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Abstract

An ideal I on a Polish space X is said to be polar if I is the intersection
of the null ideals for some family of Borel probability measures on X. We
study polar ideals where the corresponding family of measures is analytic
and the induced forcing of Borel sets modulo I is proper. We show that
for a broad class of examples this property is closed under iterations, and
that the universally measurable sets of the ground model reinterpret as
universally measurable sets in the corresponding extensions.

1 Introduction

In this note, we isolate a rather natural class of proper partial orders, namely
the orders for which one can naturally assign a Borel probability measure to
each condition. We show that partial orders of this type can be iterated with
countable support, preserving the property in question. As a result, the iterated
extensions possess interesting and uncommon properties.

In Section 3 we isolate the class of partial orders in question. These are quo-
tient partial orders of the form PI , the Borel I-positive sets ordered by inclusion,
for a σ-ideal I on a Polish space X which is the intersection of null ideals asso-
ciated with an analytic set of Borel probability measures on X; such quotient
posets we call Σ1

1-polar (Definition 3.1). There are many natural examples as
well as sophisticated ones.

In Section 4 we show that countable support iterations of countable length
of Σ1

1-polar posets are again Σ1
1-polar (Theorem 4.1). This makes it possible to

prove preservation theorems for iterations of arbitrary length.
In Section 5, we take an axiomatic approach to preservation theorems for

iterations of Σ1
1-polar forcings. We isolate the notion of a measured extension

(Definition 5.1). Measured extensions may not be generated by polar forcings
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or may not even be forcing extensions at all. However, iterations of polar forc-
ings do generate measured extensions (Theorem 5.12). We abstractly derive
several properties of measured extensions. Not surprisingly, such extensions are
bounding and preserve outer Lebesgue measure.

It turns out that in measured extensions the interpretations of the ground
model universally measurable sets are universally measurable (Theorem 5.6).
This is helpful in the analysis of universally measurable sets in such extensions,
but it is also in some sense a negative result. One major open question in
the theory of universally measurable sets is whether consistently all universally
measurable sets can have the Baire property [13]. Under the Continuum Hy-
pothesis (and certain weakenings) there exist medial limits [14, 2], which induce
universally measurable ideals without the Baire property. In a forcing extension
in which universally measurable sets reinterpret as universally measurable sets,
medial limits reinterpret as medial limits. This shows that any forcing extension
of a model of CH in which all universally measurable sets have the property of
Baire must not be measured.

The authors are very happy to be able to contribute to this volume in honor
of Kenneth Kunen, whose [8] has introduced generations of set theorists to
the field. In addition, the analysis of the measure algebra in Kunen’s [9] was
instrumental in [10], which lead in part to the current paper.

2 Interpretations

The notation used in this note follows the set theoretic standard of [4]. In ad-
dition, given transitive models N0 ⊆ N1 of set theory, and in N0 a Polish space
X and a Borel set B ⊆ X, we denote by i(X) and i(B) their interpretations
in the model N1 (see [5, 16]). Interpretations of Borel sets commute with com-
plements, continuous preimages, countable products, and countable unions and
intersections, among other things. If the models N0 ⊆ N1 in addition have
the same ordinals, and in N0, A ⊆ X is an analytic set, we write i(A) for its
interpretation in the model N1. By a Shoenfield absoluteness argument, inter-
pretation of analytic sets commutes with continuous images: if f : X0 → X1 is
a continuous function and A0 ⊂ X0, A1 ⊂ X1 are analytic sets in the model N0

such that A1 = f ′′A0, then i(A1) = i(f)′′i(A0) holds in the model N1.
A σ-ideal I of analytic sets on a Polish space X is Π1

1 on Σ1
1 if for every

Polish space Y and every analytic set A ⊆ Y ×X the set {y ∈ Y : Ay ∈ I} is
coanalytic. Every Π1

1 on Σ1
1 σ-ideal I has a natural reinterpretation in every

generic extension V [G]. To define the reinterpretation, just choose a universal
analytic set A ⊂ 2ω ×X and in V [G], reinterpret the analytic set

C = {y ∈ 2ω : Ay /∈ I},

and define the reinterpretation of I as the set of all subsets of vertical sections
Ay, for y /∈ i(C). The nontrivial point here is that this is indeed a σ-ideal of
analytic sets which does not depend on the choice of the universal analytic set
A [5, Theorem 2.4.12].
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By a measure on a Polish space X we always mean a Borel probability
measure. The Polish space of Borel probability measures on X is denoted by
P (X). If X,Y are Polish spaces, µ is a measure on X, and f : X → Y is a Borel
function, then the pushforward measure f∗(µ) on Y is defined by f∗(µ)(B) =
µ(f−1B) for all Borel sets B ⊆ Y . We repeatedly use a basic complexity
calculation:

Fact 2.1. (Kondô–Tugué, [6, Theorem 29.26]) If X,Y are Polish spaces, A ⊆
Y × X is an analytic set, and ε is a nonnegative real number, then the set
{〈y, µ〉 ∈ Y × P (X) : µ(Ay) > ε} ⊆ Y × P (X) is analytic.

