
MARTIN’S MAXIMUM AND DEFINABILITY IN H(ℵ2)

PAUL B. LARSON

Abstract. In [6], we modified a coding device from [14] and the consistency

proof of Martin’s Maximum from [3] to show that from a supercompact limit of

supercompact cardinals one could force Martin’s Maximum to hold while the

Pmax axiom (∗) fails. Here we modify that argument to prove a stronger fact,

that Martin’s Maximum is consistent with the existence of a wellordering of

the reals definable in H(ℵ2) without parameters, from the same large cardinal

hypothesis. In doing so we give a much simpler proof of the original result.
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1. Introduction

The following maximal version of Martin’s Axiom was introduced by Foreman,

Magidor and Shelah in [3].

Definition 1.1. Martin’s Maximum (MM) is the statement that if P is a partial

order such that forcing with P preserves stationary subsets of ω1, and 〈Dα | α < ω1〉
is a collection of dense subsets of P, then there is a filter G ⊂ P meeting each Dα.

By convention, MM+ is MM with the further requirement that if τ is a P-name

for a stationary set, then {α < ω1 | ∃q ∈ G q°α ∈ τ} is stationary, and MM++ is

MM+ but with ℵ1 many names for stationary subsets of ω1. We let MM+ω denote

the version of MM+ with countably many names.

The Pmax axiom (∗) (Definition 5.1 of [14]) says that the Axiom of Determinacy

(AD) holds in the inner model L(R) and that L(P(ω1)) is a Pmax-generic extension
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of L(R) (the partial order Pmax is introduced in [14] and is not used in this paper,

though Lemmas 4.4-4.6 use some of the Pmax machinery). Woodin showed [14]

that MM++(c) (MM++(κ) is MM++ restricted to posets of cardinality κ or less)

and (∗) are independent over ZFC, assuming the consistency of a strong form of

determinacy (see Theorem 10.69 in [14]; that (∗) does not imply MM++(c) follows

from arguments in [7] but was known previously by Woodin). In [6], we used some

of the ideas from Woodin’s proof that MM++(c) does not imply (∗) to show that

MM+ω does not imply (∗). In this paper we modify the argument from [6] to

produce a model of MM+ω in which there is a wellordering of the reals definable in

H(ℵ2) without parameters. This answers a question asked privately by Todorcevic

shortly after the results of [6] were announced. Our interest in the question was

reawakened by recent work of Asperó ([1], for instance). We note that (∗) implies

that there is no wellordering of the reals definable in H(ℵ2) without parameters

(this follows immediately from the fact that the Pmax extension is a homogeneous

extension of a model of AD containing the reals), so (∗) fails in the model in this

paper also.

We will use a variant of the set of reals Xω1
(Code)(S, z) from [6], which is itself a

variant of a set of reals from [14] (see Definition 10.22 of [14]). We will call our

set of reals X2
(Code)(S). As with the other variants, under (∗) this set is equal to

P(ω) (we will not show this, though we will show that MM++ in conjunction with

the existence of a Woodin cardinal below a measurable also implies that this set

consists of all subsets of ω; modulo standard Pmax arguments, the proof in the

Pmax context is the same). Our forcing construction is an iterated forcing which

uses the construction from the consistency proof for MM from [3], adding forcings

to make the set X2
(Code)(S) code the parameter S. In the end S will be the only

suitable parameter coding itself via X2
(Code), and will thus be definable in H(ℵ2).

The parameter S is a partition of ω1 into ℵ1-many stationary sets, and there are

numerous ways to define a wellordering of P(ω1) in H(ℵ2) from such a parameter

under the assumption of MM (the axiom ψAC from [14] allows this, for instance).
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We note that a ladder system on ω1 (under PFA, [12]) and in fact any subset of ω1

not constructible from a real (MM + “there exists a measurable cardinal”, [9]) can

also be used as parameters defining a wellordering of the reals definable in H(ω2).

2. X2
(Code)

If x is a set of ordinals, we let ot(x) be the ordertype of x. The following definition

is due to Woodin [14].

Definition 2.1. Given T ⊂ ω1, T̃ is the set of β ∈ [ω1, ω2) such that there exist a

bijection f : ω1 → β and a club C ⊂ ω1 such that for all α ∈ C, ot(f [α]) ∈ T .

If T is a subset of ω1, then T̃ is the set of ordinals in the interval [ω1, ω2) which

are necessarily in the image of T by any embedding derived from forcing with the

nonstationary ideal on ω1 (which we denote by NSω1). It is a standard fact ([7], for

instance), and not too hard to show, that if A is a subset of ω1 added generically

by initial segments, then Ã = ∅, though this can be changed in further forcing

extensions.

We denote by Cκ
β the set of the ordinals less than β of cofinality κ, where κ is a

regular cardinal and β is an ordinal.

Definition 2.5 below is a variant of the one used in [6], which in turn is a variant

of one used in [14] to show that MM++(c) does not imply (∗). The real z from

the definition in [6] is always the empty real, so we drop it. We also add two more

conditions to the definition, making it harder for reals to enter X2
(Code)(S).

Given an infinite x ⊂ ω we let oe(x) denote the set

{j < ω | the (j + 3)rd element of x is even}

(here we mean that the 1st element of a set is its least element). The term j + 3 in

the definition ensures that for any pair n,m ∈ ω,

{oe(x) | x ∈ [ω]ω ∧ {n,m} ⊂ x} = P(ω)
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(if we replaced j + 3 with j + 1, {0, 1} ⊂ x would imply that 0 ∈ oe(x) and

1 6∈ oe(x), for infinite x ⊂ ω). We note the following fact about oe, which we leave

to the reader.

Lemma 2.2. If x and y are subsets of ω, x is infinite and oe(x) is infinite and

co-infinite, then there exists an infinite x′ ⊂ x such that oe(x′) = y.

Let t : ω → (2<ω \ {∅}) be the listing of the nonnull members of 2<ω that lists

shorter sequences before longer ones, and which lists sequences of the same length

in lexicographical order. We let C denote the set of x ⊂ ω such that for some

y ∈ 2ω, {t(i) : i ∈ x} = {y¹n : 0 < n < ω} (we say in this case that x codes y

via t, and we let t∗ be the function on C taking x ∈ C to the real coded by x via

t). Note that C is a Borel set, so membership in C is absolute between models of

set theory containing ω1. We note some additional facts about t and C, left to the

reader. The second part of the following lemma follows from the first.

Lemma 2.3. Let y0, y1 and z be distinct subsets of ω.

(1) If y0 and y1 are infinite and co-infinite, then

lim
n→∞

|t−1(y0¹n)− t−1(y1¹n)| = ∞;

(2) If a ⊂ z is nonempty and finite, oe(z) ∈ C and t∗(oe(z)) is infinite and

co-infinite, then oe(z \ a) 6∈ C.

We let li(x, α) denote the least Silver indiscernible for L[x] above α, when x is

a real whose sharp exists and α is an ordinal. If A is a set of reals, the A-uniform

indiscernibles are the ordinals which are indiscernibles for each member of A. We

say uniform indiscernibles when A is the set of all reals, and M -indiscernibles

for RM -indiscernibles when M is a model. By convention, u2 denotes the second

uniform indiscernible, which in our context, where the sharp of each real exists, is

equal to sup{li(x, ω1) : x ∈ R}.
For any ordinal γ, a cofinality function for γ is a continuous, increasing cofinal

function f : cof(γ) → γ. The following abuse of terminology merits it own name.
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Definition 2.4. If γ0 and γ1 are ordinals of cofinality ω1 and A0 ⊂ γ0 and A1 ⊂ γ1

are stationary in γ0 and γ1 respectively, then we say that A0 and A1 have abused

stationary intersection if there exist cofinality functions f0 for γ0 and f1 for γ1 such

that the set

{η < ω1 : f0(η) ∈ A0 and f1(η) ∈ A1}

is stationary.

The choice of f0 and f1 in Definition 2.4 is irrelevant (i.e., an equivalent notion

is obtained by replacing “there exist” with “for all” and removing “such that”).

The following definition is meant to be applied in the case where the sharp of

every real exists.

Definition 2.5. Suppose that S = 〈Sαi : (α, i) ∈ ω1×ω〉 is a collection of pairwise

disjoint stationary subsets of ω1. We associate to S two subsets of P(ω),

X2
(Code)(S) = ∪{Xγ : γ < ω2} and Y 2

(Code)(S) = ∪{Yγ : γ < ω2},

where 〈(κγ , Xγ , Yγ) : γ < ω2〉 is the sequence generated from S as follows.

(i) Y0 = {∅}, X0 = ∅, and κ0 = li(∅, ω1).

(ii) For all nonzero γ < ω2, κγ is the least Yγ-uniform indiscernible η such that

kα < η for all α < γ.

