Section 1 of the Appendix to Shelah's Proper and Improper Forcing (on weak diamond), retyped with minor modifications

Paul Larson

February 19, 2014

0.1 Definition. Weak Diamond (Φ) is the statement that for every function $F: {}^{<\omega_1}2 \to 2$ there exists an $h: \omega_1 \to 2$ such that for all $\eta: \omega_1 \to 2$ the set $\{\alpha < \omega_1 \mid F(\eta \upharpoonright \alpha) = h(\alpha)\}$ is stationary.

Note that by replacing h with 1 - h, Φ is equivalent to statement that for every $F: {}^{<\omega_1}2 \to 2$ there exists an $h: \omega_1 \to 2$ such that for all $\eta: \omega_1 \to 2$ the set $\{\alpha < \omega_1 \mid F(\eta \upharpoonright \alpha) \neq h(\alpha)\}$ is stationary.

Weak Diamond can be generalized to arbitrary cardinals as follows.

0.2 Definition. Given a cardinal κ and an ordinal λ of uncountable cofinality, Φ_{λ}^{κ} is the statement that for every $F: {}^{<\lambda}2 \to \kappa$ there exists an $h: \lambda \to \kappa$ such that for all $\eta: \lambda \to 2$ the set $\{\alpha < \lambda \mid F(\eta \restriction \alpha) = h(\alpha)\}$ is stationary.

Under this terminology, Φ is $\Phi^2_{\omega_1}$.

Notation. For any ordinal γ , for any $\alpha \leq \gamma$ and any sequence of nonzero ordinals $\overline{E} = \langle E(i)i < \gamma \rangle$ of length γ , let $D_{\alpha}(E)$ denote $\Pi_{i < \alpha} E(i)$, and let $D(\overline{E})$ denote $\bigcup_{\alpha < \gamma} \Pi_{i < \alpha} E(i)$. When \overline{E} has the constant value γ , we write $D(\gamma)$ for $D(\overline{E})$ and $D_{\alpha}(\gamma)$ for $D_{\alpha}(\overline{E})$.

The negation of Φ can be generalized as follows.

0.3 Definition. Suppose that λ is an ordinal of uncountable cofinality, and let $\bar{\mu} = \langle \bar{\mu}(i) : i < \lambda \rangle$ and $\bar{\chi} = \langle \bar{\chi}(i) : i < \lambda \rangle$ be sequences of nonzero cardinals. Unif $(\lambda, \bar{\mu}, \bar{\chi})$ is the statement that there is a function F with domain $D(\bar{\mu})$ such that $F(\eta) \in \bar{\chi}(\alpha)$ for each $\eta \in D_{\alpha}(\bar{\mu})$ such that for every $h \in D_{\lambda}(\bar{\chi})$ there exists an $\eta \in D_{\lambda}(\bar{\mu})$ such that $\{\alpha < \lambda \mid F(\eta \mid \alpha) = h(\alpha)\}$ contains a club subset of λ .

When $\bar{\mu}$ or $\bar{\chi}$ are constant, we write the constant value μ in place of $\bar{\mu}$ (and similarly for $\bar{\chi}$. So, for example, $\text{Unif}(\lambda, 2, 2)$ is the negation of Φ_{λ}^2 .

Notation. When λ is understood, $\langle \mu(0), \mu(1) \rangle$ denotes the sequence of length λ whose first element is $\mu(0)$ and whose other elements are all $\mu(1)$. We let $D(\mu(0), \mu(1))$ and $D_{\alpha}(\mu(0), \mu(1))$ denote the corresponding versions of $D(\bar{E})$ and $D_{\alpha}(\bar{E})$.

0.4 Definition. Given $S \subseteq \lambda$, Unif $(\lambda, S, \bar{\mu}, \bar{\chi})$ denotes the statement that there is a function F with domain $D(\bar{\mu})$ such that $F(\eta) \in \bar{\chi}(\alpha)$ for each $\alpha \in D_{\alpha}(\bar{\mu})$ such that for every $h \in D_{\lambda}(\bar{\chi})$ there exists an $\eta \in D_{\lambda}(\bar{\mu})$ such that

$$\{\alpha \in S \mid F(\eta \restriction \alpha) = h(\alpha)\}\$$

contains a relative club subset of S.

Again, we can replace $\bar{\mu}$ with μ_0 , μ_1 , so Unif can take up to five arguments and as few as three.

0.5 Definition. Id-Unif $(\lambda, \bar{\mu}, \bar{\chi})$ is the set of $S \subseteq \lambda$ such that Unif $(\lambda, S, \bar{\mu}, \bar{\chi})$ holds.

Note that Id-Unif $(\lambda, \bar{\mu}, \bar{\chi})$ trivially contains all nonstationary subsets of λ . The following facts (Lemma 1.4) are straightforward.

Lemma 0.6. 1. If $\bar{\chi}(i) = 1$ for club many *i*, then $Unif(\lambda, S, \bar{\mu}, \bar{\chi})$ holds.

- 2. The truth value of $Unif(\lambda, S, \bar{\mu}, \bar{\chi})$ is invariant under nonstationary changes to $\bar{\chi}$.
- 3. The truth value of $Unif(\lambda, S, \bar{\mu}, \bar{\chi})$ is invariant under nonstationary changes to S.
- If Unif(λ, S, μ, χ̄) holds, it holds for any smaller (≤) χ-sequence and any larger (≥) μ-sequence.
- 5. $Unif(\lambda, S, \bar{\mu}, \bar{\chi})$ implies that $D_{\lambda}(\bar{\chi})$ has at most $|D_{\lambda}(\bar{\mu})|$ many equivalence classes under equivalence modulo the nonstationary ideal restricted to S.
- 6. $Unif(\lambda, S, \bar{\mu}, \bar{\chi})$ follows from the statement that for some $\beta < \lambda$, $D_{\lambda}(\bar{\chi})$ has at most $|D_{\beta}(\bar{\mu})|$ many equivalence classes under the nonstationary ideal restricted to S.

The first major result of the appendix is the following (Shelah's Lemma 1.5), where for a sequence $\bar{\mu} = \langle \bar{\mu}(i) : i < \lambda \rangle$ and an $\alpha < \lambda$ we let $\bar{\mu}[\alpha]$ be the sequence of length λ whose *i*th element is $\bar{\mu}(\alpha + i)$.

Theorem 0.7. Given λ , S, $\bar{\mu}$ and $\bar{\lambda}$ as above, and letting $\mu_0 = |D(\bar{\mu})|$ and $\mu_1 = \min_{\alpha < \lambda} |D(\bar{\mu}[\alpha])|$, $Unif(\lambda, S, \bar{\mu}, \bar{\chi})$ and $Unif(\lambda, S, \mu_0, \mu_1, \bar{\chi})$ are equivalent.

Note that $\mu_0 \ge \mu_1$ in the statement of Theorem 0.7. The first lemma (Fact 1.5A) towards the proof of Theorem 0.7 involves a change of μ -sequence.

Lemma 0.8. Suppose that $\bar{\mu}$ and $\bar{\nu}$ are sequences of nonzero cardinals of length λ , and suppose that there is a continuous, injective, order-preserving partial map $g: D(\bar{\mu}) \to D(\bar{\nu})$ such that for every $\eta \in D_{\lambda}(\bar{\mu})$ the set of $i < \lambda$ with $\eta | i \in Dom(g)$ is club. Then $Unif(\lambda, S, \bar{\mu}, \bar{\chi})$ implies $Unif(\lambda, S, \bar{\nu}, \bar{\chi})$.

Proof of Lemma 0.8. First note that we may assume that g is length-preserving as well. Given F witnessing $\text{Unif}(\lambda, S, \bar{\mu}, \bar{\chi})$, define $F^*(\eta)$ to be $F(g^{-1}(\eta))$ for all η in the range of g, and let F^* be defined in any manner on other η 's. Then F^* witnesses $\text{Unif}(\lambda, S, \bar{\nu}, \bar{\chi})$.

Proof of the forward direction of Theorem 0.7. Let $\alpha < \lambda$ be such that $\mu_1 = |D(\bar{\mu}[\alpha])|$. Then $\bar{\mu}(i) \leq \mu_1$ for all $i \in [\alpha, \lambda)$. Let $\mu'_0 = |D_\alpha(\bar{\mu})|$, and let $\langle \nu_{\xi} : \xi < \mu'_0 \rangle$ enumerate $D_\alpha(\bar{\mu})$. Then $\mu'_0 \leq \mu_0$. Then there is a partial function $g: D(\bar{\mu}) \to D(\mu_0, \mu_1)$ as in the statement of Lemma 0.8 with domain the set of $\eta \in D(\bar{\mu})$ of length at least α , defined by $g(\nu_{\widehat{\xi}}, \eta) = \langle \xi \rangle \widehat{-} \eta$.

