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Abstract

Suppose that we are given a family of choice functions on pairs from a given
finite set. The set is considered as a set of alternatives (say candidates for an
office) and the functions as potential “voters.” The question is, what choice
functions agree, on every pair, with the majority of some finite subfamily of
the voters? For the problem as stated, a complete characterization was given
in Shelah [1], but here we allow voters to abstain. Aside from the trivial case,
the possible families of (partial) choice functions break into three cases in terms
of the functions that can be generated by majority decision. In one of these,
cycles along the lines of Condorcet’s paradox are avoided. In another, all partial
choice functions can be represented.
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1. Introduction

Condorcet’s “paradox” demonstrates that given three candidates A, B, and
C, majority rule may result in the society preferring A to B, B to C, and C to
A [2]. McGarvey [3] proved a far-reaching extension of Condorcet’s paradox:
For every asymmetric relation R (so a R b implies b 6R a) on a set X of n
candidates, there are m linear order relations on X: R1, . . . , Rm, with R as
their strict simple majority relation. That is, for every a, b ∈ X,

a R b ⇐⇒ |{i : a Ri b}| >
m

2
.
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In other words, given any set of choices from pairs from a set of n candidates,
there is a population of m voters, all with simple linear-order preferences among
the candidates, who will yield the given outcome for each pair in a majority-rule
election between them.

McGarvey’s proof gave m = n(n − 1). Stearns [4] found a construction
with m = n and noticed that a simple counting argument implies that m must
be at least n

log n . Erdős and Moser [5] were able to give a construction with

m = O
(

n
log n

)
. Mala [6] and Alon [7] showed that there is a positive constant

c1 such that, given any asymmetric relation R, there is some m and linear orders
R1, . . . , Rm with

a R b ⇐⇒ |{i : a Ri b}| >
m

2
+ c1
√
m

and that this is not true for any c2 greater than c1.
Gil Kalai asked to what extent the assertion of McGarvey’s theorem holds if

we replace the linear orders by an arbitrary isomorphism class of choice functions
on pairs of elements. Namely, when can we guarantee that every asymmetric
relation R on X could result from a finite population of voters, each using a
given kind of asymmetric relation on X?

Informally, one may think of the situation we study here as follows. Imagine
that we have n candidates running for office, and that each voter votes in a
two-step process as follows. First, the voter chooses one element from a set of
ballot types, which are partial tournaments (or asymmetric relations) with n
vertices. Then, having chosen a ballot type, the voter labels the corresponding
vertices with the names of the candidates, in such a way that an edge from
candidate A to candidate B indicates a preference for A over B (of course, not
all ballot types allow one to express one’s preferences, but for the purposes of
this illustration we assume that each voter does the best he or she can with the
available options). The outcome of the election is the partial tournament with
a node for each candidate and an edge from A to B if more voters had edges
from A to B on their ballots than had the reverse. The question we address
here is, what sets of ballot types can generate which partial tournaments via
this process, allowing any number of voters? As we shall see, the nontrivial sets
of ballot types (or, kinds of symmetric relations, as above) fall into three classes
(see Main Claim 3.1 and the last paragraph of this introduction). Among these
are the partisan case, in which voters are offered the chance to separate out a
preferred subset of the candidates (which is how elections are often run, with
the preferred set having size 1). We will show that the partisan case is the only
one that does not lead to paradoxical results (i.e., directed cycles). We will also
characterize the sets of ballot types which allow every partial tournament to be
generated.

More formally, we use the following terminology. Let
(
X
k

)
denote the family

of subsets of X with k elements:(
X

k

)
= {Y ⊆ X : |Y | = k}.
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Either an individual voter’s preferences among candidates, or the outcomes that
would result from each two-candidate election, may be represented as any of:

• An asymmetric relation R where a R b if and only if a beats b; it is possible
that a 6R b, b 6R a, and a 6= b.

• A choice function defined on some subfamily of
(
X
2

)
, choosing the winner

in each pair. Such a choice function is called “full” if its domain is all of(
X
2

)
, and “partial” otherwise.

• An oriented graph, i.e. a directed graph with nodes X and edges a → b
when a beats b.

We shall treat these representations as largely interchangeable throughout this
paper. Total asymmetric relations, full choice functions, and tournaments (com-
plete oriented graphs) all correspond to the case of no abstaining. Using notation
from Shelah [1], we will let Tor(c) denote the oriented graph (i.e., partial tour-
nament) associated with a choice function c. For any set X, c 7→ Tor(c) is a
bijection of full choice functions onto tournaments on X, and a bijection of all
choice functions onto oriented graphs on X.

For the rest of this paper, we fix a finite set X. We let n (as opposed to n,
which is used as a variable) denote the size of X, and assume that n ≥ 3. We let
C denote the set of choice functions on pairs from X, that is, the set of functions
c : Y → X where Y ⊆

(
X
2

)
and c{x, y} ∈ {x, y} for all {x, y} ∈ Y . When c{x, y}

is not defined it is interpreted as abstention or having no preference.

Definition 1.1. (a) Per(X) is the set of permutations of X.

(b) A choice function d is a permutation of a choice function c if there is σ ∈
Per(X) such that

d{σ(x), σ(y)} = σ(x) ⇐⇒ c{x, y} = x;

we write d = cσ.

(c) A set of choice functions C ⊆ C is symmetric if it is closed under permuta-
tions of X. So for each σ ∈ Per(X), if c ∈ C then cσ ∈ C .

Note that a choice function d is a permutation of a choice function c if and
only if Tor(c) and Tor(d) are isomorphic directed graphs. Symmetric sets of
choice functions are what was meant above by “kind of asymmetric relation.”

The main result of Shelah [1] pertained to full choice functions for the voters.
It was shown that an arbitrary choice function d could result from a symmetric
set C consisting of full choice functions (i.e. for each d there is a finite set
{c1, . . . , cm} ⊆ C such that d{x, y} = x ⇐⇒ |{i : ci{x, y} = x}| > m

2 ) if and
only if for some c ∈ C and x ∈ X,

|{y : c{x, y} = y}| 6= n− 1

2
.

We shall call this condition “imbalance.”

3



Definition 1.2. For a choice function c,

(a) Let dom(c) denote the domain of c.

(b) for any pair (x, y) in X2, the weight of x over y for c is

W x
y (c) =


1 if c{x, y} = x

0 if {x, y} /∈ dom c

−1 if c{x, y} = y

(c) c is balanced if for all x ∈ X ∑
y∈X

W x
y (c) = 0.

That is, |{y : c{x, y} = x}| = |{y : c{x, y} = y}|, for every x in X.

(d) c is unbalanced if c is not balanced.

(e) c is pseudo-balanced if every edge of Tor(c) belongs to a directed cycle.

Gil Kalai further asked whether the number m can be given bounds in terms
of n, and what is the result of demanding a “non-trivial majority,” e.g. 51%.
We shall consider loose bounds while addressing the general case, when voters
are permitted to abstain.

To determine what symmetric sets of partial choice functions could produce
an arbitrary outcome, we shall characterize the set of all possible outcomes of
a symmetric set of choice functions, the “majority closure” maj-cl(C ). The
symmetric set C satisfies this extension to McGarvey’s theorem if and only if
maj-cl(C ) = C.

Definition 1.3. For C ⊆ C, let maj-cl(C ) be the set of d ∈ C such that, for
some set of weights {rc ∈ [0, 1]Q : c ∈ C } with

∑
c∈C rc = 1,

d{x, y} = x ⇐⇒
∑
c∈C

W x
y (c)rc > 0.