(iii) Suppose γ is not the successor of an ordinal of cofinality ω1. Then

Xγ = ∪{Xα : α < γ} and Yγ = ∪{Yα : α < γ}.

(iv) Suppose γ has cofinality ω1. For each α < ω1, let

bα = oe({i < ω | S̃αi ∩ κγ is stationary})

if this is defined, and ∅ otherwise. Then Yγ+1 = Yγ ∪ {bα : α < ω1}.
Furthermore, suppose the following hold.

a) For all α < ω1 and i < ω, S̃αi∩κγ and S̃α(i+1)∩κγ are not both stationary.

b) Each bα ∈ C.

c) li(b1, ω1) > κγ .
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d) The sequence 〈li(bα, ω1) : α < ω1〉 is strictly increasing.

e) For all i, i′ < ω, for all α, α′ < ω1, for all β ∈ Cω1
γ , if S̃αi ∩ κγ is station-

ary in κγ and S̃α′i′ ∩ κβ is stationary in κβ, then these sets have abused

stationary intersection.

Then Xγ+1 = Xγ ∪ {t∗(b0)}. Otherwise, Xγ+1 = Xγ .

When the set S is clear from context, we will simply refer to κγ , Xγ and Yγ

individually as needed, sometimes using κM
γ (for instance) for this set as computed

in a given model M . When S is not clear, we write κγ(S), etc. We will also refer

to 〈κγ : γ < ω2〉 as the κ-sequence of S, 〈Yγ : γ < ω2〉 as the Y -sequence, and

so on. The sequence 〈bα : α < ω1〉 will likewise be called the b-sequence at stage

γ or sometimes the S-coding at stage γ. We let STAT (S, γ) (for some γ ≤ ω2)

denote the collection of stationary sets of the form {δ < ω1 | f(δ) ∈ S̃αi}, for some

β ∈ Cω1
γ , α < ω1, i < ω and some cofinality function f for κβ .

Condition (ive) in Definition 2.5 ensures that if we shoot a club through any

stationary set of the form S̃αi ∩ κγ , or any union of such stationary sets, we don’t

don’t destroy the stationarity of any earlier S̃α′i′ ∩ κβ , and therefore don’t change

the b-sequence at any earlier stage. In practice, when we do shoot such a club,

STAT (S, γ) will contain all the stationary subsets of ω1 appearing in models from

proper initial segments of our iteration so far (see Lemmas 4.7 and 4.8).

Since the definition of the S-coding at a given stage is absolute between models

which agree about stationary subsets of ω1 (and whose ω2 is large enough), if

M ⊂ N are models of ZFC such that NSM
ω1

= NSN
ω1
∩ M , then X2

(Code)(S)M ⊂
X2

(Code)(S)N for any S ∈ M . Furthermore, if 〈Mα : α ≤ β〉 is an increasing

sequence of models of ZFC which agree about stationary subsets of ω1, and ω
Mβ

2 =

sup{ωMα
2 : α < β}, then X2

(Code)(S)Mβ =
⋃{X2

(Code)(S)Mα : α < β}.
We note two more useful facts about Definition 2.5. The first follows from

condition (ivc) and the fact that li(x, ω1) < ω2 for any real x, and the second

follows from conditions (ii) and (ivc).
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Lemma 2.6. Suppose that M ⊂ N are models of ZFC such that RM = RN and

NSM
ω1

= M∩NSN
ω1

, and let S ∈ M be a partition of ωM
1 into stationary sets indexed

by ωM
1 × ω. Then X2

(Code)(S)M = X2
(Code)(S)N .

Lemma 2.7. Let S be a partition of ω1 into stationary sets indexed by ω1 × ω.

Suppose that α < ω2 is such that sup{li(x, ω1) : x ∈ Yα} = u2. Then for all

β ∈ [α, ω2), Xβ = Xα.

3. Standards

Definition 3.1. Given a set X, c ⊂ Pℵ1(X) is closed unbounded (club) if there

is a function F : [X]<ω → X such that c is the set of countable subsets of X closed

under F . A set a ⊂ Pℵ1(X) is stationary if it intersects every club c ⊂ Pℵ1(X).

Definition 3.2. A partial order P is semi-proper if whenever p is a condition in

P , X ≺ H((2|P |)+) is countable and p, P ∈ X, there is a q ≤ p in P forcing that

the realization of every P -name in X for a countable ordinal is in X.

The following statement follows from MM and implies that every forcing which

preserves stationary subsets of ω1 is semi-proper [3].

Definition 3.3. The Weak Reflection Principle (WRP) is the statement that for

all cardinals λ ≥ ω2 and for all stationary Z ⊂ Pℵ1(λ), there exists a Y ∈ Pℵ2(λ)

containing ω1 such that Z ∩ Pℵ1(Y ) is stationary in Pℵ1(Y ).

Given a cardinal γ and a set X, Coll(γ, X) is the partial order consisting of

partial functions from γ to X with domain of cardinality less than γ, ordered by

inclusion. Given a cardinal γ and an ordinal η, Coll(γ, <η) is the partial order

consisting of functions p from γ× η to η with domain of cardinality less than γ and

the stipulation that p(α, β) ∈ β, ordered by inclusion.

We refer the reader to [5] for the definitions of the large cardinal concepts used

in this paper (measurable, Woodin, (λ-)supercompact). The following well-known

fact is due to Foreman, Magidor and Shelah and follows easily from the arguments

in [3].
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Lemma 3.4. Assume that η is a supercompact cardinal. Then WRP holds after

forcing with Coll(ω1, < η).

An ideal I on ω1 is saturated if the Boolean algebra P(ω1)/I has no antichains

of cardinality ℵ2. Such an I presaturated if whenever A ∈ I+ and Bi (i < ω) are

maximal antichains in P(A)/I there exists an A′ ⊂ A in I+ such that for each

i < ω, |{B ∈ Bi : B∩A′ ∈ I+}| = ℵ1. Presaturation is weaker than saturation, and

saturation of NSω1 follows from MM(c) [3] (indeed, from the restriction of MM(c)

to posets which do not add reals). Presaturation also implies that j(ω1) = ω2,

where j is any generic elementary embedding derived from forcing with P(ω1)/I.

We will use the two following facts, due to Shelah and Woodin, respectively.

Theorem 3.5. ([13]) If δ is a Woodin cardinal, there there exists a semi-proper

forcing of cardinality δ forcing that NSω1 is saturated.

Theorem 3.6. ([14]) If NSω1 is saturated and there exists a measurable cardinal,

then u2 = ω2.

As in the original consistency proof of Martin’s Maximum, we will use the fol-

lowing result of Laver [11].

Theorem 3.7. Let κ be a supercompact cardinal. Then there exists a function

L : κ → Vκ such that for every set X and every cardinal λ there exists a λ-

supercompact embedding j : V → M such that j(L)(κ) = X.

We will be using iterations of semi-proper forcing with Revised Countable Sup-

port [13]. The following theorem from [13] (which we have rewritten in our own

terminology) ensures that our forcing will be semi-proper.

Theorem 3.8. Suppose that 〈Pα, Q
∼ α : α < δ〉 is an RCS iteration, and that for

every β < δ, for arbitrarily large non-limit α < β + 1, Pβ+1/Pα is semi-proper,

and for every α < δ, the empty condition in Pα+n (for some n < ω) forces that

|Pα| = ℵ1. Then Pδ is semi-proper.
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We will be taking advantage of a degree of freedom offered by Theorem 3.8: when

β is a limit ordinal, the theorem does not require that Qβ preserve stationary subsets

of ω1 which are in the Pβ-extension but in no earlier Pα-extension. Our situation

is a special case. We will have WRP (and thus that partial orders preserving

stationary subsets of ω1 are semi-proper) in each nonlimit Pα-extension, so the

semi-properness of each Pβ+1 will follow from the fact that for each nonlimit α < β,

Pβ/Pα is semi-proper and Qβ preserves stationary subsets of ω1 from Pα.

4. Protection and Erasure

The first half of this section, Lemmas 4.1-4.6, deals with ways to put stationary

sets into STAT (S, ω2) without adding reals to X2
(Code)(S). The basic lemma for

doing this we call the Protection Lemma (Lemma 4.2 below). The proof of the

Protection Lemma is based on ideas which have become standard. The lemma

itself is a variation of Lemma 10.66 of [14]. For the arguments in Section 6 we will

need more information about the forcings introduced here (hence Lemma 4.6).

We first note an end-extension property which is the basis for these arguments.

Lemma 4.1. Suppose that 〈ργ : γ ≤ η〉 is a continuous increasing sequence of

cardinals such that η < ρ0 and ργ is a measurable cardinal for each nonlimit γ.