For the reverse direction of Theorem 0.7, Shelah proves the following lemmas (the second and third of which make up Claim 1.6), which show that it suffices to suppose that $\langle \bar{\mu}(i) : 1 \leq i < \lambda \rangle$ is nondecreasing.

Lemma 0.9. If there exists $j < \lambda$ such that $\bar{\mu}(i) = 1$ for all $i \in [j, \lambda)$, then $\mu_0 = |D_j(\bar{\mu})|, \mu_1 = 1$, and the conclusion of Theorem 0.7 holds.

Proof. By Lemma 0.6, parts (5) and (6).

Lemma 0.10. If $\langle \alpha_i : i < \lambda \rangle$ is an increasing, continuous sequence of elements of λ with $\alpha_0 = 0$, and for each $i < \lambda$, $\nu_i = |\Pi_{\alpha_i \leq j < \alpha_{i+1}} \overline{\mu}(j)|$, then $Unif(\lambda, S, \overline{\mu}, \overline{\chi})$ and $Unif(\lambda, S, \overline{\nu}, \overline{\chi})$ are equivalent.

Proof. Translate between F's using the natural bijection between $D(\bar{\mu})$ and $D(\bar{\nu})$.

Lemma 0.11. There exists $\langle \alpha_i : i < \lambda \rangle$, an increasing, continuous sequence of elements of λ with $\alpha_0 = 0$, such that, letting $\nu_i = |\mathbf{\Pi}_{\alpha_i \leq j < \alpha_{i+1}} \bar{\mu}(j)|$ for each $i < \lambda$, $\langle \nu_i : 1 \leq i < \lambda \rangle$ is nondecreasing.

Proof. Let κ^* be the least cardinal κ such that $\{i < \lambda \mid \overline{\mu}(i) \geq \kappa\}$ is bounded below λ . Let $\alpha^* < \lambda$ be such that $\overline{\mu}(i) < \kappa^*$ for all $i \in [\alpha^*, \lambda)$. Let $\alpha_1 = \alpha^*$. There are three cases, depending on whether κ^* is a successor cardinal, has cofinality λ , or cofinality less than λ .

Proof of the reverse direction of Theorem 0.7. By Lemmas 0.9, 0.10 and 0.11, we may assume that $\bar{\mu}(i) \leq \bar{\mu}(j)$ whenever $1 \leq i \leq j < \lambda$. By Lemma 0.8, we need only find a partial injective, continuous, order-preserving embedding gfrom $D(\mu_0, \mu_1)$ to $D(\bar{\mu})$ with the property that every $\eta \in D_{\lambda}(\mu_0, \mu_1)$ has club many initial segments in the domain of g. Let $\alpha^* \in [3, \lambda)$ be such that for all $\beta \in [\alpha^*, \lambda), |D(\bar{\mu}[\beta])| = \mu_1$. The desired function g can be defined in a straightforward recursive manner once one sees that $D(\bar{\mu})$ contains an antichain of size μ_0 (consisting of elements of length at least α^* , and that there is an antichain of size μ_1 extending each element of $D(\bar{\mu})$ of length at least α^* . This construction is relatively straightforward, alternating codes and 0's until the coding is done, then punctuating with two 1's. In the first case, one starts with $\nu(0)$ and fills until α^* with all 0's. Since $\bar{\mu}$ is increasing, one can always save values for later. The second case is simpler. The following lemma (Shelah's Claim 1.7 (2)) says that fewer than λ many witnesses to Unif (λ, S, \ldots) can be glued together to make a witness to Unif (λ, S, \ldots) on the corresponding product. Shelah's Claim 1.7 (1) is a special case of Claim 1.7 (2).

Lemma 0.12. Suppose that $\kappa < \lambda$, and $Unif(\lambda, S, \bar{\mu}_{\xi}, \bar{\chi}_{\xi})$ holds for all $\xi < \kappa$. Define $\bar{\mu}(i)$ and $\bar{\chi}(i)$ for $i < \lambda$ by $\bar{\mu}(i) = |\mathbf{\Pi}_{\xi < \kappa} \bar{\mu}_{\xi}(i)|$ and $\bar{\chi}(i) = |\mathbf{\Pi}_{\xi < \kappa} \bar{\chi}_{\xi}(i)|$. Then $Unif(\lambda, S, \bar{\mu}, \bar{\chi})$ holds.

Proof. Fix witnesses F_{ξ} ($\xi < \kappa$) to $\text{Unif}(\lambda, S, \bar{\mu}_{\xi}, \bar{\chi}_{\xi})$, and fix bijections $G^{i} : \bar{\mu}(i) \to \Pi_{\xi < \kappa} \bar{\mu}_{\xi}(i)$ and $H^{i} : \Pi_{\xi < \kappa} \bar{\mu}_{\xi}(i) \to \bar{\chi}(i)$. For each $i < \lambda, \xi < \kappa$ and $\alpha < \bar{\mu}(i), G^{i}_{\xi}(\alpha)$ be the ξ th coordinate of $G^{i}(\alpha)$, and let $H^{i}_{\xi}(\alpha)$ be the ξ th coordinate of $H^{i}(\alpha)$. Given $\eta \in D_{\delta}(\bar{\mu})$ for some $\delta < \lambda$, let

$$F(\eta) = H^{\delta}(\langle F_{\xi}(\langle G^i_{\xi}(\eta(i)) : i < \delta \rangle) : \xi < \kappa \rangle).$$

Now given $h \in D_{\lambda}(\bar{\chi})$, let h_{ξ} $(\xi < \kappa)$ be such that $H^{\delta}(\langle h_{\xi}(\delta) : \xi < \kappa \rangle) = h(\delta)$ for all $\delta < \lambda$. Fix η_{ξ} $(\xi < \kappa)$ and clubs C_{ξ} $(\xi < \kappa)$ such that for each $\xi < \kappa$ and each $\delta \in C_{\xi} \cap S$, $F_{\xi}(\eta_{\xi}|\delta) = h_{\xi}(\delta)$. Let $\eta \in D(\bar{\mu})$ be such that $G^{i}(\eta(i)) = \langle \eta_{\xi}(i) : \xi < \kappa \rangle$ for all $i < \lambda$. Then for every $\delta \in S \cap \bigcap_{\xi < \kappa} C_{\xi}$,

$$F(\eta \restriction \delta) = H^{\delta}(\langle F_{\xi}(\langle G_{\xi}^{i}(\eta(i)) : i < \delta \rangle) : \xi < \kappa \rangle) =$$
$$H^{\delta}(\langle F_{\xi}(\eta_{\xi} \restriction \delta) : \xi < \kappa \rangle) = H^{\delta}(\langle h_{\xi}(\delta) : \xi < \kappa \rangle) = h(\delta).$$

The following is Claim 1.7 (3).

Lemma 0.13. Suppose that $\bar{\mu}$ is a nondecreasing sequence of infinite cardinals, Unif $(\lambda, S, \bar{\mu}, \bar{\chi})$ holds, and $\bar{\rho}(i) \leq \bar{\chi}(i)^{|i|}$ for all $i < \lambda$. Then Unif $(\lambda, S, \bar{\mu}, \bar{\rho})$ holds.

Proof. It suffices to suppose that $\bar{\rho}(i) = \bar{\xi}(i)^{|i|}$ for all $i < \lambda$, by Lemma 0.6 (4). Let F witness $\operatorname{Unif}(\lambda, S, \bar{\mu}, \bar{\chi})$. For each $i < \lambda$, fix a bijection $H^i \colon \Pi_{j < i} \bar{\xi}(i) \to \bar{\rho}(i)$. Fix increasing functions $k_{\zeta} \colon \lambda \to \lambda$ ($\zeta < \lambda$) with disjoint ranges. For any $\eta \in D(\bar{\mu}) \cup D_{\lambda}(\bar{\mu})$ and any $\zeta < \lambda$, let $\eta[\zeta]$ be the sequence of values that η takes on the range of k_{ζ} .

