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Zermelo’s 1913 paper Über eine Anwendung der Mengenlehre auf die Theorie
des Schachpiels [24] is an account of an address given to the Fifth International
Congress of Mathematicians in Cambridge in 1912. It is often cited as the first
mathematical analysis of strategies in games. While the paper claims to be an
application of set theory, and while it would have appeared that way to Zermelo’s
contemporaries, the set-theoretic notions in the paper have since become part
of standard mathematical practice, and to modern eyes the arguments in the
paper are more combinatorial than set-theoretic.1 The notion of “Zermelo’s
Theorem” (usually described as a variant of “in chess, either White or Black
has a winning strategy, or both can force a draw”) derives from this paper.
Although statements of this sort follow from the claims made in the paper,
Zermelo’s arguments for these claims are incomplete. As we shall see below,
there are other gaps in the paper, one of which was fixed by Kőnig in his 1927
paper [12]. Kőnig’s paper also contains two paragraphs on arguments of Zermelo
fixing this gap, using ideas similar to Kőnig’s.

In the beginning of the 1913 paper, Zermelo notes that although he will dis-
cuss chess, his arguments apply to a wider class of games. Initially he describes
this class as those two-player games “of reason” in which chance has no role.
In the second paragraph of the paper, he makes the assumption that the game
has only finitely many possible positions (or, rather, invokes the fact that this
is true of chess, where a position of the game consists of the positions of all
the pieces plus the identity of the player to move next and information such as
which players have castled2), and in the third paragraph he says that the rules
of the game allow infinite runs, which should be considered ties. In the first
paragraph he mentions that there are many positions in the game of chess for
which it is known that one player or the other can force a win in a certain num-
ber of moves, and proposes investigating whether such an analysis is possible in
principle for arbitrary positions.

∗The author is supported in part by NSF grant DMS-0401603. Dr. Nicole Thesz of Miami
University and Dr. Burkhard Militzer of the University of California at Berkeley helped with
some original sources in German. Our historical remarks rely heavily on [5], [9] and [18].

1As an example of how set-theoretic language was percevied at the time (and even much
later), note that von Neumann and Morgenstern spend Sections 8-10 of [21] on the importance
of set theoretic notions for studying games.

2If one includes the list of previous moves then the set of positions becomes infinite.
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Zermelo’s analysis begins by letting P denote the set of all possible positions
of the game, and letting P a denote the set of countable sequences of positions,
finite or infinite. Fixing a position q, he lets Q be the set of all sequences in P a

starting with q, such that, for each successive pair of positions in the sequence
the latter member is obtained by a legal move from the former, and such that
the sequence either continues infinitely or ends with a stalemate or a win for one
player or the other. Zermelo notes that given a position q and a natural number
r (Zermelo is not explicit about whether the case r = 0 is to be included), White
can force a win from q in at most r moves if and only if there is a nonempty set
Ur(q) of members of Q such that each q in Ur(q) is a continuation of q in which
White wins in at most r moves (starting from q), and such that for each q ∈ Q
and each position in q where it is Black’s turn to move, and for each possible
move for Black at that point, there is a q′ ∈ Q which agrees with q up to this
point, and has the position resulting from Black making this move as its next
member. In more modern terminology (appearing no later than [13]), Zermelo
has introduced here a game-tree with root q of height at most r + 1, in which
all terminal nodes are wins for White, and in which all nodes for which it is
Black’s turn to move have successors corresponding to every move available to
Black at that position. The existence of such a tree is indeed equivalent to the
existence of a quasi-strategy3 for White guaranteeing a win in r moves or fewer:
White simply plays to maintain the condition that the continuation of the game
starting from q is an initial segment of a member of Ur(q).

Still fixing q and r, Zermelo notes that the union of all such sets Ur(q) would
also satisfy the conditions on Ur(q). He calls this union Ūr(q), and notes that
as r increases the sets Ūr(q) also increase under ⊆ (though of course they may
eventually all be the same, and may all be the empty set). For each q such that
Ūr(q) is nonempty for some natural number r, Zermelo lets ρq be the least such
r, and he lets U∗(q) denote Ūρq

(q). He also lets τ denote the maximum of the
set of defined values ρq.

Zermelo lets t be the integer such that t + 1 is the size of P , and presents
an argument to the effect that τ ≤ t. The idea behind this argument is that if
some position is repeated during a play by a winning quasi-strategy for White,
then one could adjust the quasi-strategy to play from the first occurrence of
this position in the way that one played from the second, thus winning in fewer
moves. This argument was later shown by Kőnig [12] to be incomplete, as it
does not account for all possible sequences of moves for Black; that is, playing
with the same strategy does not guarantee the same resulting sequence of moves.