Let Sγ (γ ≤ η) be stationary subsets of ω1. Suppose that χ ≥ (2ρη )+ is a regular

cardinal, and let Y be a countable elementary substructure of H(χ) containing the

sequence 〈ργ : γ ≤ η〉. Let ζ be any ordinal in the interval [η, ρ0). Then there exists

a countable Y ′ ≺ H(χ) containing Y such that

• Y ′ ∩ ρ0 end-extends Y ∩ ρ0;

• Y ′ ∩ ζ = Y ∩ ζ;

• ot(Y ′ ∩ ργ) ∈ Sγ for each γ ∈ Y ∩ (η + 1).

Proof. By induction on η. When η is a successor ordinal, the induction step fol-

lows immediately from a standard end-extension property of measurable cardinals

(Lemma 1.1.21 of [8], say). Now suppose that η is a limit ordinal, and fix Y as

in the statement of the lemma. Let Z be a countable elementary submodel of
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H((2χ)+) with Y and 〈Sγ : γ ≤ η〉 as elements and Z ∩ ω1 ∈ Sη. Let 〈νi : i < ω〉
be an increasing cofinal sequence in Z ∩ η (with ν0 = 0) and let 〈αi : i < ω〉 be an

increasing cofinal sequence in Z ∩ ω1. Let Y0 ∈ Z satisfy the lemma with respect

to Y , ζ, 〈Sγ : γ ≤ 0〉 and 〈ργ : γ ≤ 0〉.
Successively choose Yi (0 < i < ω) in Z such that each Yi+1 satisfies the lemma

for Yi, ρνi (in the role of ζ), 〈Sγ : νi < γ ≤ νi+1〉 and 〈ργ : νi < γ ≤ νi+1〉 and

satisfies ot(Yi+1 ∩ ρνi+1) ≥ αi (which we can do by replacing Sνi+1 with Sνi+1 \αi,

for instance). Then since the sets Yi ∩ ρνi
end-extend one another, the union of

these sets has ordertype Z ∩ω1, so the union of {Yi : i < ω} satisfies the lemma for

Y , 〈Sγ : γ ≤ η〉, and 〈ργ : γ ≤ η〉. ¤

Lemma 4.2. (Protection Lemma) Suppose that S,T are collections of stationary

subsets of ω1, and that the members of T are pairwise disjoint. Let π be a function

from T to S, and let 〈ργ : γ ≤ ω1〉 be a continuous, increasing sequence of cardinals

such that ργ is a measurable cardinal for each nonlimit γ.

Then there is a (ω,∞)-distributive semi-proper forcing in whose extension, for

each T ∈ T and each γ ∈ T , ργ ∈ S̃ if S = π(T ).

Proof. Let P be the set of countable, continuous, ⊂-increasing sequences 〈xν : ν ≤
µ〉 ⊂ [ρω1 ]

ℵ0 such that for each ν ≤ µ, and each γ ∈ xν ∩ω1, if there exists a T ∈ T
with γ ∈ T , then ot(xν ∩ργ) ∈ π(T ). Forcing with this partial order has the desired

effect by standard arguments, almost straight from the definition of S̃.

Lemma 4.1 gives that P is semi-proper and (ω,∞)-distributive, as follows. Fix

a condition p in a countable elementary submodel Y of H((2ρω1 )+) having P and

〈ργ : γ ≤ ω1〉 as members. By Lemma 4.1, there exists a countable Y ′ ≺ H((2ρω1 )+)

containing Y with Y ′ ∩ ω1 = Y ∩ ω1 and, for each γ ∈ Y ′ ∩ ω1, ot(Y ′ ∩ ργ) ∈ π(T )

whenever T ∈ T and γ ∈ T . Then if p̄ is any descending ω-sequence of conditions

in P ∩ Y ′ extending p, such that p̄ meets every dense subset of P in Y ′, then

(
⋃

p̄)_〈Y ′ ∩ ρω1〉 is a (Y, P )-semi-generic condition extending p. ¤
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Suppose that 〈Eα : α < 2ω1〉 is a listing of NS+
ω1

and that g is a V -generic

filter for Coll(ω1, 2ω1) (note that this forcing makes CH hold). Then the sets

{γ ∈ Eα : g(γ) = α} (α < (2ω1)V ) are pairwise disjoint and stationary. If κ

is a cardinal greater than 2ℵ1 , then, in the Coll(ω1, <κ)-extension there exists a

partition T of ω1 into stationary sets such that every stationary subset of the

ground model contains a member of T modulo NSω1 . In such an extension, given

an uncountable collection S = 〈Sαi : (α, i) ∈ ω1 × ω〉 of stationary subsets of ω1, a

listing 〈xα : α < ω1〉 of P(ω) and reals 〈yα : α < ω1〉 such that each oe(yα) = xα,

we let PF(S) be the forcing as in the Protection Lemma, with T as a partition as

in the previous sentence, π : T → S any injection whose range is the set of Sαi such

that i ∈ yα, and 〈ργ : γ ≤ ω1〉 the closure of the first ω1 many measurable cardinals.

Since neither of Coll(ω1, <κ) and PF(S) add reals or destroy stationary subsets of

ω1, they do not add reals to X2
(Code)(S) or change X2

(Code)(S) or Y 2
(Code)(S) below

ωV
2 . Furthermore, in this extension the ordinal κρω1

(S) is equal to ρω1 , each xα is

in Y 2
(Code)(S) and, for every stationary E ⊂ ω1 in the ground model, there exists

(α, i) ∈ ω1 × ω such that, for any cofinality function f for ρω1 , the set of α ∈ ω1

such that f(α) ∈ S̃αi is a stationary set contained modulo NSω1 in E.

Our forcing iterations will use the partial order Coll(ω1, <µ) ∗ PF(S) at every

successor step, where µ is the least supercompact cardinal. This and condition

(ive) of Definition 2.5 will allow us to undo accidentally coded reals by destroying

the stationarity of certain subsets of ω1 while preserving the stationarity of subsets

of ω1 added by initial segments of the iteration. It will also help us put reals into

X2
(Code).

The Protection Lemma allows us to code stationary subsets of ω1 into sets of

the form S̃αi ∩ κγ . In Section 5, we will need to code stationary sets of ordertype

ω2 into sets of this form. The following modified form of the Protection Lemma

does this.

Lemma 4.3. Suppose that κ is a strongly inaccessible cardinal and 〈ρα : α ≤ κ〉
is a continuous increasing sequence of cardinals with supremum κ such that ρα is
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measurable for each nonlimit α. Let S be a collection of stationary subsets of ω1.

Then there is a semi-proper (ω,∞)-distributive partial order forcing that ρκ = ω2

and that S̃ ∩ Cω
ρκ

is stationary for each S in S.

Proof. This is largely the same as the proof of the Protection Lemma. Partition

Cω
κ into stationary sets ES (S ∈ S). A condition in our partial order P consists

of a domain F - a countable subset of κ \ ρ0 - and, for each η ∈ F a countable,

continuous, ⊂-increasing sequence 〈xη
ν : ν ≤ µ〉 ⊂ [η]ℵ0 such that for each ν ≤ µ,

and each γ ∈ xη
ν ∩ Cω

κ with ργ < η, ot(xη
ν ∩ ργ) ∈ S, where S ∈ S is such that

γ ∈ ES . Stronger conditions in this forcing extend the domain and extend the

sequences for each member of the domain of the weaker condition. Forcing with

this partial order has the desired effect.

Lemma 4.1 gives that P is semi-proper and (ω,∞)-distributive. Fix a condition

p in a countable elementary submodel Y of H((2κ)+) having P , S and {ρα : α < κ}
as members. By Lemma 4.1, there exists a countable Y ′ ≺ H((2κ)+) containing

Y with Y ′ ∩ ω1 = Y ∩ ω1 and for each γ ∈ Y ′ ∩ κ, ot(Y ′ ∩ ργ) ∈ S if S ∈ S and

γ ∈ ES . Let 〈pi : i < ω〉 be a descending sequence of conditions in P ∩ Y ′ (with

p0 = p) meeting every dense subset of P in Y ′. Then the condition consisting of

domain Y ′ ∩ κ and, for each η ∈ Y ′ ∩ κ, the sequence p′(η)_〈Y ′ ∩ η〉 (where p′(η)

is the union of the sequences for η in the pi’s) is a (Y, P )-semi-generic condition

extending p. ¤

Lemma 4.5 below is relatively standard. We will not apply this lemma directly,

but we will use the construction in the proof of the lemma to derive an extra

property of forcings of the type used in the Protection Lemma (in Lemma 4.6).

Similar arguments appear in [6, 7, 14] (where one can also find the definitions of

iteration and iterable). First we will give a quick proof of another standard fact,

which is the key to the proof of Lemma 4.5.