Let C^* be the set of $\delta < \lambda$ such that the range of each k_{ζ} ($\zeta < \delta$) has ordertype δ below δ . Then C^* is a club. Given $\delta \in C^*$, let $E(\delta)$ be the set of $\eta \in D_{\delta}(\bar{\mu})$ such that for each $\zeta < \delta$, $\eta[\zeta] \in D_{\delta}(\bar{\mu})$. For each $\eta \in E(\delta)$, let

$$F^*(\eta) = H^{\delta}(\langle F(\eta[\zeta]) : \zeta < \delta \rangle).$$

Then given $h \in D_{\lambda}(\bar{\rho})$, for each $\zeta < \lambda$, let h_{ζ} be the function with domain (ζ, λ) such that for each $\delta < \lambda$, $H^{\delta}(\langle h_{\zeta}(\delta) : \zeta < \delta \rangle) = h(\delta)$. Then for each $\zeta < \lambda$ there exist an $\eta_{\zeta} \in D_{\lambda}(\bar{\mu} \text{ and a club } C_{\zeta} \text{ such that for all } \delta \in C_{\zeta}, F(\eta_{\zeta} | \delta) = h_{\zeta}(\delta)$. Let $\eta \in D_{\lambda}(\bar{\mu})$ be such that the sequence of values η gives on the range of each k_{ζ} is equal to η_{ζ} . Then if δ is in C^* and in the diagonal intersection of the C_{ζ} 's, then

$$F^*(\eta \upharpoonright \delta) = H^o(\langle F((\eta \upharpoonright \delta)[\zeta]) : \zeta < \delta \rangle) =$$
$$H^{\delta}(\langle F(\eta_{\zeta} \upharpoonright \delta) : \zeta < \delta \rangle) = H^{\delta}(\langle h_{\zeta}(\delta) : \zeta < \delta \rangle) = h(\delta).$$

In his Conclusion 1.8, Shelah mentions that if $\text{Unif}(\lambda, \mu(0), 2, \chi)$ holds, and $1 < \kappa < \lambda$ and $\mu(0)^{\kappa} = \mu(0)$, then by Lemma 0.12 we have $\text{Unif}(\lambda, \mu(0), 2^{\kappa}, \chi^{\kappa})$, which by our Lemma 0.7 applied twice is equivalent to $\text{Unif}(\lambda, \mu(0), 2, \chi^{\kappa})$, since the corresponding μ_0 and μ_1 are the same in each case.

In his Lemma 1.9, (1), Shelah mentions that Id-Unif $(\lambda, \bar{\mu}, \bar{\chi})$ is either all of $\mathcal{P}(\lambda)$ or an ideal. To see this, given F_0 and F_1 which work for S_0 and S_1 , use F_0 on sequences whose lengths are in S_0 , and F_1 for sequences whose lengths are in S_1 .

The first half of Shelah's Remark 1.9A notes that Id-Unif $(\lambda, \bar{\mu}, \bar{\chi})$ is equivalent to Id-Unif $(\lambda, \mu_0, \mu_1, \bar{\chi})$, by our Lemma 0.7. The second half of the remark uses later material, so we will save it for later (after Lemmas 0.19-0.23).

The second half of Shelah's Lemma 1.9 is the following.

Lemma 0.14. If $\bar{\mu}$ is nondecreasing then Id- $Unif(\lambda, \bar{\mu}, \bar{\chi})$ is closed under diagonal unions.

Proof. Let S_i $(i \in \lambda)$ be elements of Id-Unif $(\lambda, \bar{\mu}, \bar{\chi})$ as witnessed by functions F_i $(i < \lambda)$. Let S be the diagonal union of $\langle S_i : i < \lambda \rangle$, and let $f: S \to \lambda$ be a regressive function such that $\delta \in S_{f(\delta)}$ for each $\delta \in S$. Let $\langle k_{\zeta} : \zeta < \lambda \rangle$ and C^* be as in the proof of Lemma 0.13. For each $\delta \in C^*$ and $\eta \in D_{\delta}(\bar{\mu})$, let $F(\eta) = F_{f(\delta)}(\eta[f(\delta)])$, where $\eta[\zeta]$ is defined as in Lemma 0.13. Now given $h \in D(\bar{\chi})$, for each $\zeta < \lambda$, let $\eta_{\zeta} \in D_{\lambda}(\bar{\mu})$ and club $C_{\zeta} \subseteq \lambda$ be such that $F_{\zeta}(\eta_{\zeta}|\delta) = h(\delta)$ for all $\delta \in C_{\zeta} \cap S_{\zeta}$. Let $\eta \in D_{\lambda}(\bar{\mu})$ be such that $\eta[\zeta] = \eta_{\zeta}$ for all $\zeta < \lambda$. Then for all $\delta \in S \cap C^* \cap \Delta_{\zeta < \lambda} C_{\zeta}$,

$$F(\eta \restriction \delta) = F_{f(\delta)}((\eta \restriction \delta)[f(\delta)]) =$$
$$F_{f(\delta)}(\eta_{f(\delta)} \restriction \delta) = h(\delta).$$

г		1	
L			

Now we are finally up to Shelah's Theorem 1.10.

Theorem 0.15. If λ is regular, $2^{<\lambda} < 2^{\lambda}$ and there is no collection of sets $S_i \in [\mu]^{\lambda}$ $(i < 2^{\lambda})$ with pairwise finite intersection, then $Unif(\lambda, \mu, 2^{<\lambda}, 2^{<\lambda})$ fails.

Shelah notes that the existence of such a collection of S_i 's would imply that $\mu^{\aleph_0} \geq 2^{\lambda}$, by picking a countable subset of each S_i . He notes that the nonexistence of such a collection implies that $\mu < 2^{\lambda}$. He also notes that his Theorem 1.10 has the following corollary.

Corollary 0.16. If for some $\theta < \lambda$, $2^{\theta} = 2^{<\lambda} < 2^{\lambda}$, then $Unif(\lambda, 2^{\theta}, 2)$ fails.

Proof of Corollary 0.16. By Theorem 0.15 we get that $\text{Unif}(\lambda, 2^{\theta}, 2^{\theta}, 2^{\theta})$ fails. This is equal to $\text{Unif}(\lambda, 2^{\theta}, 2^{\theta}, 2)$ by Lemmas 0.6 (2) and 0.12.

Proof of Theorem 0.15. Let F witness $\text{Unif}(\lambda, \mu, 2^{<\lambda}, 2^{<\lambda})$. Let Mod be the set of sequences

$$\langle \alpha, C_0, g_0, C_1, g_1, \dots C_\beta, g_\beta, \dots \rangle_{\beta < \beta(0)}$$

where α and $\beta(0)$ are elements of λ , each g_{β} is a function from $\alpha \setminus \{0\}$ to ${}^{<\lambda}2$, and each C_{β} is a closed subset of α . Then Mod has cardinality $2^{<\lambda}$, so we can fix a bijection H from Mod to ${}^{<\lambda}2$. For each function $f \in {}^{\lambda}2$ and each $\beta < \lambda$, define $h_{f,\beta} \colon \lambda \to {}^{<\lambda}2$, $g_{f,\beta} \in D_{\lambda}(\mu, 2^{<\lambda})$ and club $C_{f,\beta} \subseteq \lambda$ as follows.

- $h_{f,0} = g_{f,0} = f$ and $C_{f,0} = \lambda \setminus \{0\};$
- for $\gamma > 0$:
 - $\begin{aligned} \ h_{f,\gamma}(i) &= \\ H(\langle \alpha, C_{f,0} \cap \alpha, g_{f,0} \restriction (\alpha \setminus \{0\}, \dots, C_{f,\beta} \cap \alpha, g_{f,\beta} \restriction (\alpha \setminus \{0\}), \dots \rangle_{\beta < \gamma}, \\ \text{where } \alpha &= \alpha(i, f, \gamma) = \min \bigcap_{\beta < \gamma} C_{f,\beta} \setminus (i+1); \\ \ g_{f,\gamma} \text{ is such that some club } C \text{ is subset of} \\ \{\delta < \lambda \mid F(g_{f,\gamma} \restriction \delta) = h_{f,\gamma}(\delta)\}, \end{aligned}$

and
$$C_{f,\gamma}$$
 is the set of limit points of $C \cap \bigcap_{\beta < \gamma} C_{f,\beta}$.

The key claim is the following: if f_1 and f_2 are distinct functions from λ to 2, and $f_1(0) = f_2(0)$, then the set of $\gamma < \lambda$ such that

$$g_{f_1,\gamma} \upharpoonright \min C_{f_1,\gamma} = g_{f_2,\gamma} \upharpoonright \min C_{f_2,\gamma}$$

is finite.

Given the claim, the remainder of the proof is as follows. For each $f: \lambda \to 2$, let A_f be the set of sequences $\langle \gamma, g_{f,\gamma}(0), g_{f,\gamma} | (\delta \setminus \{0\}), f(0) \rangle$, where $\gamma < \lambda$ and $\delta = \min C_{f,\gamma}$. For distinct f's, these sets have finite intersection, so there are 2^{λ} such A_f 's. Each A_f is a subset of $\lambda \times \mu \times {}^{<\lambda}({}^{<\lambda}2) \times 2$ of cardinality λ . If $\mu \geq 2^{<\lambda}$ then we have a contradiction. Otherwise, 2^{λ} is less than or equal to $(2^{<\lambda})^{\aleph_0}$ (since the A_f 's have distinct countable subsets), which is equal to $2^{<\lambda}$, giving another contradiction. This finishes the proof of the theorem, assuming the claim.