Here and throughout this paper, [0, 1]Q refers to the rationals in the unit
interval of the real line. Note that we cannot assume that maj-cl(maj-cl(C )) =
maj-cl(C ), and in fact we shall see this is not true. We must show that each
function d in the majority closure, thus defined, can in fact be the outcome of
a finite collection of voters using choice functions in C ; this is Claim 2.6.

Shelah [1] gave a characterization of maj-cl(C ) for nonempty symmetric sets
of full choice functions; there are just two cases. If some c ∈ C is unbalanced,
then maj-cl(C ) = C; if every c ∈ C is balanced, then maj-cl(C ) is the set of
all pseudo-balanced functions. The situation with possible abstention is more
complicated; there are three nontrivial cases, see Main Claim 3.1. Unlike in
Shelah [1], it is possible to have nontrivial C for which maj-cl(C ) contains no
directed cycles; this happens if and only if C is partisan (see Definitions 2.3 and
2.4).
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2. Basic Definitions and Facts

In addition to the representations as relations, choice functions, or oriented
graphs discussed above, we shall also find it convenient to map each choice
function c to a sequence in [−1, 1]Q indexed by X2, the “probability sequence”

pr(c) = 〈W x
y (c) : (x, y) ∈ X2〉.

Let pr(C ) be {pr(c) : c ∈ C }, and pr(X) denote the set of all sequences t̄ in

[−1, 1]X
2

Q such that tx,y = −ty,x; pr(X) contains pr(C).

Definition 2.1. For a probability sequence t̄ ∈ pr(X),

(a) t̄ is balanced if for each x ∈ X,
∑
y∈X tx,y = 0.

(b) maj(t̄) is the c ∈ C such that c{x, y} = x ⇐⇒ tx,y > 0.

Note that maj and pr are mutually inverse functions from C to pr(C); c =
maj(pr(c)) and t̄ = pr(maj(t̄)) for all c ∈ C and t̄ ∈ pr(C). The function maj is
also defined on the much larger set pr(X), which it maps onto C. The reason
for reusing the name “balanced” is clear:

Claim 2.2. If c ∈ C is a balanced choice function, then pr(c) is a balanced
probability sequence. If t̄ ∈ pr(C) is a balanced probability sequence, then maj(t̄)
is a balanced choice function.

Proof. Suppose c ∈ C is balanced. For every x ∈ X,
∑
y∈XW

x
y (c) = 0. The

(x, y)-term of pr(c) is W x
y (c), so

∑
y∈X pr(c)x,y = 0, i.e. pr(c) is balanced.

Now suppose t̄ ∈ pr(C) is balanced. Then t̄ = pr(c) for some c ∈ C. Since
tx,y = W x

y (c), ∑
y∈X

W x
y (c) =

∑
y∈X

tx,y = 0

and c is balanced.

However, it is not the case that maj(t̄) is balanced for every balanced t̄ ∈
pr(X). For instance, choose x, z ∈ X and define a sequence t̄ which has tz,x = 1,
tx,z = −1; for all y /∈ {x, z}

tx,y = ty,z =
1

n− 2
,

ty,x = tz,y =
−1

n− 2
;

and for all other pairs (u, v), tu,v = 0. One may check that t̄ is balanced, yet
maj(t̄) has

∑
y∈XW

x
y (maj(t̄)) = n− 3 > 0 for any X with at least 4 elements.

Definition 2.3. For a choice function c ∈ C,

(a) c is partisan if there is nonempty W ( X such that

c{x, y} = x ⇐⇒ x ∈W and y /∈W.
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(b) c is tiered if there is a partition {X1, X2, . . . , Xk} of X such that c{x, y} = x
if and only if x ∈ Xi, y ∈ Xj , and i > j. We say c is k-tiered where the
partition has k sets. (So a partisan function is 2-tiered.)

(c) c is chaotic if it is both unbalanced and nonpartisan.

Definition 2.4. For a subset C ⊆ C,

(a) C is trivial if C = ∅ or C = {c} where dom c = ∅, i.e. c makes no decisions.

(b) C is balanced if every c ∈ C is balanced.

(c) C is partisan if every c ∈ C is partisan.

(d) C is chaotic if there is some chaotic c ∈ C .

(e) pr-cl(C ) is the convex hull of pr(C ), i.e.

pr-cl(C ) =

{
k∑
i=1

rit̄i : k ∈ N, ri ∈ [0, 1]Q,

k∑
i=1

ri = 1, t̄i ∈ pr(C )

}
.

We can now establish some straightforward results which allow us to describe
the possible outcomes due to voters chosen from a given symmetric set more
explicitly.

Claim 2.5. If C is a symmetric subset of C, then d is the strict simple majority
outcome of some finite set {c1, . . . , cm} chosen from C if and only if

d{x, y} = x ⇐⇒
m∑
i=1

W x
y (ci) > 0.

Proof. We have that d is the strict simple majority outcome if and only if

d{x, y} = x ⇐⇒ |{i : ci{x, y} = x}| > |{i : ci{x, y} = y}|

⇐⇒
m∑
i=1

W x
y (ci) > 0.

Claim 2.6. Suppose that C is a symmetric subset of C. Then d ∈ maj-cl(C ) if
and only if d is a strict simple majority outcome of some {c1, . . . , cm} ⊆ C .

Proof. If d ∈ C and there is a set {c1, . . . , cm} ⊆ C with d as their strict simple
majority outcome, then for each c ∈ C let rc be the number of times that c
appears among the ci, divided by m:

rc =
|{i : ci = c}|

m
.

Clearly,
∑
c∈C rc = 1, and, for each c ∈ C , 0 ≤ rc ≤ 1. Furthermore,

d{x, y} = x ⇐⇒
m∑
i=1

W x
y (ci) > 0 ⇐⇒

m∑
i=1

W x
y (ci)

m
> 0 ⇐⇒

∑
c∈C

W x
y (c)rc > 0.
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Conversely, suppose d ∈ maj-cl(C ). There are rc = ac
bc

for each c ∈ C with∑
rc = 1, and

d{x, y} = x ⇐⇒
∑
c∈C

W x
y (c)rc > 0.

Let m = lcm{bc : c ∈ C }. Now construct a finite set {c1, . . . , cm} by taking
ac

m
bc

copies of each c ∈ C . m
bc

is an integer since bc | m. Now for each c ∈ C ,∑
ci=c

W x
y (ci) = W x

y (c) · |{i : ci = c}| = W x
y (c)ac

m

bc
= W x

y (c)rcm.

So

m∑
i=1

W x
y (ci) =

∑
c∈C

∑
ci=c

W x
y (ci) =

∑
c∈C

W x
y (c)rcm.∑

c∈C

W x
y (c)rcm > 0 ⇐⇒

∑
c∈C

W x
y (c)rc > 0,

so d is the simple majority relation of the ci.

Claim 2.7. For any symmetric C ⊆ C, maj-cl(C ) = {maj(t̄) : t̄ ∈ pr-cl(C )}.

Proof. Suppose d ∈ maj-cl(C ). Then there are rc per c ∈ C with
∑
c∈C rc = 1

and
d{x, y} = x ⇐⇒

∑
c∈C

rcW
x
y (c) > 0.

Let t̄ =
∑
c∈C rc pr(c) be a probability sequence in pr-cl(C ). Then

tx,y =
∑
c∈C

rc pr(c)x,y =
∑
c∈C

rcW
x
y (c).

So
maj(t̄){x, y} = x ⇐⇒

∑
c∈C

rcW
x
y (c) > 0,

i.e. d = maj(t̄).
Suppose d = maj(t̄) for some t̄ ∈ pr-cl(C ). Then for some rc with

∑
c∈C rc =

1, d = maj
(∑

c∈C rc pr(c)
)
.

d{x, y} = x ⇐⇒
∑
c∈C

rc pr(c)x,y > 0 ⇐⇒
∑
c∈C

rcW
x
y (c) > 0.