Lemma 4.4. Suppose that M is a countable transitive model of ZFC in which NSω1

is presaturated and u2 = ω2. Let 〈(Mα, Iα), Gβ : β < γ, α ≤ γ〉 and jαβ : Mα → Mβ
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(α ≤ β ≤ γ) make up an iteration of (M,NSM
ω1

). Then j0γ [ωM
2 ] is cofinal in ω

Mγ

2

and the critical sequence of j0,γ is the set of all the M -uniform indiscernibles ξ in

the interval [ωM
1 , ω

Mγ

1 ).

Proof. This is easily proved by induction on γ, using the fact that for each α < γ,

j(ωMα
2 ) is the least M -uniform indiscernible above ωMα

2 . This in turn follows from

the fact that no f : ωMα
1 → ωMα

2 could represent the least M -uniform indiscernible

above ωMα
2 , since the range of each such function is bounded by the least indis-

cernible above ωMα
1 of some real in M . ¤

Lemma 4.5. Suppose that NSω1 is presaturated, u2 = ω2 and β is an ordinal.

Suppose that ξ̄ = 〈ξα : α ≤ β〉 is an increasing sequence of uniform indiscernibles,

and S̄ = 〈Sα : α ≤ β〉 is a sequence of stationary subsets of ω1. Suppose that there

exists a measurable cardinal greater than ξβ. Then the set of countable x ⊂ ξβ such

that ot(x ∩ ξα) ∈ Sα for all α ∈ (β + 1) ∩ x is stationary.

Proof. Let κ > ξβ be measurable and let θ > 2κ be regular. Fix a function

F : [ξβ ]<ω → ξβ . Let T be the tree of attempts to build a countable x ⊂ ξβ closed

under F and an increasing sequence of ordinals 〈δα : α ∈ (β + 1) ∩ x〉 such that

each δα ∈ Sα and such that ot(x∩ ξα) = δα for all α ≤ β (so T is a tree of height ω

using some fixed set of bijections between ω and each countable ordinal). Let X be

a countable elementary submodel of H(θ) with κ, F , ξ̄ and S̄ as elements. Let M

be the transitive collapse of X, and for each α ∈ (β + 1) ∩X, let ξ∗α and S∗α be the

images of ξα and Sα respectively under this collapse. Let T ∗ be the image of T . By

standard arguments ([14], see also [10, 2]) using the presence of the measurable car-

dinal κ, (M, NSM
ω1

) is iterable. Furthermore, each ξ∗α is an M -uniform indiscernible,

and every M -uniform indiscernible is on the critical sequence of every sufficiently

long iteration of (M,NSM
ω1

), by Lemma 4.4. Let j : (M, NSM
ω1

) → (N,NSN
ω1

) be an

iteration of (M, NSM
ω1

) such that for each α ∈ (β +1)∩X, ξ∗α ∈ j(S∗α). Then j(T ∗)

has an infinite branch corresponding to the sequence 〈ξ∗α : α ∈ (β + 1) ∩ X〉 and

the set j[ξ∗β ]. This set is not necessarily in N , but since N is wellfounded, there
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must be a branch through j(T ∗) in N , which by elementarity means that there is

a branch through T . ¤

Putting together the proofs of Lemma 4.5 and the Protection Lemma we have

Lemma 4.6 below. The proof uses a forcing to add a partition of ω1 indexed by ω1×ω

by initial segments. Conditions in this forcing are partitions 〈cαi : (α, i) ∈ ζ × ω〉
of a countable ordinal χ, for some countable ordinal ζ. We say that

〈cαi : (α, i) ∈ ζ × ω〉 ≤ 〈dαi : (α, i) ∈ ξ × ω〉

if ζ ≥ ξ and cαi ∩ θ = dαi for each (α, i) ∈ ξ × ω, where 〈dαi : (α, i) ∈ ξ × ω〉 is a

partition of θ. The forcing P0 in the statement of Lemma 4.6 is the product of this

forcing with itself.

Lemma 4.6. Suppose that NSω1 is presaturated and u2 = ω2, and let

〈κα : α ≤ ω1 · 2〉

be a continuous increasing sequence of cardinals such that κα is a measurable car-

dinal for each nonlimit α. Let S = 〈Sαi : (α, i) ∈ ω1 × ω〉 and T = 〈Tαi : (α, i) ∈
ω1 × ω〉 be partitions of ω1 into stationary sets.

Let P0 be the forcing which adds partitions of ω1 〈Aαi : (α, i) ∈ ω1 × ω〉 and

〈Bαi : (α, i) ∈ ω1 × ω〉 by initial segments.

Let P1 be the forcing in the P0-extension consisting of all countable continuous,

increasing sequences 〈xγ : γ ≤ δ〉 ⊂ [κω1·2]
ℵ0 such that for each γ ≤ δ, each

η ∈ xγ ∩ ω1, each α < ω1 and each i < ω, ot(xγ ∩ κη) ∈ Tαi if η ∈ Aαi and

ot(xγ ∩ κω1+1+η) ∈ Sαi if η ∈ Bαi (ordered by extension).

Then P0 ∗P1 is (ω,∞)-distributive, preserves stationary subsets of ω1 and forces

that for every V -indiscernible ξ not in {ω1} ∪ {κα : α ≤ 2 · ω1}, every stationary

K ⊂ ω1 in the ground model, all α, β < ω1 and all i, j < ω, the set of countable

x ⊂ κω1·2 such that

x ∩ ω1 ∈ Aαi ∩Bβj and ot(x ∩ ξ) 6∈ K
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is stationary.

Proof. Let λ be a regular cardinal greater than 2κω1·2 . Given a condition (ā, b̄) in

P0, say that a set X is (ā, b̄)-good if it is a countable elementary submodel of H(λ)

with (ā, b̄) as an element and there exist (X, P0)-generic

(〈aαi : (α, i) ∈ (X ∩ ω1)× ω〉, 〈bαi : (α, i) ∈ (X ∩ ω1)× ω〉)

extending (ā, b̄) such that for each η ∈ X ∩ ω1, each α < ω1 and each i < ω,

ot(X ∩ κη) ∈ Tαi if η ∈ aαi and ot(X ∩ κω1+1+η) ∈ Sαi if η ∈ bαi.

Let E and K be stationary subsets of ω1. Fix a V -indiscernible ξ not in the set

{ω1}∪ {κα : α ≤ 2 ·ω1}, countable ordinals α, β and integers i, j < ω. It suffices to

show that for every condition (ā, b̄) ∈ P0 the following set is stationary: the set of

(ā, b̄)-good X such that

X ∩ ω1 ∈ aαi ∩ bβj ∩ E and ot(X ∩ ξ) 6∈ K,

for some (〈aγk : (γ, k) ∈ (X ∩ ω1) × ω〉, 〈bγk : (γ, k) ∈ (X ∩ ω1) × ω〉) extending

(ā, b̄) and witnessing that X is (ā, b̄)-good.

To see that this set is stationary, fix a function F : [H(λ)]<ω → H(λ). Let T be

the tree of attempts to build an (ā, b̄)-good X closed under F and a witness

(〈aγk : (γ, k) ∈ (X ∩ ω1)× ω〉, 〈bγk : (γ, k) ∈ (X ∩ ω1)× ω〉)

extending (ā, b̄) such that X ∩ ω1 ∈ aαi ∩ bβj ∩ E and ot(X ∩ ξ) 6∈ K.

Let θ > 2λ be regular and let Y ≺ H(θ) be countable with λ, P0, (ā, b̄), S, U , α,

β, E, K and F in Y . Let (〈aγk : (γ, k) ∈ (Y ∩ω1)×ω〉, 〈bγk : (γ, k) ∈ (Y ∩ω1)×ω〉)
be a (Y, P0)-generic condition in P0 extending (ā, b̄), with Y ∩ ω1 ∈ aαi ∩ bβj .

Let M be the transitive collapse of Y , and let h : Y → M be the collapsing

function. As in the proof of Lemma 4.5, (M, NSM
ω1

) is iterable, and every M -

uniform indiscernible is on the critical sequence of every sufficiently long iteration

of (M, NSω1).

For each η ∈ Y ∩ω1, h(κη) and h(κω1+1+η) are both M -indiscernibles, as is h(ξ).

Let j : (M, NSM
ω1

) → (N, NSN
ω1

) be an iteration of (M, NSM
ω1

) such that
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• h(ω1) ∈ j(h(E));

• for each δ, η ∈ ω1 ∩ Y and each i < ω, h(κη) ∈ j(h(Tδi)) if η ∈ aδi and

h(κω1+1+η) ∈ j(h(Sδi)) if η ∈ bδi;

• h(ξ) 6∈ j(h(K)).