Finally, we prove the claim. To do this, suppose that f_1 and f_2 are functions from λ to 2 such that $f_1(0) = f_2(0)$, and let $\langle j_n : n < \omega \rangle$ be an increasing sequence of members of λ , with supremum j, such that

$$g_{f_1,j_n} \upharpoonright \min C_{f_1,j_n} = g_{f_2,j_n} \upharpoonright \min C_{f_2,j_n}$$

for all $n < \omega$. For each $\ell \in \{1, 2\}$, let $C^{\ell} = \bigcap_{n < \omega} C_{f_{\ell}, j_n}$ and let $\langle \gamma_i^{\ell} : i < \lambda \rangle$ be an increasing enumeration of C^{ℓ} . For notational convenience, let $\gamma_{\lambda}^{\ell} = \lambda$ for $\ell \in \{1, 2\}$.

We prove by induction on $i \leq \lambda$ that

- a) $\gamma_i^1 = \gamma_i^2;$
- b) for all $\zeta < j$,

$$g_{f_1,\zeta} \upharpoonright (\gamma_i^1 \setminus \{0\}) = g_{f_2,\zeta} \upharpoonright (\gamma_i^2 \setminus \{0\})$$

and

$$C_{f_1,\zeta} \cap \gamma_i^1 = C_{f_2,\zeta} \cap \gamma_i^2.$$

Letting $i = \lambda$ and $\zeta = 0$, this shows that $f_1 = f_2$, since $g_{f,0} = f$ for all $f \in {}^{\lambda}2.$

The induction has three cases: i = 0, i limit and i successor. For each $n \in \omega$

we let $\delta_n = \min Cf_1, j_n = \min C_{f_2, j_n}$. Case i = 0. For each $\ell \in \{1, 2\}, \langle C_{f_\ell, j_n} : n < \omega \rangle$ is a \subseteq -decreasing sequence of clubs, so $\gamma_0^{\ell} = \sup\{\delta_n : n < \omega\}$. This shows (a). To see (b), fix $\zeta < j$ and $n \in \omega$ such that $\zeta < j_n$ and if

$$g_{f_1,\zeta} \upharpoonright (\gamma_0^1 \setminus \{0\}) \neq g_{f_2,\zeta} \upharpoonright (\gamma_0^2 \setminus \{0\})$$

then

$$g_{f_1,\zeta} \upharpoonright (\delta_n \setminus \{0\}) \neq g_{f_2,\zeta} \upharpoonright (\delta_n \setminus \{0\})$$

and if

$$C_{f_1,\zeta} \cap \gamma_0^1 \neq C_{f_2,\zeta} \cap \gamma_0^2$$

then

$$C_{f_1,\zeta} \cap \delta_n \neq C_{f_2,\zeta} \cap \delta_n$$

We have assumed that $g_{f_1,j_n} \upharpoonright \delta_n = g_{f_2,j_n} \upharpoonright \delta_n$. Also, for each $\ell \in \{1,2\}$, $\delta_n \in C_{f_\ell, j_n}$, so

$$F(g_{f_{\ell},j_n} \restriction \delta_n) = h_{f_{\ell},j_n}(\delta_n) = H(\langle \alpha, \dots, C_{f_{\ell},\beta} \cap \alpha, g_{f_{\ell},\beta} \restriction (\alpha \setminus \{0\}), \dots \rangle_{\beta < j_n}),$$

where

$$\alpha = \alpha(\delta_n, f_\ell, j_n) = \min[\bigcap_{\beta < j_n} C_{f_\ell, \beta} \setminus (\delta_n + 1)].$$

As H is injective, it follows that

$$g_{f_1,\zeta} \upharpoonright (\delta_n \setminus \{0\}) = g_{f_2,\zeta} \upharpoonright (\delta_n \setminus \{0\})$$

and

$$C_{f_1,\zeta} \cap \delta_n = C_{f_2,\zeta} \cap \delta_n,$$

which means that

$$g_{f_1,\zeta} \upharpoonright (\gamma_0^1 \setminus \{0\}) = g_{f_2,\zeta} \upharpoonright (\gamma_0^2 \setminus \{0\})$$

and

$$C_{f_1,\zeta} \cap \gamma_0^1 = C_{f_2,\zeta} \cap \gamma_0^2.$$

This concludes the proof of the case i = 0.

The case where i is a limit ordinal is immediate.

Finally, suppose that (a) and (b) hold for $i < \lambda$, and let us see that they hold for i + 1. We have that for all $n \in \omega$, $g_{f_1,j_n} \upharpoonright \gamma_0^1 = g_{f_2,j_n} \upharpoonright \gamma_0^2$. Note that γ_0^1 and γ_0^2 are both nonzero, as $0 \notin C_{f,0}$ for all functions $f \in {}^{\lambda}2$. By the induction hypothesis,

$$g_{f_1,j_n} \restriction (\gamma_i^1 \setminus \{0\}) = g_{f_2,j_n} \restriction (\gamma_i^2 \setminus \{0\}).$$

Putting these two facts together, we have that

$$g_{f_1,j_n} \upharpoonright \gamma_i^1 = g_{f_2,j_n} \upharpoonright \gamma_i^2.$$

For $\ell \in \{1,2\}$ we have $\gamma_i^{\ell} \in \bigcap_{n \in \omega} C_{f_{\ell},j_n}$, so for all $n \in \omega$, $F(g_{f_{\ell},j_n} \upharpoonright \gamma_i^{\ell}) = h_{f_{\ell},j_n}(\gamma_i^{\ell})$, which is equal to

$$H(\langle \alpha_n^{\ell}, \dots, C_{f_{\ell},\beta} \cap \alpha_n^{\ell}, g_{f_{\ell},\beta} \upharpoonright (\alpha_n^{\ell} \setminus \{0\}), \dots \rangle_{\beta < j_n}),$$

where $\alpha_n^{\ell} = \alpha(\gamma_i^{\ell}, f_{\ell}, j_n) = \min[\bigcap_{\beta < j_n} C_{f_{\ell}, \beta} \setminus (\gamma_i^{\ell} + 1)]$. As H is injective, it follows that $\alpha_n^1 = \alpha_n^2$ for each $n \in \omega$. Since for each $f \in {}^{\lambda}2$ and each $\beta < \beta' < \lambda$, $C_{f,\beta'}$ is contained in the limits points of $C_{f,\beta}$, it follows that $\langle \alpha_n^{\ell} : n < \omega \rangle$ is increasing for each $\ell \in \{1, 2\}$. It follows furthermore (for the same reason) that for each $\ell \in \{1, 2\}$,

$$\bigcup_{n \in \omega} \alpha_n^{\ell} = \min[\bigcap_{\beta < j_n} C_{f_{\ell},\beta} \setminus (\gamma_i^{\ell} + 1)] = \gamma_{\gamma+1}^{\ell},$$

so $\gamma_{i+1}^1 = \gamma_{i+1}^2$ (which is part (a)). Clause (b) follows from the fact that every $\zeta < j$ is less than some j_n , and the fact that $\gamma_{i+1}^1 = \gamma_{i+1}^2$ is the supremum of the set of ordinals $\alpha_n^1 = \alpha_n^2$ for $n \in \omega$.

0.17 Definition. Given a set X and a cardinal λ , a collection $\mathcal{F} \subseteq [X]^{\lambda}$, is called a (X, λ) -cover if every subset of X of cardinality λ has a superset in \mathcal{F} . We let $\operatorname{cov}(X, \lambda)$ denote the least cardinality of a (X, λ) -cover consisting of sets of cardinality λ .

The following facts are immediate, for sets X and Y and cardinals λ and μ .

- 1. $X \subseteq Y \Rightarrow \operatorname{cov}(X, \lambda) \le \operatorname{cov}(Y, \lambda)$.
- 2. $|X| \le |Y| \Rightarrow \operatorname{cov}(X, \lambda) \le \operatorname{cov}(Y, \lambda).$
- 3. $|X| = |Y| \Rightarrow \operatorname{cov}(X, \lambda) = \operatorname{cov}(Y, \lambda).$
- 4. $\lambda < \mu \Rightarrow \operatorname{cov}(\mu, \lambda) \ge \mu$.
- 5. $\operatorname{cov}(\lambda, \lambda) = 1$.

Lemma 0.18. Suppose that λ and μ are cardinals, and α is an ordinal.