So d ∈ maj-cl(C ).
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3. A Characterization

Main Claim 3.1. Given a symmetric C ⊆ C,

(i) C is trivial ⇐⇒ maj-cl(C ) is trivial.

(ii) C is balanced but nontrivial ⇐⇒ maj-cl(C ) is the set of all pseudo-
balanced choice functions on X.

(iii) C is partisan and nontrivial ⇐⇒ maj-cl(C ) is the set of all tiered choice
functions on X.

(iv) C is not balanced and not partisan ⇐⇒ maj-cl(C ) = C.

Proof. No nontrivial C is both balanced and partisan, so the sets

{C ⊂ C : C is trivial},
{C ⊂ C : C is symmetric, nontrivial, and balanced},
{C ⊂ C : C is symmetric, nontrivial, and partisan}, and

{C ⊆ C : C is symmetric, not balanced, and not partisan}

partition the family of all symmetric subsets of C. Thus proving each forward
implication in the claim will give the reverse implications.

i. If no-one in C makes any choices, no combination can have a majority
choice.

ii. This is the content of Section 4, below.
iii. It is shown in Inada [8] (using different terminology) that if C is parti-

san and nontrivial then every element of maj-cl(C ) is a tiered choice function.
We give an alternate proof. Suppose that C is partisan and d ∈ maj-cl(C ).
Then there is a finite set {c1, . . . , cm} ⊆ C with d as the strict simple majority
outcome. For each x ∈ X, let kx be the number of ci such that x is in the
“winning” partite set. For any (x, y) ∈ X2, let k be the number of ci where
x and y are both in the winning subset; the number of ci with ci{x, y} = x is
kx − k, and the number with ci{x, y} = y is ky − k, so

d{x, y} = x ⇐⇒ kx − k > ky − k ⇐⇒ kx > ky.

Partition X into subsets for each value of kx,

X =
⋃
{{x ∈ X : kx = k} : k ∈ {kx : x ∈ X}}.

These subsets form the tiers, so d is a tiered function.
For the reverse inclusion, suppose d is an arbitrary tiered function with tiers

{X1, . . . , Xk}. Let c ∈ C . For each x ∈ X, let Γx ⊂ Per(X) be all permutations
holding x fixed and cx be a choice function in C with x in its winning subset.
(If y is in the winning subset of c, c(x,y) will suffice for cx.) Now construct
{c1, . . . , cm} by taking, for 1 ≤ i ≤ k, each x ∈ Xi, and each σ ∈ Γx, i copies
of cσx . Suppose x ∈ Xi, y ∈ Xj , and i > j (so d{x, y} = x). Then for any
z ∈ Xi \ {x}, any z ∈ Xj \ {y}, and any z in other tiers, x and y are chosen
by equal numbers of {cσz : σ ∈ Γz}. So they are chosen by an equal number of

8



{c1, . . . , cm} except among the functions cσx and cσy ; there are i such functions
cσx for each σ ∈ Γx, and j such functions cσy for each σ ∈ Γy. The number of
permutations fixing x and the number fixing y are the same, |Γx| = |Γy|. The
number of permutations fixing x and putting y in the losing subset and the
number fixing y and putting x in the losing subset is the same, l. There are il
functions which choose x over y, and jl which choose y over x; il > jl so the
strict simple majority outcome of the ci chooses x.

If i = j, then il = jl, so x and y tie in the majority outcome. Thus d is the
strict simple majority outcome of {c1, . . . , cm} and d ∈ maj-cl(C ).

iv. If C is a chaotic set, the conclusion follows from Section 5, below.
Otherwise, C is not balanced and not partisan, but not chaotic. In this

case, C contains unbalanced functions which are all partisan, and nonpartisan
functions which are all balanced. By symmetry, C contains a nontrivial balanced
symmetric subset B and a nontrivial partisan symmetric subset P.

Let d ∈ C. Suppose b → a is any edge of d. For each z ∈ X \ {a, b}, by
Claim 4.5 there is a voter population Tz from B such that a beats z, z beats b,
b beats a, and no other pairs are decided; moreover, the same number of voters,
say m, choose the winner in each pair, and no dissenting votes occur. In the
combination

⋃
z Tz, m voters choose a over each z, and each z over b. m(n− 2)

voters choose b over a.
Let c ∈ P be a partisan function, and l be the size of the set of winning

candidates under c. Let A ⊂P be the set of permutations of c so that a is on
the losing side, B ⊂ P be the permutations of c so that b is on the winning
side, and C = A ∩B—the permutations with b winning and a losing.

|A| =
(

n− 1

l

)
, |B| =

(
n− 1

l − 1

)
, |C| =

(
n− 2

l − 1

)
.

Any candidates besides a or b are tied over all the voters of A, B, or C, since
each is selected in the winning set an equal number of times. Furthermore, a
does not beat b in any choice function in A, B, or C.

Now we seek to take appropriate numbers of copies of the sets A, B, and C
so that, for some constant k, any z ∈ X \ {a, b} defeats a by k votes, and loses
to b by k votes. Say we have k0 copies of A, k1 copies of B, and k2 copies of C
in a population D. Now for each z ∈ X \ {a, b},

|{c ∈ D : c{z, a} = z}| = k0

(
n− 2

l − 1

)
+ k1

(
n− 3

l − 2

)
+ k2

(
n− 3

l − 2

)
,

|{c ∈ D : c{z, a} = a}| = k1

(
n− 3

l − 2

)
,

|{c ∈ D : c{b, z} = b}| = k0

(
n− 3

l − 1

)
+ k1

(
n− 2

l − 1

)
+ k2

(
n− 3

l − 1

)
,

|{c ∈ D : c{b, z} = z}| = k0

(
n− 3

l − 1

)
.

So we solve k0

(
n−2
l−1

)
+ k2

(
n−3
l−2

)
= k1

(
n−2
l−1

)
+ k2

(
n−3
l−1

)
, with coefficients not all
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zero. There are solutions

k0 = n− 2l, k1 = 0, k2 = n− 2, if l ≤ n

2
;

k0 = 0, k1 = 2l − n, k2 = n− 2, if l >
n

2
.

Let k = k0

(
n−2
l−1

)
+k2

(
n−3
l−2

)
, the number of votes for b over z, or z over a, for any

z ∈ X \ {a, b}. Now take the union of k copies of the population
⋃
z Tz, mk0

copies of A, mk1 copies of B, and mk2 copies of C for our voter population. b
defeats any z mk times among the partisan functions, and z defeats b km times
among the balanced functions, so they tie; similarly, a and z tie. Thus we are
left with b → a. The union of such populations for each edge in d yields d as
the majority outcome.

Hence C ⊆ maj-cl(C ).

4. Balanced Choices

Definition 4.1. For a choice function c ∈ C,

(a) c is triangular if for some {x, y, z} ∈
(
X
3

)
, c{x, y} = x, c{y, z} = y, c{z, x} =

z, and for any {u, v} 6⊂ {x, y, z}, {u, v} /∈ dom c. We write cx,y,z for such c.

(b) c is cyclic if for some {x1, . . . , xk} ∈
(
X
k

)
,

• c{xi, xj} = xi if j ≡ i+ 1 mod k.

• No other pair {x, y} is in dom c.

We write cx1,...,xk for such c. (Triangular functions are a specific case of
cyclic functions.)

(c) Let prbl be the set of all balanced t̄ ∈ pr(X).