Then j(h(T )) has an infinite branch corresponding to (〈aγk : (γ, k) ∈ (Y ∩ω1)×
ω〉, 〈bγk : (γ, k) ∈ (Y ∩ ω1) × ω〉) and j[h[Y ∩ Vλ]]. This branch is not necessarily

in N , but since N is wellfounded, there must be a branch through j(h(T )) in N ,

which by elementarity means that there is a branch through T . ¤

The second half of this section shows how we can undo codings (into X2
(Code)(S))

arising at limit stages or imposed by the partial orders given by the Laver function.

The Protection Lemma is used as preparation for the Erasure Lemma below to

ensure that we can undo these codings while preserving stationary subsets of ω1

from initial stages of the iteration.

Let U = 〈Uαi : (α, i) ∈ ω1×ω〉 be a collection of stationary, costationary subsets

of ω1, and fix κ ∈ Cω1
ω2

, B ⊂ ω1×ω and a cofinality function f for κ. The Recoding

Forcing REC(U , B, f) is the forcing to shoot a club through

ω1 \ 5{γ < ω1 | ∃(α, i) ∈ ω1 × ω f(γ) ∈ Ũαi ∧ (α, i) ∈ B}

by initial segments (with a bijection from ω1×ω to ω1 as a suppressed parameter).

Since S̃0 ∩ S̃1 is empty whenever S0 and S1 are disjoint subsets of ω1, this forcing

preserves the stationarity of any subset of ω1 having stationary intersection with

any set of the form {γ < ω1 | f(γ) ∈ Ũαi} for some (α, i) 6∈ B.

Lemma 4.7. (Erasure Lemma) Suppose that S = 〈Sαi : (α, i) ∈ ω1 × ω〉 is a

collection of pairwise disjoint stationary subsets of ω1. Fix ζ < ω2, and let Ai

(i < ω) be stationary subsets of ω1. Let A be the union of {Ai : i < ω} and

STAT (S, ζ).

Then there is a forcing R preserving the stationarity of each member of A and

forcing that X2
(Code)(S) =

⋃{Xβ : β < ζ}V .
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Proof. Let γ ≥ ζ be least such that Xγ+1 6=
⋃

β<ζ XV
β (if there is no such γ we are

done). The partial order R consists of two steps, the first of which is Coll(ω1,R),

which adds a listing 〈xα : α < ω1〉 of all the reals of V . For each α < ω1, let yα

be the set of i < ω such that S̃αi ∩ κγ is stationary. Let f be a cofinality function

for κγ and let δ ∈ [2, ω1) be such that for each i < ω, if there exists (ξ, j) ∈ ω1 × ω

such that {ν ∈ Ai | f(ν) ∈ S̃ξj} is stationary, then there exists such a (ξ, j) with

ξ < δ.

By condition (ivb) of Definition 2.5, each oe(yα) is infinite and co-infinite. By

Lemma 2.2, then, for each α < ω1 there exists an infinite y′α ⊂ yδ+1+α such that

oe(y′α) = xα. By condition (iva), no yα contains a consecutive pair of integers, so

no y′α does, either.

The second step of R is REC(S, B, f), where

B = ({δ} × ω) ∪ {(δ + 1 + α, i) ∈ ω1 × ω | α < ω1 ∧ i ∈ yδ+1+α \ y′α}.

Since the real b1 at stage γ is nonempty, there exists a k < ω such that S̃1k∩κγ is

stationary, and by condition (ive) of Definition 2.5, S̃1k ∩ κγ has abused stationary

intersection with each member of STAT (S, γ), which contains STAT (S, ζ). Fur-

thermore, S̃1k ∩ κγ is disjoint from each S̃αi ∩ κγ , (α, i) ∈ B, which means that

REC(S, B, f) preserves the stationarity of each member of STAT (S, ζ). Lastly, the

choice of δ means that the stationarity of each Ai is preserved.

This forcing also makes bδ = ∅ at stage γ, which since li(b1, ω1) > li(∅, ω1) means

that Xγ+1 =
⋃

β<γ Xβ in the R-extension, by condition (ivd) of Definition 2.5. It

also makes bδ+1+α = xα at stage γ, for each α < ω1. Furthermore, R does not add

reals, so the reals of the R-extension are contained in the Yγ+1 of the R-extension,

which by Lemma 2.7 means that no reals enter X2
(Code)(S) at any stage after γ,

either. ¤

There are many natural ways to increase the collection of stationary sets pre-

served in the Erasure Lemma, which can be carried directly over to stronger versions

of MM+ω in the main theorem. We cannot, however, preserve the stationarity of
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all the members of any given set of cardinality ℵ1, however (for instance, all the

stationary sets of the form S̃αi ∩ κγ).

Let S = 〈Sαi : (α, i) ∈ ω1 × ω〉 be a collection of pairwise disjoint stationary

subsets of ω1. Suppose that M [G] is a forcing extension of a model M by an

iterated forcing P = 〈Pα, Q
∼ α : α < η〉 of limit length. For each α < η, let Gα be

the restriction of G to Pα. We say that M [G] is (P,S)-safe if for each stationary,

costationary set T ⊂ ω1 appearing in some M [Gα] (α < η), there exists a T ′ ∈
STAT (S, ω2)M [G] such that T ′ \ T ∈ NS

M [G]
ω1 .

Since each successor step of our iterations has the form Coll(ω1, <µ) ∗ PF(S),

the extensions by each initial segment of our iterations of limit length will be safe.

The notion of safety is applied in the following corollary of Lemma 4.7, which shows

that we can erase any accidental coding at limit stages of our iteration, even after

an additional semi-proper forcing which may affect the coding.

Corollary 4.8. Suppose that S = 〈Sαi : (α, i) ∈ ω1 × ω〉 is a collection of pairwise

disjoint stationary subsets of ω1. Suppose that M [G] is (P,S)-safe for some iterated

forcing P = 〈Pα, Q
∼ α : α < η〉 in M of limit length. Let Q be a forcing in M [G]

preserving stationary subsets of ω1, and let H ⊂ Q be M [G]-generic. Let ζ be an

ordinal in the interval [sup{ωM [Gα]
2 : α < η}, ωM [G][H]

2 ), where for each α < η, Gα

is the restriction of G to Pα.

Then in M [G][H] there is a forcing R preserving stationary subsets of ω1 from

the models of the form M [Gα], α < η, such that if I is M [G][H]-generic for R,

then X2
(Code)(S)M [G][H][I] =

⋃
α<ζ X

M [G][H]
α . Furthermore, R can be chosen so that

the members of any fixed countable set of stationary subsets of ω1 in M [G][H] are

stationary in M [G][H][I].

5. Coding reals

In this section we show that it is possible to force reals into X2
(Code)(S) while

preserving stationary subsets of ω1.
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Lemma 5.1. Suppose that there exists a Woodin cardinal below a measurable car-

dinal, and let S be a collection of pairwise disjoint stationary subsets of ω1 indexed

by ω1×ω. Let z be a subset of ω. Then there is a partial order preserving stationary

subsets of ω1 from V such that if V [G] is a generic extension of V by this partial

order, then X2
(Code)(S)V [G] = X2

(Code)(S)V ∪ {z}.

Proof. Let S = 〈Sαi : (α, i) ∈ ω1×ω〉. First force with Coll(ω1, 2ω1)∗PF(S). Then

force as in Lemma 4.3, making S̃αi ∩ Cω
ω2

stationary for each (α, i) ∈ ω1 × ω. Call

this extension V ∗, and let ρ denote ωV ∗
2 . Force now with Coll(ω1, ρ), and note that

each S̃αi∩Cω
ρ now has abused stationary intersection with each stationary subset of

ω1 in V ∗ (this will ensure that item (ive) of Definition 2.5 is satisfied at stage ρ after

the following forcing, and will also ensure that the forcing REC(S, B, f) below does

not alter X2
(Code)(S) or Y 2

(Code)(S) below ρ). None of these partial orders adds reals,

and so X2
(Code)(S) remains the same. Furthermore, all reals are in

⋃{Yγ : γ < ρ}
in this extension.

Now use the Woodin cardinal and Shelah’s semi-proper forcing to make NSω1

saturated. Since there is a measurable cardinal in this extension, u2 > ρ there (any

forcing preserving stationary subsets of ω1 and making u2 > ρ would suffice here).

Fix in this extension a sequence of reals 〈cα : α < ω1〉 such that t∗(oe(c0)) = z, no

cα contains a consecutive pair of elements of ω, each oe(cα) ∈ C,

li(oe(c1), ω1) > max{li(oe(c0), ω1), ρ}

and 〈li(oe(cα), ω1) : α < ω1〉 is increasing. Now force with REC(S, B, f) (as defined

before Lemma 4.7), where B = {(α, i) ∈ ω1×ω | i 6∈ cα}. Since ρ is the ρth uniform

indiscernible of V , κρ = ρ in this extension, and it is straightforward to check that

in this extension z enters X2
(Code)(S) at stage ρ.