- 1. if $\lambda \leq \mu$, then $cov(\mu^+, \lambda) = cov(\mu, \lambda) + \mu^+$.
- 2. if μ is a limit ordinal, $\lambda < \mu$ and $\langle \mu_i : i < cf(\mu) \rangle$ is an increasing sequence with limit μ and $\mu_0 > \lambda$, then $cov(\mu, \lambda) \leq \prod_{i < cf(\mu)} cov(\mu_i, \lambda)$.

3. $cov(\lambda^{+\alpha}, \lambda) \leq (\lambda^{+\alpha})^{|\alpha|}$.

Proof. For the first conclusion, \geq follows from facts (1) and (4) listed above. The other direction follows from the fact that each subset of μ^+ of cardinality λ is bounded. For the second conclusion, take a product of the covers for each μ_i . For the third conclusion, argue by induction on α . The case $\alpha = 0$ is fact (5) above. To go from β to $\beta + 1$, note that $\operatorname{cov}(\lambda^{\beta+1}, \lambda) = \operatorname{cov}(\lambda^{\beta}, \lambda) + \lambda^{\beta+1}$ (by the first conclusion of this lemma) which is less than or equal to $(\lambda^{\beta})^{|\beta|} + \lambda^{\beta+1}$ (by the induction hypothesis) which is less than or equal to $(\lambda^{\beta+1})^{\beta+1}$. If α is a limit of the sequence $\langle \alpha_i : i < cf(\alpha) \rangle$, then $\operatorname{cov}(\lambda^{+\alpha}, \lambda) \leq \prod_{i < cf(\alpha)} \operatorname{cov}(\lambda^{+\alpha_i}, \lambda)$ (be the second conclusion of this lemma) which is less than or equal to $((\lambda^{+\alpha})^{|\alpha|})^{cf(\alpha)} = (\lambda^{+\alpha})^{|\alpha|}$.

The next five lemmas are the first five parts of Shelah's Lemma 1.14, revised to accommodate the sixth part. In all cases, I believe I have used a hypothesis no stronger than the one used by Shelah.

Lemma 0.19. Suppose that λ and μ are cardinals, with λ regular and uncountable, and let $\bar{\chi} = \langle \chi_i : i < \lambda \rangle$ be a sequence of nonzero cardinals. Let S be a subset of λ , and suppose that $Unif(\lambda, S, \mu, \bar{\chi})$ holds. Then $Unif(\lambda, S, cov(\mu, \lambda), \lambda, \bar{\chi})$ holds.

Proof. Let F witness $\text{Unif}(\lambda, S, \mu, \bar{\chi})$, let $\langle A_i : i < \text{cov}(\mu, \lambda) \rangle$ be a (μ, λ) -cover, and enumerate each A_i by $\langle \alpha_{i,j} : j < \lambda \rangle$. For each $\eta \in D(\text{cov}(\mu, \lambda), \lambda)$, let

$$F^*(\eta) = F(\langle \alpha_{\eta(0),\eta(1+i)} : i < length(\eta) \rangle).$$

Then given $h \in D_{\lambda}(\bar{\chi})$, let $\eta \in D_{\lambda}(\mu)$ be such that $\{i \in S : F(\eta | i) = h(i)\}$ contains a club relative to S. Let $\eta^* \in D_{\lambda}(\operatorname{cov}(\mu, \lambda), \lambda)$ be such that $\operatorname{range}(\eta) \subseteq A_{\eta^*(0)}$ and such that $\eta^*(1+i) = \eta(i)$. Then $F^*(\eta^*|i) = F(\eta|i)$ for all $i \geq \omega$. \Box

Lemma 0.20. Suppose that λ , χ , μ_0 and μ_1 are cardinals, with λ regular and uncountable, $\chi \geq \lambda$ and $cov(\chi, \lambda) \leq \mu_0$. Let S be a subset of λ . Then $Unif(\lambda, S, \mu_0, \mu_1, \chi)$ holds if and only if $Unif(\lambda, S, \mu_0, \mu_1, \lambda)$ holds.

Proof. The forward direction follows from Lemma 0.6 (4). For the reverse direction, let F witness $\operatorname{Unif}(\lambda, S, \mu_0, \mu_1, \lambda)$. Let e_0 and e_1 be functions from μ_0 to μ_0 such that $\alpha \mapsto (e_0(\alpha), e_1(\alpha))$ is a bijection from μ_0 to $\mu_0 \times \mu_0$. Let $\langle A_i : i < \mu_0 \rangle$ be a (χ, λ) -cover, and for each $i < \mu_0$ let $q_i : \lambda \to A_i$ be a bijection. For each $\eta \in D(\mu_0, \mu_1)$, let $k(\eta)$ be the sequence produced by replacing the first member of η with $e_1(\eta(0))$, and let $F^*(\eta) = q_{e_0(\eta(0))}(F(k(\eta)))$. Then given $h \in D(\chi)$, let $i < \lambda$ be such that the range of h is contained in A_i . Then there is an $\eta \in D_\lambda(\mu_0, \mu_1)$ such that $F(\eta \upharpoonright i) = q_i^{-1}(h(i))$ for a club of i relative to S. Let $\eta^* \in D_\lambda(\mu_0, \mu_1)$ be such that $e_0(\eta^*(0)) = i$, $e_1(\eta^*(0)) = \eta(0)$ and $\eta^*(j) = \eta(j)$ for all nonzero j in the domain of η . Then for all $j < \lambda$, $F^*(\eta^* \upharpoonright j) = q_i(F(k(\eta^* \upharpoonright j)))$, which is equal to h(j) for a club of j relative to S.

Lemma 0.21. Suppose that λ , χ , μ_0 and μ_1 are cardinals, with λ regular and uncountable, $\chi \geq \lambda$ and $cov(\chi, \lambda) \leq \mu_0$. Suppose that λ is not a strong limit cardinal, and that $\chi \geq 2$. Let S be a subset of λ . Then $Unif(\lambda, S, \mu_0, \mu_1, \chi)$ holds if and only if $Unif(\lambda, S, \mu_0, \mu_1, 2)$ holds.

Proof. The forward direction follows from Lemma 0.6 (4). For the reverse direction, it suffices to consider the case $\chi = \lambda$, by Lemma 0.20. Since λ is not a strong limit, this case follows from Lemma 0.13 and parts (2) and (4) of Lemma 0.6.

Lemma 0.22. Suppose that λ , μ_0 and μ_1 are cardinals, with λ regular and uncountable, and $\lambda \leq \mu_1$. Let $\bar{\chi} = \langle \chi_i : i < \lambda \rangle$ be a sequence of nonzero cardinals. Let S be a subset of λ , and suppose that $Unif(\lambda, S, \mu_0, \mu_1, \bar{\chi})$ holds. Then $Unif(\lambda, S, \mu_0 + cov(\mu_1, \lambda), \lambda, \bar{\chi})$ holds.

Proof. If $\mu_0 \geq \operatorname{cov}(\mu_1, \lambda)$ then this follows from Lemma 0.6 (4). Supposing otherwse, $\mu_0 + \operatorname{cov}(\mu_1, \lambda) = \mu_0 \cdot \operatorname{cov}(\mu_1, \lambda) = \operatorname{cov}(\mu_1, \lambda)$, so we may fix functions $e_0: \operatorname{cov}(\mu_1, \lambda) \to \mu_0$ and $e_1: \operatorname{cov}(\mu_1, \lambda) \to \operatorname{cov}(\mu_1, \lambda)$ such that $\alpha \mapsto (e_0(\alpha), e_1(\alpha))$ is a bijection from $\operatorname{cov}(\mu_1, \lambda)$ to $\mu_1 \times \operatorname{cov}(\mu_1, \lambda)$. Let F witness Unif $(\lambda, S, \mu_0, \mu_1, \overline{\chi})$, let $\langle A_i: i < \operatorname{cov}(\mu_1, \lambda) \rangle$ be a (μ_1, λ) -cover, and enumerate each A_i by $\langle \alpha_{i,j}: j < \lambda \rangle$. For each $\eta \in D(\operatorname{cov}(\mu, \lambda), \lambda)$, $k(\eta)$ be the sequence obtained by replacing $\eta(0)$ with $e_0(\eta(0))$, and $\eta(i)$ for each nonzero iwith $\alpha_{e_1(\eta(0)),\eta(i)}$, and let

$$F^*(\eta) = F(k(\eta)).$$

Then given $h \in D_{\lambda}(\bar{\chi})$, let $\eta \in D_{\lambda}(\mu_0, \mu_1)$ be such that $\{i \in S : F(\eta | i) = h(i)\}$ contains a club relative to S.

Let $i < \lambda$ be such that the range of η is contained in A_i . Let $\eta^* \in D_\lambda(\mu_0 + \operatorname{cov}(\mu_1, \lambda), \mu_1)$ be such that $e_1(\eta^*(0)) = i$, $e_0(\eta^*(0)) = \eta(0)$ and $\alpha_{i,\eta^*(j)} = \eta(j)$ for all nonzero j in the domain of η . Then for all $j < \lambda$, $F^*(\eta^*|j) = F(k(\eta^*|j))$, which is equal to h(j) for a club of j relative to S.