Note that if C is symmetric and cx,y,z ∈ C , then cu,v,w ∈ C for any
{u, v, w} ∈

(
X
3

)
; similarly for cyclic functions.

Claim 4.2. If a choice function c = maj(t̄) for some t̄ ∈ prbl, then c is pseudo-
balanced.

Proof. Assume c = maj(t̄) for some t̄ ∈ prbl. Let x→ y be any edge of Tor(c);
then tx,y > 0. Suppose x→ y is in no directed cycle. Let Y be the set of z ∈ X
with a winning chain to x, i.e.

Y =
⋃{

{z1, . . . , zk} ∈
(
X \ {y}

k

)
: k < n,∀i < k c{zi, zi+1} = zi, zk = x

}
.

Let Y = X \ Y . Note that y ∈ Y and x ∈ Y , so Y and Y partition X into
nonempty sets. Suppose z ∈ Y and v ∈ Y . Say z, z1, . . . , zk is a winning chain
from z to x. If tz,v < 0, then v, z, z1, . . . , zk forms a winning chain from v to x.
If v is y, the chain forms a directed cycle with the edge x→ y and we are done.
If v 6= y, this contradicts that v /∈ Y . So we assume that tz,v ≥ 0.

10



Now ∑
z∈Y,v∈Y

tz,v > 0,

since every tz,v ≥ 0, and tx,y > 0 is among them. For each u ∈ Y let

ru =
∑
z∈Y

tz,u,

r̄u =
∑
v∈Y

tv,u.

Since t̄ is balanced, ru + r̄u = 0, so∑
u∈Y

(ru + r̄u) = 0 =
∑
u∈Y

ru +
∑
u∈Y

r̄u.

We have seen that the first summand is positive, so the second summand is

negative. But it is zero because for each pair (u, v) ∈ Y 2
we have tu,v+ tv,u = 0.

This is a contradiction; so x→ y must be in some directed cycle.

Claim 4.3. prbl is a convex subset of pr(X).

Proof. Suppose t̄ and s̄ are balanced probability sequences, and a ∈ [0, 1]Q.
Then ū = at̄+ (1− a)s̄ has, for any x ∈ X,∑

y∈X
ux,y =

∑
y∈X

(atx,y + (1− a)sx,y)

= a
∑
y∈X

tx,y + (1− a)
∑
y∈X

sx,y

= a0 + (1− a)0 = 0.

So ū is a balanced probability sequence.

Claim 4.4. If C ⊂ C is symmetric, balanced, and nontrivial, then every d ∈
maj-cl(C ) is pseudo-balanced.

Proof. By Claim 2.2, every t̄ ∈ pr(C ) is balanced. So by Claim 4.3, the convex
hull pr-cl(C ) is contained in prbl. Any d ∈ maj-cl(C ) is maj(t̄) for some t̄ ∈
pr-cl(C ), by Claim 2.7, hence is pseudo-balanced, by Claim 4.2.

For the reverse inclusion, that every pseudo-balanced function is in the ma-
jority closure, we shall consider the graph interpretation. First we shall show
that every triangular function is in the majority closure of a balanced symmetric
set.

Claim 4.5. If C ⊂ C is symmetric, balanced, and nontrivial, then for any
{x, y, z} ∈

(
X
3

)
, the triangular function cx,y,z ∈ maj-cl(C ). Moreover, there is a

voter population generating cx,y,z such that the same number of votes choose x
over y, y over z, or z over x, and there are no opposing votes in any of these
cases.

11
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Figure 1: Constructing a triangle from permutations of a cycle, as in Claim 4.5. Note that
every edge is matched by an opposing one, except for xy, yz, and zx.

Proof. Let c0 ∈ C and let m be the size of the smallest directed cycle in Tor(c0).
Index the distinct elements of this cycle, in order, as x1, x2, . . . , xm. Let c = cσ0
where σ ∈ Per(X) takes x1 to x, x2 to y, and x3 to z. Now consider the cycle
in Tor(c), so x1 = x, x2 = y, and x3 = z. We define

c1 = c,

c2 = cρ where ρ takes x 7→ y, y 7→ z, z 7→ x,

c3 = cρ where ρ takes x 7→ z, y 7→ x, z 7→ y.

Let Γx,y,z ⊂ Per(X) be the permutations fixing x, y, and z, and take {cσi :
1 ≤ i ≤ 3, σ ∈ Γx,y,z} as our finite set of voters. We claim the majority
outcome of this set is cx,y,z.

If u, v ∈ X \ {x, y, z}, then equal numbers of permutations σ ∈ Γx,y,z have
cσi {u, v} = u and cσi {u, v} = v, so they are tied. If u is among {x, y, z} and v is
not, then there are some out-edges from u in Tor(c). Since c is balanced, there
are an equal number of in-edges to u. For each i ∈ {1, 2, 3}, v will occupy the in-
edges which are not on the cycle in as many permutations of ci as permutations
where it occupies out-edges which are not on the cycle. If m = 3, then v occupies
no edges on the cycle. Otherwise, v occupies an out-edge from u along the cycle
only in

• cσ1 , for some set of σ ∈ Γx,y,z, if u = z; then v occupies an in-edge to z on
the cycle in c3 for an equal number of permutations.

• cσ2 , for some set of σ ∈ Γx,y,z, if u = x; then v occupies an in-edge to x on
the cycle in c1 for an equal number of permutations.
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Figure 2: Constructing a cycle from triangles, as in Claim 4.6.

• cσ3 , for some set of σ ∈ Γx,y,z, if u = y; then v occupies an in-edge to y on
the cycle in c2 for an equal number of permutations.

Thus u and v are tied. Otherwise, {u, v} ⊂ {x, y, z}. For each i ∈ {1, 2, 3},
there are |Γx,y,z| many cσi . We have that cσi {x, y} = x if i = 1 or i = 3; this is
two-thirds of the voters, so x beats y. Similarly, cσi {y, z} = y if i = 1 or i = 2,
and cσi {z, x} = z if i = 2 or i = 3. Thus the strict simple majority outcome is
cx,y,z.

The collection {cσi : 1 ≤ i ≤ 3, σ ∈ Γx,y,z} is the voter population in the
claim. There are no opposing votes between x, y, or z because such a vote would
imply an edge between two vertices of the cycle which is not itself on the cycle,
contradicting our choice of the smallest cycle.

Claim 4.6. If C ⊆ C and cx,y,z ∈ maj-cl(C ) for any {x, y, z} ∈
(
X
3

)
, then for

any k ≥ 3 and {x1, . . . , xk} ∈
(
X
k

)
, cx1,...,xk ∈ maj-cl(C ).

Proof. If k = 3, we have cx1,x2,x3 ∈ maj-cl(C ) by assumption.
Suppose that 3 < k ≤ n and for any k−1 distinct candidates {x1, . . . , xk−1} ⊂

X we have cx1,...,xk−1 ∈ maj-cl(C ). Say {c1, . . . , cm0
} is a set of m0 voters with

cx1,...,xk−1 as their strict simple majority outcome. Let

l0 =

m0∑
i=1

W xk−1
x1

(ci).

Then l0 > 0 since cx1,...,xk−1{x1, xk−1} = xk−1. By hypothesis cx1,xk−1,xk ∈
maj-cl(C ). Say {c′1, . . . , c′m1

} is a set of m1 voters with cx1,xk−1,xk as their strict
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simple majority outcome. Let

l1 =

m1∑
i=1

W x1
xk−1

(c′i).