Finally, we can force as in the Erasure Lemma to ensure that no reals enter

X2
(Code)(S) after stage ρ. Since the first step of our forcing was Coll(ω, 2ω1)∗PF(S),

the forcing from the Erasure Lemma preserves the stationarity of each stationary

subset of ω1 from V . ¤
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Corollary 5.2. Suppose that MM++ holds and that there exists a Woodin cardinal

below a measurable cardinal. Let S be a collection of pairwise disjoint subsets of ω1

indexed by ω1 × ω. Then X2
(Code)(S) = P(ω).

The Protection and Erasure lemmas, plus Corollary 5.2, give a much simpler

proof of the main result from [6] (modulo the fact that the conclusion of Corol-

lary 5.2 follows from (∗), which follows from Lemma 5.1 and standard Pmax ar-

guments). The argument can be easily modified to produce models of MM+ω in

which X2
(Code)(S) is any desired set of reals. In the proof of our main theorem, we

let X2
(Code)(S) be a set of reals coding S.

Theorem 5.3. Suppose that λ is a supercompact limit of supercompact cardinals.

Then there is a semi-proper partial order of cardinality λ forcing that Martin’s

Maximum+ω holds and forcing that there exists a partition S of ω1 into stationary

sets (indexed by ω1 × ω) such that X2
(Code)(S) = ∅. Furthermore, in this extension

MM++ holds for all partial orders that do not add reals to X2
(Code)(S).

Proof. Force to add a partition S = 〈Sαi : α < ω1, i < ω〉 of ω1 by initial segments.

Then each member of S is stationary and each S̃αi = ∅, so X2
(Code)(S) = ∅. Let

L : λ → Vλ be as in Lemma 3.7.

Let P̄ = 〈Pα, Q
∼ α : α < λ〉 be a semi-proper forcing iteration satisfying the

following conditions, where Gα denotes the restriction of the generic filter to the

first α stages of the iteration.

• Q0 is the trivial forcing and each forcing Qα+1 has the form Coll(ω1, <µ) ∗
PF(S), where µ is the least supercompact cardinal (these forcings are

(ω,∞)-distributive and preserve stationary subsets of ω1, so they do not

add reals to X2
(Code)(S)).

• If α is a limit ordinal and L(α) is a pair (τ, σ), where τ is a Pα-name for a

semi-proper forcing and σ is a Pα ∗ τ -name for a countable collection A of

stationary subsets of ω1, then the first step of Qα is τGα . If X2
(Code)(S) = ∅

after forcing with τGα , then Qα is just this forcing. Otherwise, Qα is τGα
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followed by a forcing as in the Erasure Lemma, preserving the stationarity

of each member ofA and each stationary subset of ω1 in each V [Gβ ] (β < α)

while making X2
(Code)(S)V [Gα+1] = ∅.

• If α is a limit ordinal and the previous case does not apply, and X2
(Code)(S)

is not empty in V [Gα], then Qα is a forcing as in the Erasure Lemma,

preserving the stationarity of each stationary subset of ω1 in each V [Gβ ]

(β < α) while making X2
(Code)(S)V [Gα+1] = ∅.

Then in the P̄ -extension, Martin’s Maximum+ω holds as in [3] and X2
(Code)(S) =

∅. Furthermore, MM++ holds for all partial orders that do not add a real to

X2
(Code)(S). ¤

We note the following standard (except for the last, which follows from the

argument above and the consistency proof of MM from [3]), nonoptimal facts [3,

11, 4], where for any cardinal γ, iω(γ) denotes the supremum of 2γ , 22γ

, 222γ

, etc.

• If λ is a supercompact cardinal, then stationarily many cardinals κ below

κ are i+
ω (κ)-supercompact.

• If κ is i+
ω (κ)-supercompact, then there is a semi-proper forcing of cardinal-

ity κ forcing MM++(2c).

• If κ is i+
ω (κ)-supercompact and a limit of supercompact cardinals, and S

is a partition of ω1 into stationary sets indexed by ω1 × ω, then there is a

semi-proper partial order of cardinality κ not adding reals to X2
(Code)(S)

and forcing MM++(2c) for all partial orders not adding reals to X2
(Code)(S).

Mixing in forcings of the form Coll(ω1, <µ) ∗ PF(U) for supercompact cardinals

µ below κ and all partitions U of ω1 into stationary sets indexed by ω1 × ω (again,

these forcings don’t add reals to X2
(Code)(S)) we have the following.

Theorem 5.4. Let S be a partition of ω1 into stationary sets, indexed by ω1 × ω.

Suppose that κ is a i+
ω (κ)-supercompact cardinal and a limit of supercompact car-

dinals. Then there is a semi-proper partial order of cardinality κ that does not add

reals to X2
(Code)(S) and forces that Martin’s Maximum+ω(2c) holds and MM++(2c)



22 PAUL B. LARSON

holds for all partial orders that do not add reals to X2
(Code)(S). Furthermore, this

forcing forces for all partitions U of ω1 indexed by ω1 × ω that the following state-

ments hold.

• Y 2
(Code)(U) = P(ω);

• every stationary subset of ω1 contains a member of STAT (U , ω2) modulo

NSω1 .

6. Distinguishing partitions

Our remaining goal is to show that by modifying the iteration in Theorem 5.3,

we can make some partition S of ω1 into stationary sets have a property (definable

in H(ℵ2)) not shared by any other partition. This plus the fact that Martin’s

Maximum holds in this extension will imply that there is a wellordering of P(ω1)

in this extension definable in H(ℵ2) without parameters. We will use U to denote

partitions that we wish to distinguish from S. Lemma 6.1 gives conditions under

which any given real can be forced into X2
(Code)(U), presuming that u2 is greater

than the κ∗ of the lemma, and that the sets F̃ ∩ κ∗ (F ∈ F) in the lemma have

abused stationary intersection with the sets required in item (ive) of Definition 2.5.

Lemma 6.1. Suppose that U = 〈Uαi : (α, i) ∈ ω1 × ω〉 is a partition of ω1 into

stationary sets. Suppose that κ∗ is a member of the κ-sequence of U of cofinality ω1,

and let f be a cofinality function for κ∗. Suppose that dα (α < ω1) are subsets of

ω. Suppose that F is a collection of pairwise disjoint stationary subsets of ω1 such

that for each member F of F , F is contained in some Uαi and F̃ ∩κ∗ is stationary.

Suppose that for each α < ω1, Uαi contains a member of F for infinitely many even

integers i and for infinitely many odd integers i.

Suppose that F0 and F1 are elements of F such that, letting (α0, i0) and (α1, i1)

be the unique members of ω1×ω such that F0 ⊂ Uα0i0 and F1 ⊂ Uα1i1 , at least one

of the following holds:

• α0 6= α1,

• |i0 − i1| 6= 1.
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Then there is an uncountable F ′ ⊂ F containing {F0, F1} such that the partial

order to shoot a club through 5{{γ < ω1 | f(γ) ∈ F̃} : F ∈ F ′} (under any fixed

enumeration of F ′) forces that for each α < ω1,

{i < ω|Ũαi ∩ κ∗ is stationary}

contains no consecutive pair of elements of ω, and

oe({i < ω|Ũαi ∩ κ∗ is stationary}) = dα.

Furthermore, this forcing is (ω,∞)-distributive, preserves stationarity of any

subset of ω1 having abused stationary intersection with any of the sets F̃ ∩κ∗ (F ∈
F ′) and forces that Ẽ ∩ κ∗ is nonstationary for any E disjoint from every member

of F .

Lemma 6.2 below presents a preparation forcing which in the right circumstances

allows one to force a real into X2
(Code)(U) via Lemma 6.1 without adding a real to

X2
(Code)(S), for suitable U and S.

Lemma 6.2. Suppose that there exists a cardinal κ below a Woodin cardinal below a

measurable cardinal such that κ is i+
ω (κ)-supercompact and a limit of supercompact

cardinals. Let S and U be partitions of ω1 into stationary sets, indexed by ω1 × ω.