Lemma 0.23. Suppose that λ , μ_0 and μ_1 are cardinals, with λ regular, uncountable and not a strong limit. Let $\bar{\chi} = \langle \chi_i : i < \lambda \rangle$ be a sequence of nonzero cardinals. Suppose that $\mu_0 \geq cov(\mu_1, \lambda)$ and $\lambda < \mu_1$. Let S be a subset of λ , and suppose that $Unif(\lambda, S, \mu_0, \mu_1, \bar{\chi})$ holds. Then $Unif(\lambda, S, \mu_0, 2, \bar{\chi})$ holds.

Proof. The reverse direction follows from Lemma 0.6 (4). For the forward direction, first note that Lemma 0.22 gives us $\text{Unif}(\lambda, \mu_0, \lambda, \bar{\chi})$ from $\text{Unif}(\lambda, \mu_0, \mu_1, \bar{\chi})$. Then $\text{Unif}(\lambda, \mu_0, 2, \bar{\chi})$ follows from Lemma 0.7, since the two " μ_1 "'s are the same in this case (in checking this fact, it may help to break into cases, depending on whether λ is a strong limit or not).

Let us return now to the second part of Shelah's Remark 1.9A. We want to see that $\operatorname{Unif}(\lambda, S, \mu_0, \mu_1, \bar{\chi}) \Leftrightarrow \operatorname{Unif}(\lambda, S, \mu_0, \mu_0, \bar{\chi})$, when μ_0 and μ_1 are as in Lemma 0.7 and $\operatorname{cov}(\mu_0, \lambda) = \mu_0$. Since $\mu_0 \geq \mu_1$, the forward direction follows from Lemma 0.6 (4). For the other direction, $\operatorname{Unif}(\lambda, S, \mu_0, \mu_0, \bar{\chi})$ implies $\operatorname{Unif}(\lambda, \mu_0, 2, \bar{\chi})$ by Lemma 0.23, and $\operatorname{Unif}(\lambda, \mu_0, 2, \bar{\chi})$ implies $\operatorname{Unif}(\lambda, \mu_0, \mu_1, \bar{\chi})$ by Lemma 0.6 (4). The following is Shelah's Conclusion 1.15.

Conclusion 0.24. Suppose that μ is a cardinal less than \aleph_{ω_1} and that $\mu^{\aleph_0} < 2^{\aleph_1}$. Then $Unif(\omega_1, \mu, \mu, 2)$ fails.

Proof. Suppose that $\text{Unif}(\omega_1, \mu, \mu, 2)$ holds. Then by Lemmas 0.13 and 0.6(2), $\text{Unif}(\omega_1, \mu, \mu, 2^{\aleph_0})$ holds. Then by Lemma 0.19, $\text{Unif}(\omega_1, \text{cov}(\mu, \aleph_1), \aleph_1, 2^{\aleph_0})$ holds. Let $\alpha < \omega_1$ be such that $\mu = \omega_{\alpha}$. Then by Lemma 0.18 (3),

$$\operatorname{cov}(\mu, \omega_1) \leq \aleph_{\alpha}^{|\alpha|} \leq \mu^{\aleph_0} < 2^{\aleph_1},$$

so we can apply Theorem 0.15 with " μ " as $\operatorname{cov}(\mu, \omega_1)$, getting the failure of $\operatorname{Unif}(\omega_1, \operatorname{cov}(\mu, \omega_1), 2^{\aleph_0}, 2^{\aleph_0})$ (note that $2^{<\aleph_1} = 2^{\aleph_0}$) and thereby a contradiction.

Theorem 0.26 below is Shelah's Theorem 1.16, with the hypothesis $\mu > \lambda$ dropped. As we see in the second line of the proof, this hypothesis follows from the other assumptions of the theorem. With this hypothesis removed, Theorem 0.26 is a strengthening our Theorem 0.15 The proof is a modification of the proof of Theorem 0.15.

0.25 Definition. Let $(*)_{2^{\lambda},\mu,\lambda^{+}}$ denote the statement that there exists a family $\{S_i :< 2^{\lambda}\}$ of elements of $[\mu]^{\lambda^{+}}$ such that $|S_i \cap S_j| < \aleph_0$ for all distinct $i, j < 2^{\lambda}$.

Theorem 0.26. Suppose that μ and λ are cardinals, with λ a regular uncountable cardinal. Suppose that $2^{<\lambda} < 2^{\lambda}$ and that $Unif(\lambda, \mu, 2^{<\lambda}, 2^{<\lambda})$ holds. Then $(*)_{2^{\lambda},\mu,\lambda^{+}}$ holds.

Proof. As before, the conclusion is immediate if $\mu \geq 2^{\lambda}$, so assume otherwise. Similarly, by Theorem 0.15, we have that $2^{\lambda} \leq \mu^{\aleph_0}$. Since $(2^{<\lambda})^{\aleph_0} = 2^{<\lambda} < 2^{\lambda}$, it follows that $\mu > 2^{<\lambda}$.¹

For each $\alpha < \lambda^+$, let $\langle B_i^{\alpha} : i < \lambda \rangle$ be a continuous, \subseteq -increasing sequence of sets of cardinality less than λ , with union α .

Let Mod be the set of sequences

$$\langle \alpha, \ldots, \ldots, C_{\beta}, g_{\beta}, \ldots \rangle_{\beta \in B_i^{\alpha}}$$

for some $i < \lambda$, where each g_{β} is a function from $B_i^{\alpha} \setminus \{0\}$ to ${}^{<\lambda}2$, and each C_{β} is a closed subset of *i*. Note that one can recover the corresponding α and *i* from any given member of Mod. Furthermore, Mod has cardinality $2^{<\lambda}$, so we can fix a bijection *H* from Mod to ${}^{<\lambda}2$.

Let F witness $\text{Unif}(\lambda, \mu, 2^{<\lambda}, 2^{<\lambda})$. For each function $f \in {}^{\lambda}2$ we can define by recursion on $\beta < \lambda^+$ functions $h_{f,\beta} \colon \lambda \to {}^{<\lambda}2, g_{f,\beta} \in D_{\lambda}(\mu, 2^{<\lambda})$ and club sets $C_{f,\beta} \subseteq \lambda$ as follows.

$$^{\aleph_0} = \mu + (2^{<\lambda})^{\aleph_0} = \mu + 2^{<\lambda} = \mu < 2^{\lambda} \le \mu^{\aleph_0},$$

giving a contradiction. So $\mu \ge (2^{<\lambda})^{+\omega}$.

μ

¹The proof contains the following observation, which is interesting but doesn't appear to be necessary: By Hausdorff's formula, if κ is a cardinal and n is an integer, then $(\kappa^{+n})^{\aleph_0} = \kappa^{+n} + \kappa^{\aleph_0}$. If $\mu = (2^{<\lambda})^n$ for some integer n, then,

- $h_{f,0} = g_{f,0} = f$ and $C_{f,0} = \lambda \setminus \{0\};$
- for $\lambda > 0$:

$$-h_{f,\gamma}(i) = H(\langle \alpha, \dots, C_{f,\beta} \cap \alpha, g_{f,\beta} \upharpoonright (\alpha \setminus \{0\}), \dots \rangle_{\beta \in B_i^{\gamma}}, \text{ where } \alpha = \alpha(i, f, \gamma) = \min \bigcap_{\beta \in B_i^{\gamma}} C_{f,\beta} \setminus (i+1);$$

 $-g_{f,\gamma}$ is such that some club C is subset of

$$\{\delta < \lambda \mid F(g_{f,\gamma} \restriction \delta) = h_{f,\gamma}(\delta)\},\$$

and $C_{f,\gamma}$ is the set δ which are of limits points of C and of every $C_{f,\beta}$ with $\beta \in B^{\gamma}_{\delta}$.