3 Polar forcings

We start with a central definition.

Definition 3.1. Let I be a σ-ideal on a Polish space X which is generated by
analytic sets. We say that I is polar if there is a set M ⊆ P (X) such that the
following are equivalent for every analytic set A ⊆ X:

1. A /∈ I;

2. there is a measure µ ∈M such that µ(A) > 0;

3. there is a measure µ ∈M such that µ(A) = 1;

We say that an ideal I is a Σ1
1-polar if there exists an analytic M ⊆ P (X)

witnessing that I is polar. If the quotient forcing PI is proper in all forcing
extensions, then we say that I is an iterable Σ1

1-polar ideal. The quotient poset
PI is then a Σ1

1-polar forcing.

Some remarks are in order. If I is a polar ideal as witnessed by a set M ⊆ P (X),
then clearly I can be recovered from M as the σ-ideal of all analytic sets A ⊆ X
such that µ(A) = 0 for all µ ∈ M . Item (3) is a normalization demand which
is included just for convenience: if we find a set M of measures satisfying the
equivalence of (1) and (2), it is possible to extend it to a collection M ′ of
measures satisfying the equivalence of (1, 2, 3) by letting µ ∈ M ′ if there exist
a measure ν ∈ M and a countable collection of pairwise disjoint ν-positive
compact sets Cn for n ∈ ω such that for every basic open set O ⊆ X,

µ(O) = µ(
⋃
n

Cn ∩O)/µ(
⋃
n

Cn).

Clearly, if M is analytic, then so is M ′. If ν(A) > 0 then {Cn : n ∈ ω} can be
chosen so that µ(A) = 1.

If the ideal I is Σ1
1-polar as witnessed by an analytic set of measures M ⊆

P (X), then I is Π1
1 on Σ1

1 by Fact 2.1. The analytic set M cannot be easily
recovered from I: the natural candidate M ′ = {µ ∈ P (X) : for every analytic
set A ∈ I, µ(A) = 0} is coanalytic by Fact 2.1 again, but it apparently does
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not have to be analytic. We do get an additional piece of information from
the set M ′. Since M ⊆ M ′ holds, by Suslin’s theorem there is a Borel set
M ′′ ⊆ P (X) such that M ⊆ M ′′ ⊆ M ′ and then M ′ is in fact a Borel set of
measures witnessing that I is Σ1

1-polar.
The consideration of all forcing extensions is awkward, but apparently nec-

essary, and it is trivial in all specific cases. Since the ideal I is Π1
1 on Σ1

1, it
has a natural reinterpretation in all forcing extensions, as outlined in Section
2. The reinterpretation of the witnessing analytic set of measures will witness
the polarity of the ideal in any extension. Absoluteness of properness of the
quotient forcing is a wide open question even though for all known examples it
is easily seen to hold.

We illustrate the definition with several salient examples.

Example 3.2. Let I be the ideal of countable sets on an uncountable Polish
space X. Then I is an iterable Σ1

1-polar ideal, as witnessed by the set M of all
nonatomic measures µ on X. The quotient forcing is Sacks forcing.

Example 3.3. Let ν be a Borel probability measure on a Polish space X, and
let I be the ideal of ν-null sets. Then I is an iterable Σ1

1-polar idea by its
definition. The quotient forcing is the corresponding notion of random forcing.

Example 3.4. Let I be the ideal on X = (2ω)ω generated by those analytic
sets A ⊆ X which do not contain a subset of the form

∏
n Cn where each

Cn ⊂ 2ω is a perfect set. It is well-known that I is a σ-ideal and the quotient
poset PI is just the full support product of countably many copies of the Sacks
forcing [15, Theorem 5.2.6]. To see that it is proper, first let µ be the product
of ω many copies of the usual Haar measure on the Cantor group. A standard
argument shows that every analytic µ-positive subset contains a product

∏
n Cn

of countably many perfect sets, and so is I-positive. Now, for each I-positive set
A ⊆ X there are continuous injective functions fn : 2ω × 2ω such that the range
of the function

∏
n fn is a subset of A. Thus, I is Σ1

1-polar as witnessed by the
set M of all pushforwards of the measure µ along all continuous functions of
this type. It is iterable as properness of the countable support product of Sacks
forcing is a theorem of ZFC.