Then there exists a partial order P preserving stationary subsets of ω1 such that,

letting κ∗ be the supremum of the first ω1 many measurable cardinals above κ and

letting F be the collection of stationary sets of the form Sαi ∩ Uβj,

• P forces each of the following statements:

– for every F ∈ F , F̃ ∩ κ∗ has abused stationary intersection with every

member of STAT (S, κ∗) ∪ STAT (U , κ∗);

– every stationary subset of ω1 in the ground model contains modulo

NSω1 a member of STAT (S, κ∗) and a member of STAT (U , κ∗);

– Yκ∗(S) ∩ Yκ∗(U) contains all the reals of the ground model;

– u2 > κ∗;

• P adds no reals to X2
(Code)(S);
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• if Q̇ is a P -name for a partial order which shoots a club through a set of

the form 5{{γ < ω1 | f(γ) ∈ F̃} : F ∈ F ′} for some uncountable F ′ ⊂ F
and some cofinality function f for κ∗, and this forcing does not add a real

to X2
(Code)(S) at stage κ∗, then there is a P ∗ Q̇-name Ṙ for a partial

order preserving the stationarity of the members of STAT (U , κ∗ + 1) and

STAT (S, κ∗) such that X2
(Code)(S) in the P ∗ Q̇ ∗ Ṙ-extension is the same

as X2
(Code)(S) in the ground model.

Proof. The partial order P consists of three steps. First force as in Lemma 5.4 with

a partial order of cardinality κ (while preserving stationary subsets of ω1) to make

MM++(2c) hold for all forcings not adding reals to X2
(Code)(S), without adding any

reals to X2
(Code)(S). Call this extension V [G]. In V [G], NSω1 is saturated (since

the antichain-sealing forcing adds no reals, see Lemma 2.6 and the remarks after

Lemma 3.4), u2 = ω2, and

Y 2
(Code)(S) = Y 2

(Code)(U) = P(ω).

Furthermore, every stationary subset of ω1 in the ground model contains modulo

NSω1 a member of STAT (S, ω2)V [G] and a member of STAT (U , ω2)V [G].

Letting 〈κα : α ≤ ω1 · 2〉 be the closed increasing sequence generated by the

first ω1 · 2 many measurable cardinals (so κω1 is the κ∗ of the statement of the

lemma), force now as in Lemma 4.6, with S as itself and F as 〈Tαi : (α, i) ∈ ω1×ω〉
(suitably reindexed). Recall that the first step of this forcing adds generic partitions

of ω1 〈Aαi : (α, i) ∈ ω1 × ω〉 and 〈Bαi : (α, i) ∈ ω1 × ω〉 by initial segments; the

genericity of each Aαi implies that F̃ ∩κω1 has abused stationary intersection with

every member of STAT (S, ω
V [G]
2 ) ∪ STAT (U , ω

V [G]
2 ), for each F ∈ F . Call this

extension V [G][H]. Note that since the forcing from Lemma 4.6 does not add reals

and preserves stationary subsets of ω1, X2
(Code)(S)V [G][H] = X2

(Code)(S)V . Note

also that for every stationary K ⊂ ω1 in V [G], the only V [G]-indiscernibles in K̃

are in the set {ω1} ∪ {κα : α ≤ ω1 · 2}. It follows that κω1 is the only ρ ∈ Cω1
κω1·2

is

greater than ω
V [G]
2 for which there exists (α, i) ∈ ω1×ω such that either of S̃αi ∩ ρ
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and Ũαi ∩ ρ is stationary. We will see that these last two facts are preserved by

the remaining forcings in this proof, which will preserve the fact that no real enters

either X2
(Code)(U) or X2

(Code)(S) at any stage in the interval (ωV [G]
2 , κω1·2) other than

κω1 . Note also then that STAT (S, κω1) = STAT (S, ω
V [G]
2 ) and STAT (U , κω1) =

STAT (U , ω
V [G]
2 )

Finally, force with any partial order preserving stationary subsets of ω1 making

u2 > κω1 . This is the last step of P . Call this extension V [G][H][I]. Since this last

forcing preserves stationary subsets of ω1, κω1 and κω1·2 remain on the κ-sequences

of both S and U in V [G][H][I], and, for each α < κω1·2 + 1, Xα(S)V [G][H] =

Xα(S)V [G][H][I].

Now suppose that we force over V [G][H][I] with a forcing Q of the form 5{{γ <

ω1 | f(γ) ∈ F̃} : F ∈ F ′} for some uncountable F ′ ⊂ F and some cofinality

function f for κω1 , and that this forcing does not add a real to X2
(Code)(S) at stage

κω1 . This partial order shoots a club through a subset of ω1 containing some Aαi

modulo NSω1 . Now force as in the Erasure Lemma (the forcing Ṙ of this lemma) to

make no real enter X2
(Code)(S) at stage κω1·2 or later. This partial order wellorders

the reals in ordertype ω1 and then shoots a club through a subset of ω1 containing

some Bβj modulo NSω1 . Since Bβj has stationary intersection with each Aγk,

this second forcing preserves the stationarity of each Aγk left stationary by forcing

with the realization of Q, and thus preserves the stationarity of each member of

STAT (U , κω1 + 1).

By Lemma 4.6, no V [G]-indiscernible in κω1·2\{κα : α < ω1 ·2} is forced by Q∗Ṙ
into K̃ for any stationary K ⊂ ω1 in V [G]. To see this, fix a condition in Q ∗ Ṙ

deciding the values of (α, i) and (β, j) as in the previous paragraph, fix such an

indiscernible ξ and a name τ for a function supposedly witnessing that ξ is forced

into K̃, and choose a countable elementary submodel X of a suitable H(θ) with

this condition and τ in X, X ∩ ω1 ∈ Aαi ∩Bβj and ot(X ∩ ξ) 6∈ K (the set of such

X is stationary in V [G][H] by Lemma 4.6 and genericity, and remains stationary

in V [G][H][I] since ξ has cardinality ℵ1 in V [G][H]). Then any X-generic filter for
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Q ∗ Ṙ naturally defines a Q ∗ Ṙ condition witnessing that τ is not a name for a

function witnessing that ξ ∈ K̃.

It follows that in the Q ∗ Ṙ extension, the b-sequences for both S and U still

consist of the empty real at every stage in the interval (ωV [G]
2 , κω1·2) other than κω1 .

In particular, no real enters X2
(Code)(S) at any stage γ in the interval (κω1 , κω1·2)

either in this final extension. ¤

Fixing a coding of elements of H(ω1) by reals, for each partition U = 〈Uαi :

(α, i) ∈ ω1 × ω〉 of ω1 into stationary sets, let EU be the set of x ⊂ ω such that x

codes in this fixed coding a set of the form 〈Uαi∩β : α < β〉, for some β < ω1. Given

subsets A,B of ω1, we say A =∗ B if A4B ∈ NSω1 and A ⊂∗ B if A \B ∈ NSω1 .

Lemma 6.3 below allows one to distinguish between S and U in the forcing

extension in the main theorem.

Lemma 6.3. Suppose that there exists a cardinal λ below a Woodin cardinal below a

measurable cardinal such that λ is i+
ω (λ)-supercompact and a limit of supercompact

cardinals.

Let S = 〈Sαi : α < ω1, i < ω〉 and U = 〈Uαi : α < ω1, i < ω〉 be two partitions of

ω1 into stationary sets. Then there is a partial order preserving stationary subsets

of ω1 which forces no real outside of ES into X2
(Code)(S) but forces a real outside

of EU into X2
(Code)(U).

Proof. We break into two cases, the second of which has four subcases. In the first

case, where U is essentially the same as S, we can force a real in ES \EU into both

X2
(Code)(S) and X2

(Code)(U). In the second case, where U and S are significantly

different, we can force a real not in EU into X2
(Code)(U) without adding any real to

X2
(Code)(S).

The first (close) case is when Sαi =∗ Uαi for all (α, i) ∈ ω1 × ω. In this case we

first force as in Theorem 5.4. Then since u2 = ω2 and NSω1 is saturated in this

extension, for each pair Sαi, Uαi there is a real in Y 2
(Code)(S) ∩ Y 2

(Code)(U) whose

indiscernibles are disjoint from Sαi4Uαi (see Theorem 3.16 of [14]) and thus from
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S̃αi 4 Ũαi. Then each set of the form S̃αi 4 Ũαi is disjoint from the κ-sequences

of both S and U above some ordinal below the ω2 of this extension. It follows

that in all forcing extensions preserving stationary subsets of ω1, the S-codings and

U-codings are the same at all stages after the ω2 of this extension.

Let β < ω1 be large enough so that 〈Sαi ∩ β : (α, i) ∈ β × ω〉 and 〈Uαi ∩ β :

(α, i) ∈ β×ω〉 are distinct, and let z be a real coding 〈Sαi∩β : (α, i) ∈ β×ω〉 in our

fixed coding. Then forcing as in Lemma 5.1 adds z and only z to both X2
(Code)(S)

and X2
(Code)(U).

The second case is when Sαi 4 Uαi is stationary for some (αi) ∈ ω1 × ω (we

do not, however, fix such a pair (α, i)). In this case, we first force with P as in

Lemma 6.2, and fix κ∗ as in the statement of the lemma. Note that κ∗ is on the

κ-sequences of both S and U in this extension, and, for every stationary set F

of the form Sαi ∩ Uβj , F̃ has abused stationary intersection with every member

of STAT (S, κ∗) and STAT (U , κ∗), and that every stationary subset of ω1 in the

ground model contains modulo NSω1 a member of each of these sets.

