(1) We say that (η̄1, η̄2) has the (µ, κ)-strong inside uniformization ((µ, κ) −
s.i.u. in short) when

(a) η̄ℓ = ⟨ηℓi : i < i∗ℓ ⟩ for ℓ = 1, 2

(b) ηℓi ∈ κµ \ {ηℓj : j < i} for i < i∗ℓ and ℓ = 1, 2

(c) for any sequence ⟨fi : i < i∗1⟩ ∈ i∗1 (F∗,ℵ0) we can find h : κ>µ → ω and
function ζ : i∗1 → i∗2 satisfying

(∗) for any sequence i < i∗1 for every non-zero ε < κ the function h
obeys fi at ((η

1
i �ε), η2ζ(i)�ε) (but we may just say at ε if (η1i , η

2
ζ(i))

is clear from the context), which means

h(η2ζ(i)�ε) = fi(h�{ρ : ρ E η1i �ε or ρ ▹ η2ζ(i)�ε}, η2ζ(i)�ε)

(2) We may replace (η̄1, η̄2) by η̄ if η̄1 = η̄2 = η̄.
(3) We say λ has ℵ0 − s.i.u. if for some sequence η̄ ∈λ (κµ) has ℵ0 − s.i.u..
(4) We say that η̄ is universally (µ, κ)− s.i.u. if

(a) η̄ = ⟨ηi : i < i∗⟩ where ηi ∈ κµ \ {ηj : j < i} for i < i∗

(b) if η̄1 = ⟨η1i : i < i∗⟩ and η1i ∈ κµ \ {η1j : j < i} for i < i∗ then (η̄1, η̄)
has (µ, κ)− s.i.u..

The proof of the following result, a modification of the proof of Theorem 1.5,
will appear elsewhere.

Theorem 2.4. Assume V satisfies κ = κ<κ = µ, θ = κ+ < λ = λθ, 2κ = κ+ = 2κ.
Then for some κ+-c.c. (< κ)-complete forcing notion P of cardinality λ we have
P “there is a universal κ− s.i.u. sequence η̄ ∈ θ(κκ)”.
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