The key claim is the following: if $f_0 \in {}^{\lambda}2$ and $\langle j_n : n < \omega \rangle$ is an increasing sequence of elements of λ , then

$$|\{f \in {}^{\lambda}2 : \forall n \in \omega \, g_{f,j_n}(0) = g_{f_0,j_n}(0)\}| \le 2^{<\lambda}.$$

Given the claim, the remainder of the proof is as follows. For each $f_0: \lambda \to 2$, let

$$Y'_{f_0} = \{ f \in {}^{\lambda}2 : |\{j < \lambda^+ : g_{f,j}(0) = g_{f_0,j}(0)\}| \ge \aleph_0 \}.$$

The set of increasing ω -sequences from λ^+ has cardinality $(\lambda^+)^{\aleph_0}$, which (since λ is regular and uncountable) is at most $2^{<\lambda} + \lambda^+$, which (since $\lambda < \mu < 2^{\lambda}$) is less than 2^{λ} . Furthermore, for each $f_0 \in {}^{\lambda}2$, $|Y'_{f_0}|$ has cardinality at most $(\lambda^+)^{\aleph_0} \times 2^{<\lambda}$, which is also less than 2^{λ} .² The set of pairs $(f_0, f_1) \in {}^{\lambda}2$ such that $f_0 \in Y'_{f_1}$ forms an equivalence relation on ${}^{\lambda}2$. Let F^* be a subset of ${}^{\lambda}2$ which intersects each equivalence class in exactly one point. Since each equivalence class has cardinality less than 2^{λ} , $|F^*| = 2^{\lambda}$. Then

$$\{\{(g_{f,j}(0), j) : j < \lambda^+\} : f \in F^*\}$$

is a family of 2^{λ} many subsets of $\mu \times \lambda^+$ of cardinality λ^+ , having pairwise finite intersection. This finishes the proof of the theorem, assuming the claim.

Finally, we prove the claim. To do this, suppose towards a contradiction that $f_0 \in {}^{\lambda}2$ and $\langle j_n : n \in \omega \rangle$ witness the failure of the claim. Let

$$Y_{f_0} = \{ f \in {}^{\lambda}2 : \forall n \in \omega \, g_{f,j_n}(0) = g_{f_0,j_n}(0) \},\$$

which by our assumption has cardinality greater than $2^{<\lambda}$. Choose $i < \lambda$ large enough so that $j_n \in B(j_m, i)$ whenever n < m. For each $f \in Y_{f_0}$, let $\alpha(f) = \min \bigcap_{n < \omega} C_{f,j_n} \setminus (i+1)$. Define an equivalence relation E on Y_{f_0} by setting $f_1 E f_2$ if and only if and for all $n < \omega$,

- $\alpha(f_1) = \alpha(f_2);$
- $f_1 \upharpoonright \alpha(f_1) = f_2 \upharpoonright \alpha(f_2);$

²Here our calculation is different from Shelah's.

• for all $n < \omega$,

$$-g_{f_1,j_n} \restriction \alpha(f_1) = g_{f_2,j_n} \restriction \alpha(f_2);$$

$$-C_{f_1,j_n} \restriction \alpha(f_1) = C_{f_2,j_n} \restriction \alpha(f_2).$$

Then E is an equivalence relation with at most $\lambda \times (2^{<\lambda})^{\aleph_0} \times (2^{<\lambda})^{\aleph_0} = 2^{<\lambda}$ classes, so there are distinct functions f_1 and f_2 from λ to 2 such that $f_1 E f_2$.

Let j be the supremum of $\{j_n : n < \omega\}$. For each $\ell \in \{1, 2\}$, let $C^{\ell} =$ $\bigcap_{n < \omega} C_{f_{\ell}, j_n}$ and let $\langle \gamma_i^{\ell} : i < \lambda \rangle$ be an increasing enumeration of C^{ℓ} . For notational convenience, let $\gamma_{\lambda}^{\ell} = \lambda$ for $\ell \in \{1, 2\}$.

We prove by induction on $i \leq \lambda$ that

- a) $\gamma_i^1 = \gamma_i^2;$
- b) for all $\zeta < j$,

$$g_{f_1,\zeta} \upharpoonright (\gamma_i^1 \setminus \{0\}) = g_{f_2,\zeta} \upharpoonright (\gamma_i^2 \setminus \{0\})$$

and

$$C_{f_1,\zeta} \cap \gamma_i^1 = C_{f_2,\zeta} \cap \gamma_i^2.$$

Letting $i = \lambda$ and $\zeta = 0$, this shows that $f_1 = f_2$ (since $g_{f,0} = f$ for all $f \in {}^{\lambda}2$), giving a contradiction and thereby proving the claim.

The induction has three cases: i = 0, i limit and i successor. For each $n \in \omega$

we let $\delta_n = \min C_{j_n}^0 = \min C_{j_n}^1$. Case i = 0. For each $\ell \in \{1, 2\}$, $\langle C_{f_{\ell}, j_n} : n < \omega \rangle$ is a \subseteq -decreasing sequence of clubs, so $\gamma_0^{\ell} = \sup\{\delta_n : n < \omega\}$. This shows (a). To see (b), fix $\zeta < j$ and $n \in \omega$ such that $\zeta < \mathbf{j}_n$ and if

$$g_{f_1,\zeta} \upharpoonright (\gamma_0^1 \setminus \{0\}) \neq g_{f_2,\zeta} \upharpoonright (\gamma_0^2 \setminus \{0\})$$

then

$$g_{f_1,\zeta} \upharpoonright (\delta_n \setminus \{0\}) \neq g_{f_2,\zeta} \upharpoonright (\delta_n \setminus \{0\})$$

and if

$$C_{f_1,\zeta} \cap \gamma_0^1 \neq C_{f_2,\zeta} \cap \gamma_0^2$$

then

$$C_{f_1,\zeta} \cap \delta_n \neq C_{f_2,\zeta} \cap \delta_n.$$

We have assumed that $g_{f_1,j_n} | \delta_n = g_{f_2,j_n} | \delta_n$. Also, for each $\ell \in \{1,2\}$, $\delta_n \in C_{f_\ell, j_n}$, so

$$F(g_{f_{\ell},j_n} \restriction \delta_n) = h_{f_{\ell},j_n}(\delta_n) = H(\langle \alpha, \dots, C_{f_{\ell},\beta} \cap \alpha, g_{f_{\ell},\beta} \restriction (\alpha \setminus \{0\}), \dots \rangle_{\beta \in B^{j_n}_{\delta_n}}),$$

where

$$\alpha = \alpha(\delta_n, f_\ell, j_n) = \min[\bigcap_{\beta \in B^{j_n}_{\delta_n}} C_{f_\ell, \beta} \setminus (\delta_n + 1)].$$

As H is injective, it follows that

$$g_{f_1,\zeta} \upharpoonright (\delta_n \setminus \{0\}) = g_{f_2,\zeta} \upharpoonright (\delta_n \setminus \{0\})$$

$$C_{f_1,\zeta} \cap \delta_n = C_{f_2,\zeta} \cap \delta_n,$$

which means that

$$g_{f_1,\zeta} \upharpoonright (\gamma_0^1 \setminus \{0\}) = g_{f_2,\zeta} \upharpoonright (\gamma_0^2 \setminus \{0\})$$

and

and

$$C_{f_1,\zeta} \cap \gamma_0^1 = C_{f_2,\zeta} \cap \gamma_0^2.$$

This concludes the proof of the case i = 0.

The case where i is a limit ordinal is immediate.

Finally, suppose that (a) and (b) hold for $i < \lambda$, and let us see that they hold for i + 1. We have that for all $n \in \omega$, $g_{f_1,j_n} \upharpoonright \gamma_0^1 = g_{f_2,j_n} \upharpoonright \gamma_0^2$. Note that γ_0^1 and γ_0^2 are both nonzero, as $0 \notin C_{f,0}$ for all functions $f \in {}^{\lambda}2$. By the induction hypothesis,

$$g_{f_1,j_n} \restriction (\gamma_i^1 \setminus \{0\}) = g_{f_2,j_n} \restriction (\gamma_i^2 \setminus \{0\}).$$

Putting these two facts together, we have that

$$g_{f_1,j_n} \upharpoonright \gamma_i^1 = g_{f_2,j_n} \upharpoonright \gamma_i^2.$$

For $\ell \in \{1,2\}$ we have $\gamma_i^{\ell} \in \bigcap_{n \in \omega} C_{f_{\ell},j_n}$, so for all $n \in \omega$, $F(g_{f_{\ell},j_n} \upharpoonright \gamma_i^{\ell}) = h_{f_{\ell},j_n}(\gamma_i^{\ell})$, which is equal to

$$H(\langle \alpha_n^{\ell}, \dots, C_{f_{\ell},\beta} \cap \alpha_n^{\ell}, g_{f_{\ell},\beta} \upharpoonright (\alpha_n^{\ell} \setminus \{0\}), \dots \rangle_{\beta \in B_{\delta_n}^{j_n}}),$$

where $\alpha_n^{\ell} = \alpha(\gamma_i^{\ell}, f_{\ell}, j_n) = \min[\bigcap_{\beta \in B_{\delta_n}^{j_n}} C_{f_{\ell},\beta} \setminus (\gamma_i^{\ell} + 1)]$. As H is injective, it follows that $\alpha_n^1 = \alpha_n^2$ for each $n \in \omega$. Since for each $f \in {}^{\lambda}2$ and each $\beta < \beta' < \lambda$, $C_{f,\beta'}$ is contained in the limits points of $C_{f,\beta}$, it follows that $\langle \alpha_n^{\ell} : n < \omega \rangle$ is increasing for each $\ell \in \{1, 2\}$. It follows furthermore (for the same reason) that for each $\ell \in \{1, 2\}$,

$$\bigcup_{n\in\omega}\alpha_n^\ell = \min[\bigcap_{\beta< j} C_{f_\ell,\beta} \setminus (\gamma_i^\ell + 1)] = \gamma_{\gamma+1}^\ell,$$

so $\gamma_{i+1}^1 = \gamma_{i+1}^2$ (which is part (a)). Clause (b) follows from the fact that every $\zeta < j$ is less than some j_n , and the fact that $\gamma_{i+1}^1 = \gamma_{i+1}^2$ is the supremum of the set of ordinals $\alpha_n^1 = \alpha_n^2$ for $n \in \omega$.

