Two \mathbb{P}_{max} arguments

Paul B. Larson

October 26, 2023

Abstract

We sketch proofs of two of Woodin's results on \mathbb{P}_{max}

1 Recovering the generic filter from any new set

In this section we give a proof of the following fact.

Theorem 1.1. If $V \models \mathsf{AD}^+$, $G \subseteq \mathbb{P}_{\max}$ is a V-generic filter and, in V[G], $B \in \mathcal{P}(\omega_1) \setminus L(\mathbb{R})$, then $G \in L(\mathbb{R})[B]$.

Proof. Fix the objects introduced in the statement of the theorem. Recall that (by definition) $A_G = \bigcup \{a : \langle (M,I),a \rangle \in G \}$ and, in V[G], for each $p = \langle (M,I),a \rangle \in G$ there is a unique iteration $j_{p,G} \colon (M,I) \to (M^*,I^*)$ such that $j(a) = A_G$ and $I^* = M^* \cap NS_{\omega_1}$. We use the following facts:

- in V[G], G is the set of $\langle (M,I),a\rangle \in \mathbb{P}_{\max}$ for which there exists an iteration $j\colon (M,I)\to (M^*,I^*)$ such that $j(a)=A_G$ and $I^*=M^*\cap \mathrm{NS}_{\omega_1}$;
- for any $p = \langle (M, I), a \rangle \in G$, if $b \in \mathcal{P}(\omega_1)^M$ is such that

$$\langle (M, I), b \rangle \in \mathbb{P}_{\max},$$

then, by the argument for the weak homogeneity of \mathbb{P}_{\max} ,

$$A_G \in L(\langle (M,I),a\rangle,j_{p,G}(b));$$

• in V[G], every club subset of ω_1 contains a club in $L(\mathbb{R})$ (the countable indiscernibles of some real), so the model $L(\mathbb{R})[B]$ correctly computes stationarity for subsets of ω_1 .

It suffices then to see that, in V[G], for all $B \in \mathcal{P}(\omega_1) \setminus L(\mathbb{R})$, there exist

- $p = \langle (M, I), a \rangle \in G$,
- $x \in \mathcal{P}(\omega)^M$ and
- $b \in \mathcal{P}(\omega_1)^M$

such that $j_{p,G}(b) = B$ and $\omega_1^M = \omega_1^{L[x,b]}$.

Since $\mathcal{P}(\omega_1)_G = \mathcal{P}(\omega)$ in V[G], it suffices (by the genericity of G) to show that, for each \mathbb{P}_{\max} condition $p = \langle (M,I),a \rangle$ and each set $b \in \mathcal{P}(\omega_1)^M$, there exist a condition $q = \langle (N,J),a' \rangle < \langle (M,I),a \rangle$ and an $x \in \mathcal{P}(\omega)$ such that either $j(b) \in L[x]$ or $\omega_1^N = \omega_1^{L[j(b),x]}$, where j is the iteration witnessing that q < p.

Since each \mathbb{P}_{\max} condition can be iterated into a limit structure (which satisfies the conditions in the claim below), it suffices to show the following.

Claim 1.2. Suppose that $(\bar{M}, \bar{I}) = \langle (M_i, I_i) : i \in \omega \rangle$, J, a and b are such that

- for each $i \in \omega$,
 - M_i is a countable transitive model of ZFC,
 - $-\omega_1^{M_i}=M_0,$
 - $-\langle (M_i, I_i), a \rangle \in \mathbb{P}_{\max},$
 - $M_i \in H(\aleph_2)^{M_{i+1}},$
 - $-I_i = I_{i+1} \cap M_i \text{ and } I_i \subseteq NS_{\omega_1}^{M_{i+1}},$
 - there exists a $y_i \in \mathcal{P}(\omega)^{M_{i+1}}$ such that the least y_i -indiscernible above $\omega_1^{M_0}$ is greater than the ordinal height of M_i , and, every club subset of $\omega_1^{M_0}$ in M_i contains a tail of the y_i -indiscernibles below $\omega_1^{M_0}$,
- $b \in \mathcal{P}(\omega_1)^{M_0}$,
- J is a normal precipitous ideal on ω_1 .

Then there exists an iteration $j: \langle (M_i, I_i) : i \in \omega \rangle \rightarrow \langle (\hat{M}_i, \hat{I}_i) : i \in \omega \rangle$ such that

- for each $i \in \omega$, $\hat{I}_i = \hat{M}_i \cap J$,
- there exists an $x \subseteq \omega$ such that either $j(b) \in L[x]$ or $\omega_1 = \omega_1^{L[x,j(b)]}$.