Like l0, l1 is a positive integer. Let L = lcm(l0, l1), and take L
l0

copies of each

ci, and L
l1

copies of each c′i, to make a finite set of voters {d1, . . . , dm} where

m = L
l0
m0 + L

l1
m1. Let d be their strict simple majority outcome. For any

{u, v} ∈
(
X
2

)
, if {u, v} 6⊂ {x1, . . . , xk} then u ties v among the ci and the c′i,

so {u, v} /∈ dom d. Any two points on the cycle (x1, . . . , xk−1) which are not
adjacent are tied among the ci and among the c′i. Any point on the cycle besides
x1 or xk−1 is also tied with xk among the ci and among the c′i. Any pair of
consecutive points (xi, xj) on the cycle, besides (xk−1, x1), are tied among the
c′i, but the majority of the ci pick xi. So d{xi, xj} = xi. xk−1 and xk tie among
the ci, but the majority of the c′i pick xk−1, so d{xk−1, xk} = xk−1. Similarly
d{xk, x1} = xk. The only remaining pair to consider is {x1, xk−1}. d{x1, xk−1}
is defined if and only if

m∑
i=1

W x1
xk−1

(di) 6= 0.

The left hand side is equal to

L

l0

m0∑
i=1

W x1
xk−1

(ci) +
L

l1

m1∑
i=1

W x1
xk−1

(c′i)

=
L

l0
(−l0) +

L

l1
(l1) = 0.

Thus {x1, xk−1} /∈ dom d, and d{xi, xj} = xi if and only if j ≡ i+ 1 mod k, so
d = cx1,...,xk ∈ maj-cl(C ).

By induction on k, any cyclic choice function on X is in maj-cl(C ).

Claim 4.7. If C ⊂ C is symmetric, balanced, and nontrivial, then every pseudo-
balanced choice function d ∈ C is in maj-cl(C ).

Proof. Suppose d is an arbitrary pseudo-balanced choice function. Every edge
of Tor(d) is on a directed cycle, so consider the decomposition of Tor(d) into
cycles Cx,y for each edge x → y in Tor(d). Let dx,y be the cyclic function
corresponding to Cx,y for each edge x → y in Tor(d). By Claim 4.5, C meets
the requirements of Claim 4.6, so every cyclic function on X is in maj-cl(C );
in particular, each dx,y ∈ maj-cl(C ). If we combine all the finite sets of voters
which yielded each dx,y, we get another finite set of voters from C , since there
are finitely many edges in Tor(d).

For any {u, v} ∈
(
X
2

)
\ dom d, the edge u → v is not in any cycle Cx,y. We

have that
∑
Wu
v (ci) = 0 over the ci yielding any dx,y, so

∑
Wu
v (ci) = 0 over all

our voters and u and v tie in their strict simple majority outcome.
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For any {u, v} ∈
(
X
2

)
with d{u, v} = u, the edge u → v is in Tor(d). Since

each cycle Cx,y has edges only from Tor(d), each population of ci yielding some
dx,y has

∑
Wu
v (ci) ≥ 0, and in particular the population yielding du,v has∑

Wu
v (ci) > 0, so over all our voters

∑
Wu
v (ci) > 0.

Thus the strict simple majority outcome is d, and d ∈ maj-cl(C ).

Combining Claims 4.4 and 4.7, we have that maj-cl(C ) is the set of all
pseudo-balanced choice functions whenever C is symmetric, balanced, and non-
trivial.

5. Chaotic Choices

Definition 5.1. For a choice function c ∈ C,

(a) For x ∈ X, the valence of x with c is

valc(x) =
∑
y∈X

W x
y (c).

(b) For ` ∈ {−1, 0, 1}, let

V`(c) = {(valc(x)− `, valc(y) + `)) : {x, y} ∈
(
X

2

)
, W x

y (c) = `}.

These are the valence pairs, with winners on the right in V−1, ties in V0,
winners on the left in V1, and with 1 subtracted from the valence of the
winner. In fact,

V`(c) =

 ∑
z∈X\{x,y}

(W x
z (c),W y

z (c)) : {x, y} ∈
(
X

2

)
, W x

y (c) = `

 .

(c) For a subset A of Q×Q, let conv(A) be the convex hull of A in Q×Q.

(d) Let

V ∗(c) = {av̄1 + (1− a)v̄0 : v̄1 ∈ conv (V1(c)) , v̄0 ∈ conv (V0(c)) , a ∈ (0, 1]Q}.

These are the convex hulls of the “winning” valence pairs, together with
ties, requiring some contribution from a non-tied pair.

Claim 5.2. For each ` ∈ {−1, 0, 1}, (k0, k1) ∈ V`(c) ⇐⇒ (k1, k0) ∈ V−`(c).

Proof. A pair (valc(u) + 1, valc(v)− 1) is in V−1(c) if and only if Wu
v (c) =

−1 ⇐⇒ W v
u (c) = 1, so (valc(v)− 1, valc(u) + 1) ∈ V1(c).

A pair (valc(u), valc(v)) is in V0(c) if and only if {u, v} = {v, u} /∈ dom c, so
(valc(v), valc(u)) ∈ V0(c).

Claim 5.3. An unbalanced c ∈ C is partisan if and only if

• V1(c) lies on a line parallel to the line y = x, and
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• V0(c) is contained in the line y = x.

Proof. Suppose that V0(c) is all on y = x. Thus, candidates are only ever tied
with others of the same valence. Suppose further that V1(c) is on a line y = x−b.
Then whenever c{w, v} = w, valc(w)−valc(v) = b+2 is constant; the valence of
any winner is always b+ 2 more than the defeated. Since c is unbalanced, there
is such a pair {w, v}. If any candidate z has a valence different from that of w,
it cannot be tied with w, so {w, z} ∈ dom c. Therefore the valences differ by
b+ 2, but if valc(z) 6= valc(v), then z can neither tie nor be comparable to v, a
contradiction. So every candidate has the valence of w or the valence of v. If two
candidates with the same valence do not tie, then b = −2 and valc(v) = valc(w).
In this case, every candidate has the same valence, which would mean that c is
balanced; a contradiction. Furthermore, every candidate with the high valence
must defeat everyone of the low valence, since they cannot be tied. This is the
definition of a partisan function.

Conversely, suppose that c is partisan. Then two elements are tied only if
they are both in the winning subset, or both in the losing subset; in either case,
they have the same valence, so V0(c) is contained in the line y = x. V1(c) is
the single point (valc(w) − 1, valc(v) + 1) for any w in the winning subset and
v in the losing subset. Naturally, this point is contained in a line parallel to
y = x.

Claim 5.4. If c ∈ C is unbalanced, then a point of V ∗(c) lies above the line
y = −x, and a point of V ∗(c) lies below it.

Proof. Let v1 and v2 be two candidates in X having the highest valences with c.
Since c is unbalanced, valc(v1) > 0. The sum of the corresponding pair in any
V`(c) is valc(v1) + valc(v2). If this is less than or equal to 0, then valc(v2) ≤ −1.
Thus all other valences are at most −1, so the average valence is strictly smaller
than the average of valc(v1) and valc(v2), at most 0. This is a contradiction,
since the average valence is always 0. Therefore, the sum of the valence pair
for v1 and v2 in any V`(c) satisfies y + x > 0. If the pair is in V1(c), it is in
V ∗(c). If it is in V−1(c), then its reflection in V1(c) (hence in V ∗(c)) still satisfies
x + y > 0. If it is in V0(c), then points arbitrarily close to the pair, along any
line to a point of V1(c), are in V ∗(c). Some of these points are above y = −x.