For each q, Zermelo lets U(q) denote Ūτ (q), and claims that U(q) being
nonempty is equivalent to the assertion that q is a winning position for White.
In fact, U(q) being nonempty is equivalent to the existence of some natural
number r such that White has a quasi-strategy guaranteeing a win in r moves

3A strategy for White specifies a move for White in each position obtainable by the strat-
egy; a quasi-strategy merely specifies an acceptable set of moves (see [10]). The distinction
is important when the Axiom of Choice fails, but is less important here, since P is finite.
Nonetheless, we will use the term “quasi-strategy” for the sets of sequences described by
Zermelo in this paper.
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or fewer. Zermelo does not address in this paper what it means for a player to
have a quasi-strategy guaranteeing a win without specifying an upper bound on
the number of moves needed to win. Kőnig’s subsequent work [12] would show
that in games in which each player has only finitely many moves available in
each position, having a winning quasi-strategy in this more general sense implies
having one with a fixed upper bound for the number of moves needed.

Zermelo then defines sets Vs(q), analogous to Us(q) except that the corre-
sponding quasi-strategies merely guarantee that White does not lose in fewer
than s moves, though they allow that White loses on the s-th move. So each
Vs(q) is a set of members of Q such that each q in Vs(q) is a continuation of q
in which White does not lose in fewer than s moves starting from q, and such
that for each q ∈ Vs(q) and each position in q where it is Black’s turn to move,
and for each possible move for Black at that point, there is a q′ ∈ Vs(q) which
agrees with q up to this point, and has the position resulting from Black making
this move as its next member. Again, the union V̄s(q) of all such Vs(q) satisfies
these conditions. Now, however, the sets V̄s(q) are shrinking as s increases.

Zermelo now remarks that, given q, if V̄s(q) is empty for any positive integer
s, then, letting σ be the maximal s for which V̄ (s) is nonempty, σ ≤ τ (he also
lets V ∗(q) denote V̄σ(q) in this case). The argument for this is not given (Zermelo
also reiterates here that τ ≤ t, which, as we noted above, is not satisfactorily
demonstrated in this paper, but that issue does not affect this one.) The first
missing claim is that if V̄s(q) is empty, then Black has a quasi-strategy which
guarantees a win in s − 1 moves or fewer, starting from q. Modulo precise
notions of game and strategy, this fact is sometimes called determinacy for fixed
finite length games of perfect information; indeed, this assertion is often called
Zermelo’s Theorem, referring to the arguments in this paper (a generalization
is called “the theorem of Zermelo-von Neumann” in [13]). Granting this point,
one needs to see that if Black has a quasi-strategy guaranteeing a win in s− 1
moves or fewer, then he or she has a quasi-strategy guaranteeing a win in τ
moves or fewer. Given the definition of τ this is clear for suitably symmetric
games,4 but it need not hold in general. Finally, it is clear that if Black has a
quasi-strategy that guarantees a win in τ moves or fewer starting from q, then
V̄τ+1(q) is empty.

Zermelo lets V (q) denote V̄τ+1(q), and claims that V (q) being nonempty is
equivalent to White being able to force a draw from the position q. This claim
is missing the same steps as the corresponding claim for U(q) above. Given
that the game is suitably symmetric, the statement that V (q) is nonempty
is equivalent to the statement that White can delay a loss by any specified
amount he or she chooses, which again by the subsequent work of Kőnig and
the finiteness of chess means being able to delay a loss indefinitely.

The second-to-last paragraph of the paper provides a partial summary, and
asserts in a roundabout manner that in chess, either one player or the other

4That is, games where for every position where it is White’s term to move there is a position
where is it Black’s turn such that the game trees below the two conditions are isomorphic.
Strictly speaking this is not true of chess, since it can only be White’s turn when the pieces
are in their initial position.
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has a winning strategy, or both players can force a draw. Zermelo notes that in
each position q, U(q) ⊆ V (q), and if U(q) is nonempty, then White can force a
win from q. If U(q) is empty but V (q) is not, then White can force a draw (as
we mentioned in the previous paragraph, this is true but not supported by the
arguments in the paper). If both sets are empty, then White can delay a loss
until the σ-th move, for the value of σ corresponding to q. Furthermore, the
two sets U∗(q) (in the case where White can force a win) and V ∗(q) (otherwise)
make up the set of “correct” moves for White from the position q. Zermelo
notes than an analogous situation holds for Black, so that there exists a subset
W (q) of Q consisting of all continuations of the game (starting from q) in which
both players can be said to have played correctly.

The final paragraph of the paper notes that the paper gives no means of
determining in general which player has a winning strategy from which positions
in chess, and that, given such a method, chess would in some sense cease to be
a game.

As mentioned above, Kőnig’s 1927 paper [12] points out that Zermelo’s argu-
ment for the statement τ ≤ t is incomplete. Kőnig’s proof of this statement uses
the following statement, which had appeared in his 1926 paper [11] (as trans-
lated in [18] from [12]; see [6] for much more on the history of this statement): if
Ei (i ∈ N) are nonempty finite sets and R is a binary relation such that for each
i ∈ N and each x ∈ Ei+1 there is a y ∈ Ei such that (y, x) ∈ R, then there exists
a sequence 〈xi : i ∈ N〉 such that each xi ∈ Ei and (xi, xi+1) ∈ R for all i ∈ N
(where N denotes the set of natural numbers). This principle is now known as
Kőnig’s lemma, often rephrased as “every infinite finitely-branching tree has an
infinite branch.” Kőnig uses this principle to prove that if G is a game in which
each player has only finitely many available moves at each point, and one player
has a winning strategy in this game, then this player has a strategy guarantee-
ing a win within a fixed number of moves. Kőnig credits this application of his
lemma to a suggestion of von Neumann.