Proof of Claim. There are two cases, depending on whether or not there exist an ordinal $\gamma < \omega_1$ and iterations j_0 and j_1 of (\bar{M}, \bar{I}) such that $\gamma \in j_1(b)$ and $\gamma \notin j_0(b)$. If there are no such γ , j_0 and j_1 , then $j(b) \in L[x]$ for any suitable iteration j of (\bar{M}, \bar{I}) , where x is any subset of ω for which

$$\langle (M_i, I_i) : i \in \omega \rangle \in H(\aleph_1)^{L[x]}.$$

Supposing then that there exist such γ , j_0 and j_1 , we can fix such a triple with γ as small as possible, and j_0 and j_1 as short as possible so that γ is less than both $j(\omega_1^{M_0})$ and $j'(\omega_1^{M_0})$. It follows that j_0 and j_1 both have successor length. Let j'_0 and j'_1 be the corresponding iterations with their last steps removed. Let $\langle (M_i^0, I_i^0) : i \in \omega \rangle$ and $\langle (M_i^1, I_i^1) : i \in \omega \rangle$ be the corresponding final sequences for j'_0 and j'_1 .

Recall that for each iteration j of (\bar{M}, \bar{I}) of any length α , $j(\omega_1^{M_0})$ is the α th ordinal $(\geq \omega_1^{M_0})$ which is an indiscernible of each y_i , and the next such indiscernible is the supremum of the ordinals of the final models of the iteration. It follows in particular that $\omega_1^{M_0^0} = \omega_1^{M_0^1}$ (so, by the minimality of γ , $j'_0(b) = j'_1(b)$), and, for some $i' \in \omega$, γ is below the least

 $y_{i'}$ -indiscernible above $\omega_1^{M_0^0}$. It follows that there exist a $y_{i'}$ -term $t_{\phi}^{y_{i'}}$ (for some formula ϕ), a finite set c of y_i -indiscernibles below $\omega_1^{M_0^0}$ and a finite set d of $y_{i'}$ -indiscernibles above $\omega_1^{M_0^0}$ such that $\gamma = t_{\phi}^{y_{i'}}(c, \omega_1^{M_0^0}, d)$.

Consider now the function $f\colon \omega_1^{M_0^0}\to \omega_1^{M_0^0}$ which, whenever α is a $y_{i'}$ -indiscernible above the members of c, returns $t_{\phi'}^{y_{i'}}(c,\alpha,d')$ (for any set of $y_{i'}$ -indiscernibles above α of the same size as d), and returns 0 otherwise. Then f is in $L[y_{i'}^{\#}]$ and therefore in $M_{i'+1}^0$ and $M_{i'+1}^1$, and $j(f)(\omega_1^{M_0^0})=\gamma$ for any elementary embedding induced by a normal filter for either $\langle (M_i^0,I_i^0):i\in\omega\rangle$ or $\langle (M_i^1,I_i^1):i\in\omega\rangle$.

Let $X=\{\alpha: f(\alpha)\in j_0'(b)\}$. Since $\gamma\not\in j_0(b),\,\omega_1^{M_0^0}\setminus X$ is $I_{i'+1}^0$ -positive in M_{i+1}^0 . Since $\gamma\in j_0(b),\,X$ is $I_{i'+1}^1$ -positive in M_{i+1}^0 .

We would like to see that either X is $I^0_{i'+1}$ -positive in $M^0_{i'+1}$ or $\omega^{M^0_0}_1 \setminus X$ is $I^1_{i'+1}$ -positive in $M^1_{i'+1}$. If neither of these is the case, then a tail of the $y_{i'+1}$ -indiscernibles are elements of a corresponding club witnessing the corresponding fact in each of these two models. That is, for a tail of $y_{i'+1}$ -indiscernibles α below $\omega^{M^0_0}_1$, $f(\alpha)$ is both in and not in $j'_0(b)$. This is of course impossible.

Now let $\langle (M'_i, I'_i) : i \in \omega \rangle$ be one of $\langle (M^0_i, I^0_i) : i \in \omega \rangle$ and $\langle (M^1_i, I^1_i) : i \in \omega \rangle$ such that X is $I_{i'+1}$ -positive and $\text{co-}I_{i'+1}$ -positive in $M'_{i'+1}$. Let x (in V) be a subset of ω for which

$$\langle (M_i', I_i') : i \in \omega \rangle \in H(\aleph_1)^{L[x]}.$$

Let E be any subset of ω_1 for which $\omega_1=\omega_1^{L[E]}$. Let C be the club of countable ordinals greater than or equal to $\omega_1^{M'_0}$ which are indiscernibles for each y_i . Let j be an iteration of $\langle (M'_i,I'_i):i\in\omega\rangle$ such that

- each I'_i -positive set is mapped to a J-positive set (note that this requires attention only at limit stages of the iteration) and
- the corresponding image of X is put in the normal filter at stage $\alpha+1$ if and only if $\alpha\in E$.