The second case has four subcases, which will see are exhaustive. Fix a sequence

〈dα : α ∈ ω1〉 such that

• each dα is an infinite subset of ω;

• no dα contains consecutive elements of ω;

• each oe(dα) ∈ C;

• 〈li(oe(dα), ω1) : α < ω1〉 is increasing;

• li(oe(d1), ω1) > κ∗;

• each t∗(oe(dα)) is infinite and co-infinite;

• t∗(oe(d0)) ∈ P(ω) \ EU .

It suffices to see that at this point there is a suitable choice of F0, F1 and F as in

Lemma 6.1 which adds t∗(oe(d0)) to X2
(Code)(U) at stage κ∗ without adding any real

to X2
(Code)(S) at stage κ∗. Suitable here means that F̃0∩κ∗ and F̃1∩κ∗ both being

stationary, and Ẽ ∩ κ∗ being nonstationary for each E ⊂ ω1 having nonstationary

intersection with each member of F , implies that no real enters X2
(Code)(S) at stage
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κ∗, while for each α < ω1, Uαi will have stationary intersection with some member

of F for infinitely even i and infinitely many i odd, which means that it is still

possible to force any desired real into X2
(Code)(U) (in particular, t∗(oe(d0))). Then

by Lemma 6.2 we can further force to ensure that no reals enter X2
(Code)(S) at a

stage after κ∗, either. We will do just this in the four subcases below, with F as a

subset of the collection of stationary sets of the form Sαi ∩ Uβj , for α, β < ω1 and

i, j < ω.

In the first subcase, suppose that there exist α, β, γ < ω1, i, j, k < ω such that

Sαi∩Uβj and Sα(i+1)∩Uγk are both stationary and one of the following cases holds:

• β 6= γ,

• |j − k| 6= 1.

Then let F0 = Sαi ∩ Uβj , F1 = Sα(i+1) ∩ Uγk and F be all stationary sets of the

form Sδn ∩ Uρm, for m,n ∈ ω, δ, ρ ∈ ω1.

For the rest of the proof we assume that the first subcase does not apply, and

so there exists a function g : ω1 → ω1 such that whenever Sαi ∩ Uβj and Sαi ∩ Uγk

are stationary, β = γ = g(α) and |k − j| ∈ {0, 2}.
In the second subcase, suppose that there exists α∗ < ω1 such that one of the

two following statements holds.

• ⋃{Sα∗i : i < ω even} fails to contain (modulo NSω1) all but finitely many

of the sets Ug(α∗)j for j odd and fails to contain (modulo NSω1) all but

finitely many of the sets Ug(α∗)j for j even.

• ⋃{Sα∗i : i < ω odd} fails to contain (modulo NSω1) all but finitely many

of the sets Ug(α∗)j for j odd and fails to contain (modulo NSω1) all but

finitely many of the sets Ug(α∗)j for j even.

In the first (subsub)case, let F be all stationary sets of the form Sδn∩Uρm where

n,m ∈ ω, δ, ρ ∈ ω1 such that either n is not even or δ 6= α∗, and let F0 and F1 both

be any one element of F . In the second case, let F be all stationary sets of the

form Sδn ∩ Uρm where n,m ∈ ω, δ, ρ ∈ ω1 such that either n is not odd or δ 6= α∗,

and let F0 and F1 both be any one element of F .
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Assuming that the first two subcases do not apply, g is injective.

In the third subcase, suppose that the first two subcases do not apply, and two

distinct set Sαi and Sαk both intersect some Ug(α)j stationarily. Since the first

subcase does not apply, Sαi \ Ug(α)j intersects at most one set of the form Ug(α)n

stationarily (fix n if it exists; n must be either j−2 or j +2, though we will not use

this fact). Let F0 = Sαi ∩ Ug(α)j , F1 = Sαk ∩ Ug(α)j and F be all stationary sets

of the form Sδp ∩ Uρm (excluding Sαi ∩ Ug(α)n if n as above exists). If the forcing

corresponding to each F ′ ⊂ F as in Lemma 6.1 adds a real to X2
(Code)(S) at stage

κ∗, then fix one such F ′ and force instead with F ′ \ {Sαi ∩Ug(α)j}. This codes the

same real into X2
(Code)(U) at stage κ∗, but it cannot be that both forcings add a

real to X2
(Code)(S), since the set oe({m < ω | S̃αm ∩κ∗ is stationary}) cannot be in

C in both cases, by Lemma 2.3.

If the first three cases do not apply, then for each α < ω1 there is a permutation

eα : ω → ω such that for each i < ω, Sαi =∗ Ug(α)eα(i). It follows easily from

the fact that |eα(i) − eα(i + 1)| = 1 for all α < ω1, i < ω that each eα is the

identity function. If g is not the identity function, 〈li(dg−1(β), ω1) : β < ω1〉 is not

increasing, so we can let F be all stationary sets of the form Sαi ∩ Uβj and let F0

and F1 both be any one of these sets. If g is the identity then we are in the first

case of the proof. ¤

7. The main theorem

In Theorem 7.1 we modify the iteration from the proof of Theorem 5.3 to make

X2
(Code)(S) = ES , which makes S definable in the H(ℵ2) of the extension without

parameters. The third condition on the iteration is probably subsumed by the

second one, but we include it to make certain.

Undoubtedly there are many other ways to make the parameter S definable.

Theorem 7.1. Assume that there exists a supercompact limit of supercompact car-

dinals. Then there is a semi-proper partial order forcing Martin’s Maximum+ω and

forcing the existence of a partition S of ω1 into uncountably many stationary sets



30 PAUL B. LARSON

such that S is definable in H(ℵ2) without parameters. Furthermore, in this exten-

sion, Martin’s Maximum++ holds for partial orders that don’t add reals not in ES

to X2
(Code)(S),

Proof. Let λ be a supercompact limit of supercompact cardinals. Force to add a

partition S = 〈Sαi : α < ω1, i < ω〉 be a partition of ω1 of ω1 by initial segments.

Then each member of S is stationary and each S̃αi = ∅, so X2
(Code)(S) = ∅.

Let L : λ → Vλ be as in Lemma 3.7.

Let P̄ = 〈Pα, Q
∼ α : α < λ〉 be a semi-proper forcing iteration satisfying the

following conditions, where Gα denotes the restriction of the generic filter to the

first α stages of the iteration.

• Q0 is the trivial forcing and each forcing Qα+1 has the form Coll(ω1, <µ) ∗
PF(S).

• If α is a limit ordinal and L(α) is a triple (0, τ, σ), where τ is a Pα-name for

a semi-proper forcing and σ is a Pα ∗τ -name for a countable collection A of

stationary subsets of ω1, then the first step of Qα is τGα . If X2
(Code)(S) ⊂ ES

after forcing with τGα , then Qα is just this forcing. Otherwise, Qα is τGα

followed by a forcing as in the Erasure Lemma, preserving the stationarity

of each member of of A and each stationary subset of ω1 in each V [Gβ ]

(β < α) while making X2
(Code)(S)V [Gα+1] =

⋃{X2
(Code)(S)V [Gβ ] : β < α}.

• If α is a limit ordinal and L(α) is a triple (1, τ, σ), where τ is a Pα-name for

a partition of ω1 into stationary sets (indexed by ω1×ω) and σ is Pα-name

for a real, then if there exists a forcing preserving stationary subsets of ω1

and forcing σGα into X2
(Code)(τGα) in whose extension X2

(Code)(S) ⊂ ES ,

then Qα is such a forcing.

• If α is a limit ordinal and the previous two cases do not apply, and X2
(Code)(S)

is not a subset of ES in V [Gα], then Qα is a forcing as in the Erasure

Lemma, preserving the stationarity of each stationary subset of ω1 in each

V [Gβ ] (β < α) while making X2
(Code)(S)V [Gα+1] =

⋃{X2
(Code)(S)V [Gβ ] :

β < α}.
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Then in the P̄ -extension, Martin’s Maximum+ω holds, and Martin’s Maximum++

holds for partial orders that don’t add reals not in ES to X2
(Code)(S), by the original

consistency proof for Martin’s Maximum in [3]. By construction, X2
(Code)(S) ⊂ ES

in this extension, and X2
(Code)(S) ⊃ ES by Lemma 5.1. By Lemma 6.3, in this

extension S is the unique partition U of ω1 into stationary sets indexed by ω1 × ω

such that X2
(Code)(U) = EU . ¤

We note that the following question is still open.

Question 7.2. Does Martin’s Maximum++ imply (∗)?
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