Before publishing his paper, Kőnig wrote to Zermelo, pointing out the gap
in Zermelo’s argument for τ ≤ t, and providing a correct proof. Zermelo then
replied with a correct proof of his own. Zermelo’s 1927b consists of two para-
graphs in the final section of Kőnig’s 1927 paper pertaining to Zermelo’s cor-
rected proof.

The first paragraph was apparently written by Kőnig, summarizing Zer-
melo’s arguement. It contains a proof that if White can force a win from a
given position within some fixed number of moves, then White has a winning
strategy that guarantees a win in fewer than t moves, where t is the number of
positions in the game where it is White’s turn to move (note that the definition
of t has changed; this t is smaller than the t from [24], as we are counting only
the number of moves that White makes). To show this, Zermelo lets mr, for
each positive integer r, be the number of such positions from which White can
force a win in at most r moves, but cannot force a win in fewer moves (though
Zermelo does not give a name for the set of such positions, let us call it Mr).
Since the corresponding sets of positions are disjoint, and since there are only
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finitely many possible positions in the game, mr is nonzero for only finitely
many values of r. Furthermore, if p is a position from which White can win
in at most r moves (for some r > 1) by first playing w1, then there must be a
response by Black such that the resulting position is in Mr−1, since from every
such position White can win in at most r − 1 many moves, but if he could win
in fewer moves from every such position, then White could win in fewer than r
moves from the position p. Zermelo concludes that the set of values r such that
mr is positive is an initial sequence of the set of positive integers, so if λ is the
largest integer r such that mr is positive, then mr ≥ 1 for all positive integers
r ≤ λ. Then m =

∑λ
r=1 mr is smaller than the number of positions in which

it is White’s turn to play (since, for instance, Black can force a win from some
such positions), so λ must be smaller than this version of t. This establishes
that if p is a position from which White can force a win in at most r moves
(for White), for some positive integer r, then r is less than the total number of
positions in which it is White’s turn to move.

In the second paragraph, Kőnig quotes Zermelo directly. Zermelo gives a
proof that if White has a strategy guaranteeing a win, then he has one guar-
anteeing a win in a fixed number of moves. This is shown by Kőnig using his
lemma, and Zermelo’s argument uses the same idea (and implicitly includes a
proof of the lemma). In brief, suppose that p is a position from which White
cannot force a win in a fixed number of moves. Then no matter how White
plays, there must be a move for Black such that White cannot force a win in a
fixed number of moves from the resulting position (if each resulting position p′

were in some Mr′ , then p would be in Mr+1 for r the supremum of these values
r′ – this uses the fact that each player has just finitely many possible available
moves at each point). This observation gives a strategy for Black to postpone
a loss forever, by always moving to ensure that the resulting position is not in
any set Mr, contradicting the assumption that White has a winning strategy.

Kalmár [8] extended Kőnig’s analysis to games where there may be infinitely
many possible moves at some points. In this paper he proved what is now known
as Zermelo’s Theorem for these games, the statement that in each position of
such a game, either one player or the other has a strategy guaranteeing a win,
or both players can force a draw. His proof uses a ranking of nodes in the
game tree by transfinite ordinals, which was to become an important method in
descriptive set theory (see [10]). Using this method, he was able to show that
if a player has a winning strategy in such a game, then he has one in which no
position is repeated, thus realizing Zermelo’s idea from his 1913 paper.

Aside from the work of Kőnig and Kalmár, Zermelo’s 1913 paper would
seem to have been forgotten for several decades after it was written. In the
interval between Zermelo’s paper and Kőnig’s, Emile Borel published several
notes on game theory (for example, [1, 2, 3]), none of which mentions Zermelo.
Von Neumann’s work in game theory began during this period, and though he
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was informed of Zermelo’s work by Kőnig,5 he does not cite it in his 1928 paper
[20]. Zermelo’s 1913 paper is not mentioned in von Neumann and Morgenstern’s
book [21], which is often cited as the birthplace of game theory. Many authors
credit the birth of game theory to some combination of Borel, von Neumann
and Morgenstern (for instance, [15, 23, 19, 22, 7, 17, 16], and among these only
[15, 23, 7] credit Borel). Aside from the work of Kőnig and Kalmár, the earliest
citation of Zermelo’s 1913 paper that we have been able to find is Kuhn’s paper
[13]. Kuhn credits Zermelo with proving that “a zero-sum two-person game
with perfect information always has a saddle-point in pure strategies.” As we
have seen, the argument that Zermelo gives for this fact in his 1913 paper is
incomplete. Although Zermelo’s focus was on other issues, it seems fair to say
that this fact is the most significant contribution of his paper.
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