Then $E \in j[x,j(b)]$, since E is the set of α such that, letting η be the $(\alpha+1)$ st element of C, $t_{\phi}^{y_{i'}}(c,\eta,d') \in j(b)$ whenever d' is a finite set of $y_{i'}$ indiscernibles above η with the same size as d.

2 Preserving $cof(\alpha) \ge \omega_2$

In this section we adapt the proof of $\mathsf{MM}^{++}(\mathfrak{c})$ in \mathbb{P}_{\max} extensions of models of $\mathsf{AD}_{\mathbb{R}}$ to show that cofinality greater than ω_1 is preserved in such models. Recall that Woodin has proved a stronger conclusion (every bounded subset of Θ of cardinality \aleph_1 in the \mathbb{P}_{\max} extension is contained in a ground model set having cardinality \aleph_1 there) assuming only AD^+ in the ground model.

We use the following theorem (Theorem 9.38 in the original version of the \mathbb{P}_{max} book).

3

Theorem 2.1. Suppose that $V = L(\mathcal{P}(\mathbb{R}))$ and AD^+ holds. Let X be a set of ordinals. Then there exists a set Y of ordinals such that $X \in L[Y]$ and, for any bounded $t \subseteq \omega_1$ there exists a transitive model N of ZFC such that

- $L[Y,t] \subseteq N$;
- $V_{\gamma}^{N} = L[Y, t] \cap V_{\gamma}$, where γ is the least strongly inaccessible cardinal of L[Y, t].
- there is a countable ordinal which is a Woodin cardinal in N.

Theorem 2.2. If $V \models \mathsf{AD}_{\mathbb{R}} + \mathsf{AD}^+$, $\alpha < \Theta$ has cofinality at least ω_2 in V and $G \subseteq \mathbb{P}_{\max}$ is a V-generic filter then, in V[G], $\mathsf{cof}(\alpha) \geq \omega_2$.

Proof. Let \leq be a prewellordering of ω^{ω} of length α , let $p = \langle (M, I), a \rangle$ be a \mathbb{P}_{\max} condition and let $f : \omega_1^M \to \omega^{\omega}$ in M. Since $\mathcal{P}(\omega_1)_G = \mathcal{P}(\omega_1)$ holds in V[G], it suffices to find a condition $q = \langle (M', I'), a' \rangle < p$ such that

- (M', I') is \leq -iterable and
- for some $x \in \omega^{\omega} \cap M'$, $y \leq x$ holds for all y in the range of j(f), where j is the iteration of (M, I) sending a to a'.

Since our asymptions imply that all sets of reals in V are Suslin, we may fix trees S and T on $\omega \times \text{Ord}$ projecting to \preceq and its complement. Let Y be as in Theorem 2.1 above, with respect to some set of ordinals coding S, T and p.

By the Solovay measure argument from the $\mathsf{MM}^{++}(\mathfrak{c})$ proof, there exists a countable $\sigma \subseteq \omega^{\omega}$ such that $L(Y\sigma)$ satisfies AD^+ along with the statement that the projection of S is a prewellordering of ω^{ω} whose length has cofinality greater than ω_1 .

Let g be a $L(Y,\sigma)$ -generic filter for $\operatorname{Col}(\omega, <\omega_1)^{L(Y,\sigma)}$ -generic over $L(Y,\sigma)$. The partial order $\operatorname{Col}(\omega, <\omega_1)$ adds a partition of ω_1 into \aleph_1 many stationary sets. In L[Y,g] there exists an iteration j of (M,I) such that the image of each I-positive set is stationary in $L(Y,\sigma)[g]$. Since $\operatorname{Col}(\omega, <\omega_1)^{L(Y,\sigma)}$ has cardinality \aleph_1 in $L(Y,\sigma)$, there exists an $x\in\omega^\omega$ which is \leq -above all members of the range of j(f). Then the j-image of each I-positive set in M is stationary in L[Y,g,x]. Let t be a bounded subset of ω_1 coding g and x, and let N be as given by Theorem 2.1.

As in the $\mathsf{MM}^{++}(\mathfrak{c})$ proof, we can convert N into a \mathbb{P}_{\max} condition as desired. First force over N with $\mathrm{Col}(\omega_1,<\delta)^N$, where δ is the least Woodin cardinal of N, and then force over this extension with a c.c.c. forcing making MA_{\aleph_1} hold. Letting N^* be this forcing extension, let N' be $V_\kappa \cap N^*$, where κ is the least strongly inaccessible cardinal of N^* , let I' be $\mathrm{NS}_{\omega_1}^{N'}$ and let a'=j(a).