Let u1 and u2 be two candidates in X having the smallest valences with
c. By imbalance, valc(u1) < 0. Suppose valc(u1) + valc(u2) ≥ 0. Then the
average of these two valences is at least 0, and the average over all candidates
is larger; it is strictly larger, since valc(v1) > 0 figures in the average. This is a
contradiction, so the sum of the valence pair for u1 and u2 in any V`(c) satisfies
y + x < 0. If this pair is in V−1(c), then its reflection in V1(c) still satisfies
x+ y < 0. Otherwise it is in V ∗(c), or arbitrarily close points are in V ∗(c).

To establish that every choice function is in the majority closure of a chaotic
symmetric set, we shall first establish that some c therein satisfies a rather
abstruse condition which we’ll call “valence-imbalance.”
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ūN
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Figure 3: The situation of Claim 5.6. The points ūN and v̄N cannot be equidistant from w̄,
since one lies within the dashed parallel lines, and one lies without.

Definition 5.5. A choice function c ∈ C is valence-unbalanced if (0, 0) can be
represented as r−1v̄−1 + r0v̄0 + r1v̄1 where

(i) Each v̄` is a pair in conv (V`(c)),

(ii) r−1, r0, r1 ∈ [0, 1]Q,

(iii) r−1 + r0 + r1 = 1,

(iv) r−1 6= r1.

Note that (0, 0) ∈ V ∗(c) implies that c is valence-unbalanced.

Claim 5.6. If ū is strictly between two points of conv (V1(c)) on a line segment
not parallel to y = x, then the nearest point on y = x to ū is of the form
r−1v̄−1 + r1v̄1, where v̄` ∈ conv (V`(c)), r` ∈ [0, 1]Q, r−1 + r1 = 1, but r−1 6= r1.

Proof. Say ū = (a, a + b). If b = 0, the assertion holds. Otherwise, let w̄ =(
a+ b

2 , a+ b
2

)
; w̄ is the nearest point to ū on y = x.

There are p̄0 = (a0, b0) and p̄1 = (a1, b1) in conv (V1(c)) so that ū is strictly
between p̄0 and p̄1. If the line segment Λ between p̄0 and p̄1 is perpendicular
to y = x, then either w̄ is in Λ, and the assertion holds, or w̄ is between p̄1

and the reflection of p̄0, q̄0 = (b0, a0). So for some r−1 and r1, r−1q̄0 + r1p̄1 =
w̄ = 1

2 q̄0 + 1
2 p̄0. If r−1 = r1 = 1

2 , then p̄1 = p̄0, contradicting that ū is strictly
between them. So r−1 6= r1.

If Λ is not perpendicular to the line y = x, then we may choose the points
p̄0 and p̄1 so that a0 + b0 < 2a+ b < a1 + b1, and on the same side of y = x. The
reflection of Λ over y = x lies on a line; call it L. Then L contains v̄ = (a+b, a),
q̄0 = (b0, a0), and q̄1 = (b1, a1), all in conv (V−1(c)); so v̄ lies strictly between q̄0

and q̄1 within conv (V−1(c)).
Consider the sequence

ūn =
1

n
p̄1 +

(
1− 1

n

)
ū,
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for n ≥ 1, approaching ū as n → ∞. For each n, let v̄n be the intersection of
the line through ūn and w̄ with the line L. (If necessary, define the v̄n only for
n > j, if the line from ūj through w̄ is parallel to L; at most one such j can
exist.) As n→∞, v̄n approaches v̄. So for some N ∈ N and all n ≥ N , v̄n is in
the interval (q̄0, q̄1), an open neighborhood of v̄ in L. So

w̄ = r−1ūN + r1v̄N ,

for some r−1 and r1 in [0, 1]Q with r−1 + r1 = 1.
If r−1 = r1 = 1

2 , then v̄N = w̄ + (w̄ − ūN ) is just as far from the line y = x
as ūN = w̄ − (w̄ − ūN ). But notice, either

• both the interval (ū, p̄1) on Λ and the interval (v̄, q̄1) on L are farther from
y = x than ū is, while the intervals (p̄0, ū) and (q̄0, v̄) are closer, or

• the intervals (ū, p̄1) and (v̄, q̄1) are closer to y = x than ū is, while the
intervals (p̄0, ū) and (q̄0, v̄) are farther.

Then ūN is in the half-plane y + x > 2a + b, and w̄ is the sole intersection of
the line {ūN + t(w̄ − ūN ) : t ∈ Q} with the line y + x = 2a + b. Thus v̄N is in
the half-plane y + x < 2a + b, hence in the interval (q̄0, v̄) of L. But then the
distance from y = x to ū is strictly between the distances from y = x to v̄N and
to ūN , contradicting that these distances are equal.

So r−1 6= r1.

Claim 5.7. If c is chaotic, then c is valence-unbalanced.

Proof. We consider five cases.

Case 1. V0(c) \ {(0, 0)} is not contained in y = x, nor in one open half-plane of
y = −x.

By Claim 5.4, there is a point v̄ of V ∗(c) on the line y = −x. There is a point
(k0,−k0) ∈ conv (V0(c)), k0 6= 0. Either (0, 0) is between v̄ and (k0,−k0) or it is
between v̄ and (−k0, k0); either way, it is in V ∗(c), so c is valence-unbalanced.

Case 2. V0(c) \ {(0, 0)} is not contained in y = x, but is contained in one open
half-plane of y = −x.

There is (k0, k1) ∈ V0(c) such that k0 6= k1 and k0 6= −k1. By Claim 5.4,
there is a point v̄ ∈ V1(c) strictly on the other side of y = −x. If v̄ is on y = x,
then (0, 0) is on the line segment between v̄ and w̄ =

(
k0+k1

2 , k0+k1

2

)
, hence in

V ∗(c), so c is valence-unbalanced. If v̄ is not on y = x, then it has a reflection
ū ∈ V−1(c). The set conv{v̄, ū, w̄} contains an open disc about (0, 0). Since there
are points in conv (V0(c)) arbitrarily close to w̄ on the line between (k0, k1) and
(k1, k0), we may choose (k′0, k

′
1) so k′0 6= k′1 and (0, 0) ∈ conv{v̄, ū, (k′0, k′1)}.

Suppose c is valence-balanced. Say v̄ is (v0, v1). Then

(0, 0) = rv̄ + (1− 2r)(k′0, k
′
1) + rū = r(v0 + v1, v1 + v0) + (1− 2r)(k′0, k

′
1),

so k′0 = −r(v0+v1)
1−2r = k′1, a contradiction. Therefore c is valence-unbalanced.
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Case 3. V0(c) is contained in y = x, and V1(c) is contained in a line parallel to
y = x.

Then c is partisan by Claim 5.3, contradicting that c is chaotic.

Case 4. V0(c) is contained in y = x, conv (V1(c)) contains a line segment not
parallel to y = x, and V1(c) has points on either side of y = −x.

Then there is a point of y = −x strictly between two points of conv (V1(c))
such that the line segment between them is not parallel to y = x. By Claim 5.6,
(0, 0) = r−1v̄−1 + r1v̄1 where v̄` ∈ conv (V`(c)), r` ∈ [0, 1]Q, r−1 + r1 = 1, but
r−1 6= r1, i.e. c is valence-unbalanced.

Case 5. V0(c) is contained in y = x, conv (V1(c)) contains a line segment not
parallel to y = x, and V1(c) is entirely on one side of y = −x.

Let v̄ be strictly between two points of V1(c) on a line segment not parallel to
y = x. By Claim 5.6, the nearest point w̄ to v̄ on the line y = x is r−1v̄−1 +r1v̄1

where v̄` ∈ conv (V`(c)), r` ∈ [0, 1]Q, r−1 + r1 = 1, but r−1 6= r1. By Claim 5.4,
V0(c) has a point v̄0 = (k, k) strictly on the other side of y = −x from v̄, and
hence from w̄. So for some r ∈ [0, 1]Q,

(0, 0) = rv̄0 + (1− r)(r−1v̄−1 + r1v̄1) = (1− r)r−1v̄−1 + rv̄0 + (1− r)r1v̄1,

and (1− r)r−1 6= (1− r)r1, so c is valence-unbalanced.

