WRP^*

Paul B. Larson

August 16, 2010

Given a nonempty set X, a set $S \subseteq \mathcal{P}(X)$ is said to be *club* if there exists a function $F: X^{<\omega} \to X$ such that $S = \{Y \subseteq X \mid F[Y^{<\omega}] \subseteq Y\}$, and *stationary* if it intersects every club subset of $\mathcal{P}(X)$. A set S is said to be \subseteq -*cofinal* in a set T if for every $X \in T$ there exists a $Y \in S$ such that $X \subseteq Y$. Given a set X, an ideal $I \subseteq \mathcal{P}_{\aleph_1}(X)$ is *fine* if it contains every \subseteq -noncofinal set, i.e., if for all $x \in \mathcal{P}_{\aleph_1}(X)$, $\{y \in \mathcal{P}_{\aleph_1}(X) \mid x \not\subseteq y\} \in I$. The ideal I is *normal* if for all $f: X \to I$, $S_f = \{x \in \mathcal{P}_{\aleph_1}(X) \mid \exists a \in x \text{ s.t. } x \in f(a)\} \in I$, i.e., if I is closed under diagonal unions. We say that a set $S \subseteq \mathcal{P}_{\aleph_1}(X)$ *reflects* to a set $Y \subseteq X$ if $S \cap \mathcal{P}_{\aleph_1}(Y)$ is stationary in $\mathcal{P}_{\aleph_1}(Y)$.

In his book on \mathbb{P}_{max} [2], Woodin defines the statements $\operatorname{WRP}_n^*(\omega_2)$. The natural generalization of these statement to an arbitrary regular cardinal $\kappa \geq \aleph_2$ is as follows.

0.1 Definition. Given a regular cardinal $\kappa \geq \aleph_2$ and an integer $n \in \omega$, WRP^{*}_n(ω_2) is the statement that there exists a normal, fine ideal I on $\mathcal{P}_{\aleph_1}(\kappa)$ such that

- for all stationary $T \subseteq \omega_1$, $\{x \in \mathcal{P}_{\aleph_1}(\kappa) \mid x \cap \omega_1 \in T\} \notin I$;
- for all $S_1, \ldots, S_n \subseteq \mathcal{P}_{\aleph_1}(\kappa)$, if $S \notin I$, then the set of $X \subseteq \kappa$ such that
 - $-\omega_1 \subseteq X;$
 - $-|X| = \aleph_1;$
 - for all $i \in \{1, \ldots, n\}$, S_i reflects to X

is stationary.

We write WRP^{*}(κ) for WRP^{*}₁(κ). Steel and Zoble [1] have shown that $WRP_2^*(\omega_2) + "NS_{\omega_1}$ is saturated" $+ 2^{\aleph_0} \leq \aleph_2$ implies that the Axiom of Determinacy holds in $L(\mathbb{R})$.

Theorem 0.2. Let $\kappa \geq \aleph_2$ be a regular cardinal. Then $WRP^*(\kappa)$ holds.

Proof. Let I be the collection of $S \subseteq \mathcal{P}_{\aleph_1}(\kappa)$ for which the set of $X \in [\kappa]^{\aleph_1}$ for which $\omega_1 \subseteq X$ and S reflects to X is nonstationary. We claim that I satisfies the theorem. First of all, note that every \subseteq -noncofinal subset of $\mathcal{P}_{\aleph_1}(\kappa)$ is nonstationary, and every nonstationary subset of $\mathcal{P}_{\aleph_1}(\kappa)$ is in I. Note also that I is closed under countable unions and subsets. Clearly, I satisfies the first

conclusion of the definition of WRP^{*}(κ). Let us check that I is closed under diagonal unions. Fix a function $f: \kappa \to I$, and suppose towards a contradiction that S_f reflects to a stationary set of $X \in [\kappa]^{\aleph_1}$ such that $\omega_1 \subseteq X$. Then we may fix such an X such that for all $\alpha \in X$, $f(\alpha)$ does not reflect to X. Let $\langle x_\beta : \beta < \omega_1 \rangle$ be a continuous, \subseteq -increasing sequence of countable sets with union X. By assumption, for a stationary set F of $\beta \in \omega_1$, there exists an $\alpha \in x_\beta$ such that $x_\beta \in f(\alpha)$. Pressing down, we have a stationary set F' for which a fixed α suffices, contradicting that assumption that $f(\alpha)$ does not reflect to γ .

References

- [1] J. Steel, S. Zoble, Determinacy from strong reflection, preprint
- [2] W.H. Woodin. The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal. Logic and its Applications. de Gruyter, 1999.