Conclusion 0.27. If λ is regular and uncountable, μ is a cardinal such that $2^{<\lambda} \leq \mu < 2^{\lambda}$ and $cov(\mu, \lambda) < 2^{\lambda}$, then $Unif(\lambda, \mu, \mu, 2)$ fails.

The following is Definition 5.1 of Chapter 1 of [1].

0.28 Definition. Given cardinals α , β , δ and γ , $\operatorname{cov}(\alpha, \beta, \delta, \gamma)$ is the least cardinal μ such that there is a family P consisting of μ many subsets of α , each of cardinality less than β , such that for every $t \subseteq \alpha$ of cardinality less than δ , t is contained in the union of a subfamily of P of cardinality less than γ .

Note that $\operatorname{cov}(\mu, \lambda^+, \lambda^+, 2)$ is the same as our $\operatorname{cov}(\mu, \lambda)$. Also, $\operatorname{cov}(\lambda, \kappa, \kappa, 2) \leq \mu$ follows trivially from $|\mathcal{S}_{<\kappa^+}(\lambda)| = \lambda^{\kappa} \leq 2^{<\lambda} \leq \mu$, which holds in the context of Conclusion 0.27 $(\mathcal{S}_{<\kappa^+}(\lambda))$ is the set of subsets of λ of cardinality less than κ^+).

The proof of Conclusion 0.27 uses Theorem 2.1(2) of [2].

Theorem 0.29. If $\mu > \lambda \geq \kappa$, $\theta = cov(\mu; \lambda^+, \lambda^+, \kappa)$, $cov(\lambda, \kappa, \kappa, 2) \leq \mu$ ($or \leq \theta$) and $\lambda \geq 2^{<\kappa}$ (or just $\theta \geq 2^{<\kappa}$) then $cov(\mu, \lambda^+, \lambda^+, 2)^{<\kappa} = cov(\mu, \lambda^+, \lambda^+, 2)$.

Proof of Conclusion 0.27. If $\text{Unif}(\lambda, \mu, \mu, 2)$ holds, then by Lemmas 0.6(2) and 0.13, $\text{Unif}(\lambda, \mu, \mu, 2^{<\lambda})$ holds. Then by Lemma 0.19, $\text{Unif}(\lambda, \operatorname{cov}(\mu, \lambda), \lambda, 2^{<\lambda})$ holds, and by Lemma 0.6(4), $\text{Unif}(\lambda, \operatorname{cov}(\mu, \lambda), 2^{<\lambda}, 2^{<\lambda})$ holds. By Lemma 0.26, $(*)_{2^{\lambda}, \operatorname{cov}(\mu, \lambda), \lambda^{+}}$ holds.

By Lemma 0.15, $\operatorname{cov}(\mu, \lambda)^{\aleph_0} \geq 2^{\lambda}$. By Theorem 2.1(2) of [2] (and the remarks before this proof), $\operatorname{cov}(\mu, \lambda)^{\aleph_0} = \operatorname{cov}(\mu, \lambda)$, which contradicts $\operatorname{cov}(\mu, \lambda)^{\aleph_0} \geq 2^{\lambda} > \operatorname{cov}(\mu, \lambda)$.

The assumptions for the second part of the following conclusion seem to assume that $2^{\theta} \leq \mu$. I don't see why this should necessarily be true.

Conclusion 0.30. If $\theta < \lambda$ are regular cardinals, $2^{\theta} = 2^{<\lambda} < 2^{\lambda}$ and μ is a cardinal such that $\lambda \leq \mu < 2^{\lambda}$ and $(*)_{2^{\lambda},\mu,\lambda^{+}}$ fails, then

- 1. $Unif(\lambda, \mu, 2^{\theta}, 2^{\theta})$ fails;
- 2. if $cov(\mu, \lambda) \leq \mu$ (or just $cov(2^{\theta}, \lambda) \leq \mu$ (??)) then $Unif(\lambda, \mu, \mu, \lambda)$ fails.

Proof. The first part follows immediately from Theorem 0.26, once we know that $\mu > \lambda$. In any case, the failure of part one would give $\mu^{\aleph_0} \ge 2^{\lambda}$. If $\mu = \lambda$, this would contradict the assumptions that λ has uncountable cofinality and that $2^{\lambda} > 2^{<\lambda}$.

For the second part, assuming $cov(\mu, \lambda) \leq \mu$, $Unif(\lambda, \mu, \mu, \lambda)$ is the same as $Unif(\lambda, \mu, \mu, 2^{\theta})$, by Lemma 0.20. (??)

I assume that the λ in the (original) first part of the following conclusion is supposed to be 2^{λ} , otherwise the first part is trivial, by the first line.

Conclusion 0.31. If $\theta < \lambda$ are regular cardinals, $2^{\theta} = 2^{<\lambda} < 2^{\lambda}$ and $\theta \geq \beth_{\omega}$ then

- 1. for every $\mu < \lambda$, $Unif(\lambda, \mu, 2^{\theta}, 2^{\theta})$ fails;
- 2. if $cov(\mu, \lambda) < 2^{\lambda}$ then $Unif(\lambda, \mu, 2^{\theta}, \lambda)$ fails.

Proof. Theorem 1.10 gives us the first part, unless $\mu^{\aleph_0} \geq 2^{\lambda}$, so assume this to be the case. This also implies that $\mu > 2^{\theta}$. By Conclusion 0.30 then it suffices to show that $(*)_{2^{\lambda},\mu,\lambda^+}$ fails. This follows from the main result of [3], which says (using $\mu \geq \theta \geq 1$) that $\mu^{[\kappa]} = \mu$ for all sufficiently large regular cardinals $\kappa \leq \beth_{\omega}$, where $\mu^{[\kappa]}$ is the smallest cardinality of a subset \mathcal{P} of $\mathcal{S}_{\leq\kappa}(\mu)$ such that every member of $\mathcal{S}_{\leq\kappa}(\mu)$ is included in a union of less than κ many members of \mathcal{P} . To see that this suffices, suppose that \mathcal{P} is such a set for some such κ , and let \mathcal{P}_1 be the set of subsets of members of \mathcal{P} of cardinality κ . Then \mathcal{P}_1 has cardinality at most $\mu \times 2^{\kappa} \leq \mu + \beth_{\omega} = \mu$. If $\{S_i : i < 2^{\lambda}\}$ witnesses $(*)_{2^{\lambda},\mu,\lambda^+}$ we can pick for each $i < 2^{\lambda}$ an $a_i \in [S_i]^{\kappa}$, a $\zeta_i^* < \kappa$ and $b_{i,\zeta} \in \mathcal{P}$ for $\zeta < \zeta_i^*$ such that $a_i \subseteq \bigcup_{\zeta < \zeta_i^*} b_{i,\zeta}$. For each $i < 2^{\lambda}$, there is a c_i which is a subset of $a_i \cap b_{i,\zeta}$ of cardinality κ , for some $\zeta < \zeta_i^*$. Each $c_i \in \mathcal{P}_i$, and as $|\mathcal{P}_i| \leq \mu < 2^{\lambda}$, two distinct c_i 's must be the same, contradicting the assumption on $\{S_i : i < 2^{\lambda}\}$. The second part follows from the first part and Conclusion 0.30 (2). (??)

Shelah notes that (even for smaller λ ?) it is not clear if $(*)_{2^{\lambda},\mu,\lambda^{+}}$ is con-

sistent with ZFC.

References

- [1] S. Shelah, Cardinal Arithmetic, Clarendon Press, Oxford, 1994
- [2] S. Shelah, Further cardinal arithmetic, Israel J Math 95 (1996) 61-114
- [3] S. Shelah, The Generalized Continuum Hypothesis revisited, Israel J Math 116 (2000) 285-321