Claim 5.8. If C ⊆ C is symmetric and c ∈ C is valence-unbalanced, then for
each {x, y} ∈

(
X
2

)
there is d ∈ maj-cl(C ) such that dom d = {{x, y}}.

Proof. Suppose {x, y} ∈
(
X
2

)
. There are v̄` ∈ conv (V`(c)) and r` ∈ [0, 1]Q,

r−1 + r0 + r1 = 1, r−1 6= r1, so r−1v̄−1 + r0v̄0 + r1v̄1 = (0, 0). Now,

v̄−1 =
∑

v̄∈V−1(c)

s−1
v̄ v̄, v̄0 =

∑
v̄∈V0(c)

s0
v̄ v̄, v̄1 =

∑
v̄∈V1(c)

s1
v̄ v̄,

where
∑
v̄∈V`(c) s

`
v̄ = 1 for each `. Each v̄ ∈ V`(c) is (valc(u

`
v̄)− `, valc(w

`
v̄) + `)

for some {u`v̄, w`v̄} ∈
(
X
2

)
. Let σ`v̄ be a permutation taking u`v̄ to x and w`v̄ to y,

i.e.

σ`v̄ =


(x, y) if u`v̄ = y, w`v̄ = x,

(x,w`v̄, y) if u`v̄ = y, w`v̄ 6= x,

(u`v̄, x)(w`v̄, y) otherwise.

Let Γx,y be all the permutations of X which fix x and y, and let

t̄ =
1

|Γx,y|
∑

`∈{−1,0,1}

r`
∑

v̄∈V`(c)

s`v̄
∑

τ∈Γx,y

pr
(
cτσ

`
v̄

)
.

Of course, the sum of the coefficients is∑
`∈{−1,0,1}
v̄∈V`(c)
τ∈Γx,y

r`s
`
v̄

|Γx,y|
=
|Γx,y|
|Γx,y|

∑
`∈{−1,0,1}

r` = 1.
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Since r`, s
`
v̄, and 1

|Γx,y| are in [0, 1]Q,
r`s

`
v̄

|Γx,y| ∈ [0, 1]Q. So t̄ ∈ pr-cl(C ).

Consider tx,y. Each τ fixes x and y, so

cτσ
`
v̄{x, y} = x ⇐⇒

cσ
`
v̄{x, y} = x ⇐⇒

c{u`v̄, w`v̄} = u`v̄ ⇐⇒ ` = 1.

So W x
y (cτσ

`
v̄ ) = `. Thus

tx,y =
1

|Γx,y|
∑

`∈{−1,0,1}

r`
∑

v̄∈V`(c)

s`v̄
∑

τ∈Γx,y

`

=
|Γx,y|
|Γx,y|

∑
`∈{−1,0,1}

` r` = r1 − r−1.

Since r−1 6= r1, tx,y 6= 0.
Consider tx,u where u /∈ {x, y}.

cτσ
`
v̄{x, u} = x ⇐⇒

cσ
`
v̄{x, τ−1(u)} = x ⇐⇒

c{u`v̄, u∗} = u`v̄,

where

u∗ =
(
σ`v̄
)−1

(τ−1(u)) =


τ−1(u) if τ−1(u) /∈ {u`v̄, w`v̄},
x if τ−1(u) = u`v̄,

y if τ−1(u) = w`v̄.

u∗ is never u`v̄ or w`v̄. For a given ` and v̄, u∗ varies equally over all elements of
X besides {u`v̄, w`v̄}, so

∑
τ∈Γx,y

W x
u (cτσ

`
v̄ ) =

∑
τ∈Γx,y

W
u`
v̄

u∗ (c) =
∑

τ∈Γx,y,u

∑
u∗∈X\{u`

v̄,w
`
v̄}

W
u`
v̄

u∗ (c)

= |Γx,y,u|
(

valc(u
`
v̄)−W

u`
v̄

u`
v̄

(c)−Wu`
v̄

w`
v̄
(c)
)

= |Γx,y,u|
(
valc(u

`
v̄)− `

)
.

This follows from the fact that, for each u∗ ∈ X \ {u`v̄w`v̄}, there are |Γx,y,u|
permutations τ which take u to u∗. For any u, Wu

u (c) = 0, and by choice of u`v̄

and w`v̄, W
u`
v̄

w`
v̄
(c) = `.

Recall that the u`v̄ were chosen so that valc(u
`
v̄)− ` is the first coordinate of

v̄. Recall also that the r`, s
`
v̄, and valence pairs v̄ were chosen so∑

`∈{−1,0,1}

r`
∑

v̄∈V`(c)

s`v̄ v̄ = (0, 0).
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tx,u =
1

|Γx,y|
∑

`∈{−1,0,1}

r`
∑

v̄∈V`(c)

s`v̄
∑

τ∈Γx,y

W x
u

(
cτσ

`
v̄

)
=

1

|Γx,y|
∑

`∈{−1,0,1}

r`
∑

v̄∈V`(c)

s`v̄ |Γx,y,u|
(
valc(u

`
v̄)− `

)
= 0.

Similarly, ty,u = 0 for all u /∈ {x, y}.
Consider tu,w with neither u nor w in {x, y}. Then

cτσ
`
v̄{u,w} = u ⇐⇒

cσ
`
v̄{τ−1(u), τ−1(w)} = τ−1(u) ⇐⇒

c{u∗, w∗} = u∗,

where u∗ = (σ`v̄)
−1

(τ−1(u)) and w∗ = (σ`v̄)
−1

(τ−1(w)). But τ−1(u) and τ−1(w)
are never x or y, so u∗ is never u`v̄ and w∗ is never w`v̄. As τ varies, u∗ and w∗

vary equally over all members of X except u`v̄ and w`v̄, so c{u∗, w∗} = u∗ just
as often as c{u∗, w∗} = w∗. Thus∑

τ∈Γx,y

Wu
w(cτσ

`
v̄ ) = 0.

Hence

tu,v =
1

|Γx,y|
∑

`∈{−1,0,1}

r`
∑

v̄∈V`(c)

s`v̄
∑

τ∈Γx,y

Wu
w(cτσ

`
v̄ ) = 0.

So d = maj(t̄) ∈ maj-cl(C ) has dom d = {{x, y}}; all other pairs have tu,v =
0.

Claim 5.9. If C ⊆ C is symmetric and chaotic, then maj-cl(C ) = C.

Proof. Suppose f ∈ C.
By Claim 5.7, there is some c ∈ C which is valence-unbalanced. So by

Claim 5.8, for any {x, y} ∈
(
X
2

)
there is d ∈ maj-cl(C ) with dom d = {{x, y}}.

If d{x, y} = y, by symmetry there is d′ ∈ maj-cl(C ) with domain {{x, y}}
and d′{x, y} = x. So for every {x, y} ∈ dom f , let dx,y ∈ maj-cl(C ) such
that dom dx,y = {{x, y}} and dx,y{x, y} = f{x, y}. Now combine the voter
populations which yielded each dx,y.

Since f was arbitrary, we have shown C ⊆ maj-cl(C ). Hence maj-cl(C ) is
all of C.

6. Bounds

We shall consider the loose upper bounds, implied by the preceding proofs,
on the necessary number of voters from a symmetric set to yield an arbitrary
function in its majority closure, in terms of n. There is no doubt that much
tighter bounds could be obtained.
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Trivial

0 functions suffice to obtain no outcome.

Balanced

In order to create a triangular function from a chosen function c, (n − 3)!
permutations of the rest of the set were used. These were repeated 3 times, to
establish each pair of edges in the triangle.

An arbitrary pseudo-balanced function has each edge in a directed cycle, so

one cycle per edge suffices; so we have at most
(
n
2

)
= n(n−1)

2 cycles. Each is
constructed with two fewer triangles than the number of nodes it contains. This
is at most n− 2, if some cycle contains every node. So all together we have

1

2
n(n− 1)(n− 2)(n− 3)! 3 =

3n!

2
.

Partisan

There are at most n tiers in an arbitrary tiered function, each with at most n
elements (of course, no function meets both conditions.) For each such element
x, we take functions for each permutation holding x fixed; there are (n − 1)!
such. So we have n n(n− 1)! = n n! as an upper bound.

Not balanced, not partisan, but not chaotic

The proof of Claim 4.5 gives the size of the population Tz yielding ca,b,z as
|Tz| = 3(n−3)!, with m = 2(n−3)! votes for the winner of each pair. We chose
a partisan function c with l candidates in the winning tier. For each of at most(
n
2

)
edges a→ b and each of the (n− 2) z ∈ X \ {a, b}, we used k copies of Tz,

where

k =

{
(n− 2)

(
n−3
l−1

)
if l ≤ n

2 ,

(n− 2)
(
n−3
l−2

)
if l > n

2 ,

and m copies of a population of partisan functions D, where

|D| =

{
(n− 2l)

(
n−1
l

)
+ (n− 2)

(
n−2
l−1

)
if l ≤ n

2 ,

(2l − n)
(
n−1
l−1

)
+ (n− 2)

(
n−2
l−1

)
if l > n

2 .

In fact, k′ = k
gcd(m,k) copies of Tz, and m′ = m

gcd(m,k) copies of D, would suffice.

Certainly
(
n−3
l−1

)
= (n−3)!

(l−1)!(n−l−2)! | (n− 3)!, and
(
n−3
l−2

)
= (n−3)!

(l−2)!(n−l−1)! | (n− 3)!,

so we may take k′ = (n− 2).
If l ≤ n

2 , then we take m′ = 2(l − 1)!(n− l − 2)!, and

m′ |D| = 2(l − 1)!(n− l − 2)!

(
(n− 2l)

(
n− 1

l

)
+ (n− 2)

(
n− 2

l − 1

))
= 2(l − 1)!(n− l − 2)!

(
(n− 2l)(n− 1)!

l!(n− l − 1)!
+

(n− 2)(n− 2)!

(l − 1)!(n− l − 1)!

)
= 2(n− 2)!

(
(n− 2l)(n− 1)

l(n− l − 1)
+

n− 2

n− l − 1

)
.
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The last multiplicand is

n(n− l − 1)

l(n− l − 1)
=

n

l
≤ n.

If l > n
2 , then we take m′ = 2(l − 2)!(n− l − 1)!, and

m′ |D| = 2(l − 2)!(n− l − 1)!

(
(2l − n)

(
n− 1

l − 1

)
+ (n− 2)

(
n− 2

l − 1

))
= 2(l − 2)!(n− l − 1)!

(
(2l − n)(n− 1)!

(l − 1)!(n− l)!
+

(n− 2)(n− 2)!

(l − 1)!(n− l − 1)!

)
= 2(n− 2)!

(
(2l − n)(n− 1)

(l − 1)(n− l)
+

n− 2

l − 1

)
.

The last multiplicand is

n(l − 1)

(l − 1)(n− l)
=

n

n− l
≤ n.

So the total number of voters is(
n

2

)
((n− 2) |Tz| k′ +m′ |D|)

≤ n(n− 1)

2
((n− 2)3(n− 3)!(n− 2) + 2(n− 2)!n)

= n(n− 1)(n− 2)!

(
3

2
(n− 2) + n

)
= n!

(
3

2
n− 3 + n

)
<

5

2
n n!.

Chaotic

Given an arbitrary function, we wish to create a “single-edged” dx,y, as
developed in Section 5, for each edge in the function; there are at most

(
n
2

)
of

these. In creating such a single-edged dx,y, we use a collection of permutations
of a choice function, under permutations which take x and y to elements having
certain valence combinations. Reading the proof of Claim 5.7 carefully, we see
that at most 4 such valence pairs are used. For each of these, all permutations
fixing the relevant pair are used, giving 4(n − 2)! choice functions used in the
creation of the single-edged function. However, these are being combined by
some set of rational coefficients, so in fact we must expand each such function
taking as many copies as the numerator of its associated coefficient when put
over the least common denominator L. The coefficients sum to 1, so the sum of
the numbers of copies is L; so L(n− 2)! functions are used for each edge.

Six possible linear combinations of valence pairs yielding (0, 0) were consid-
ered in Claim 5.7. Using the fact that the original valence pairs are pairs of
integers between −n and n, we can solve for the coefficients by matrix inversion
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and determine that the least common denominator is at most the determinant
of the associated matrix. For instance, in Case 4, suppose there is a point of
y = −x strictly between two points of V1(c) on a line segment not parallel to
y = x. (This is true in this Case, unless V1(c) is contained in a line parallel to
y = x except for a point on the line y = −x; such a situation actually has a
smaller common denominator.)

We use Claim 5.6, with (0, 0) for w̄, and note that either the line from p̄0

through w̄ meets the line L, or the line from p̄1 through w̄ does. Say p̄ is the
one which works. Then (0, 0) is an unbalanced linear combination of the three
valence pairs p̄, q̄0, and q̄1. Say p̄ = (a, b); then one of the q̄ is (b, a) and the
other is (c, d). Solving

r + s+ t = 1

ar + bs+ ct = 0

br + as+ dt = 0

amounts to  r
s
t

 =

 1 1 1
a b c
b a d

−1  1
0
0

 .
Since everything on the right hand side is an integer, the only denominator
introduced is the determinant of the 3 by 3 matrix, bd− ac− ad+ bc+ a2 − b2.
Since each of a, b, c, d is an integer between −n and n, this is at most 6n2.

In the cases involving four points, such as Case 1 or Case 5, an additional
constraint is needed, which is not a consequence of the other three. In Case 1,
use r1+r2+r3+r4 = 1, a1r1+a2r2+a3r3+a4r4 = 0, b1r1+b2r2+b3r3+b4r4 = 0,
and add b3r3 +b4r4 = −a3r3−a4r4, since the points v̄ and (k0,−k0) were linear
combinations of two valence pairs on the line y = −x. The lowest common
denominator is at most the determinant of

1 1 1 1
a1 a2 a3 a4

b1 b2 b3 b4
0 0 a3 + b3 a4 + b4

 ,
which expands to a 16-term sum of three ai or bi each, hence at most 16n3.
In Case 5, note that the point v̄ between two points of V1(c) is arbitrary; we
can choose any point between the two. Between any two pairs of integers on
which do not lie on a line perpendicular to y = x, we can choose a point whose
projection on y = x is of the form

(
l
4 ,

l
4

)
for some integer l. Solving

1 1 1 1
k a b c
k b a d
0 a b c


−1 

1
0
0
l
4


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gives a determinant k(2a2 − b2 − ab− ac+ bd+ bc− ad) at most 8n3; we must
multiply by 4 because of the fraction in the column vector, giving 32n3. This
is the largest denominator of the six possible linear combinations in Claim 5.7.

Thus our upper bound is

L(n− 2)!
n2 − n

2
< 16 n3n(n− 1)(n− 2)! = 16 n3n!.
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