Example 3.5. Let X = 2ω, let E0 be the modulo finite equality of elements
of X, and let I be the σ-ideal generated by analytic partial E0-selectors. Then
I is a Σ1

1-polar ideal. To see this, first argue that the usual Haar probability
measure µ on the Cantor group gives zero mass to all analytic E0-selectors. In
addition, if A /∈ I is an analytic set then there is a function f : ω × 2 → 2<ω

such that for each n ∈ ω, f(n, 0), f(n, 1) are distinct binary strings of the same

length and the continuous function f̂ : 2ω → 2ω given by letting f(x) be the
concatenation of f(n, x(n)) for n ∈ ω, has range included in A. Now one can
let M be the set of all pushforwards of the measure µ along all functions of this
type. In addition, the poset PI is proper [15, Section 4.7.1] so I is an iterable
Σ1

1-polar ideal.

Example 3.6. Let φ be a strongly subadditive outer regular Choquet capac-
ity on a Polish space X. Then φ is an envelope of measures [1]: φ(B) =

4



sup{µ(B) : µ ∈ P (X) and µ ≤ φ} holds for all analytic sets B ⊆ X. Thus, the
ideal I = {A ⊆ X : φ(A) = 0} is Σ1

1-polar as witnessed by the set M = {µ ∈
P (X) : for every basic open set O ⊆ X, µ(O) ≤ φ(O)}}. For many outer regu-
lar strongly subadditive capacities, such as the Newtonian capacity on X = R3,
the quotient forcing PI is proper [15, Section 4.3.2, 4.3.3] so the ideal I is in
fact iterable Σ1

1.

Example 3.7. Let X be the unit circle in the complex plane, and let M be
the (analytic) collection of Rajchman measures on it. Let I be the σ-ideal of
all sets which are µ-null for all measures µ ∈M . The ideal I is σ-generated by
closed sets by a theorem of Debs and Saint Raymond [7, VIII.3, Theorem 1];
therefore, the quotient forcing is proper by [15, Theorem 4.1.2]. The ideal I is
the ideal of sets of extended uniqueness.

Naturally, we want to see also some examples of σ-ideals which are not polar.
Some such examples are relatively unsophisticated.

Example 3.8. Let I be the σ-ideal on the Baire space ωω generated by compact
sets. Then I is not polar: for every measure µ on ωω, by its regularity there are
compact sets Kn ⊂ ωω such that µ(

⋃
nKn) = 1. At the same time,

⋃
nKn ∈ I.

Other examples are significantly more difficult to verify.

Example 3.9. The σ-ideal I of σ-porous subsets of R is not polar. Preiss and
Humke [3] found a closed I-positive set C ⊂ R such that for every measure µ
on C there is a Borel set B ⊂ C in the σ-ideal I such that µ(B) = 1.

4 Polar iterations

The main theorem of this section shows that countable support iterations of
iterable Σ1

1-polar ideals result in iterable Σ1
1-polar ideals.

Theorem 4.1. Let X be a Polish space and I be an iterable Σ1
1-polar ideal. Let

α ∈ ω1 be an ordinal. Then Iα is an iterable Σ1
1-polar ideal on Xα.

Proof. We need an iteration operation on coanalytic sets of measures. Let
X0, X1 be Polish spaces and M0,M1 be analytic subsets of P (X0), P (X1) re-
spectively. We define M0 ∗M1 to be the set of all measures µ on X0 ×X1 such
that there exist a measure µ0 ∈ M0 and a Borel function f : X0 → P (X1)
with range contained in M1 such that for every Borel set B ⊆ X0 × X1,
µ(B) =

∫
f(x)(Bx) dµ0(x).

Claim 4.2. The set M0 ∗M1 ⊆ P (X0 ×X1) is analytic.

Proof. Recall the measure disintegration theorem [6, Exercise 17.35]: for every
measure µ on X0 ×X1, letting µ0 be the pushforward measure on X0 induced
by the projection map, there exists a Borel function f : X → P (X1) such that
for every Borel set B ⊆ X0 × X1, µ(B) =

∫
f(x)(Bx) dµ0(x). Moreover, the

evaluation of the pushforward measure is a continuous function from P (X0×X1)

5



to P (X0) and the Borel function f is unique modulo µ0. Let C ⊆ P (X1)× ωω
be a closed set projecting to M1 and let π : C → P (X1) be the projection map.
It is not difficult to see that for a measure µ on X0 ×X1, µ ∈M0 ∗M1 holds if
and only if both of the following hold:

• the pushforward µ0 belongs to M0;

• there exist a collection of pairwise disjoint compact sets Kn ⊆ X0 for
n ∈ ω and continuous functions gn : Kn → C such that for all basic open
sets O0 ⊆ X0 and O1 ⊆ X1,

µ(O0 ×O1) =
∑
n

∫
x∈Kn∩O0

(π ◦ gn(x))(O1) dµ0(x).

This proves the claim since both items are clearly analytic statements.

The ∗ operation is easily seen to be noncommutative, even accounting for the
induced reversal of coordinates. However, it is easily seen to be associative.
The operation also extends to include infinite iterations. Let Xn for n ∈ ω be
Polish spaces and Mn ⊆ P (Xn) be analytic sets. Let ∗nMn ⊆ P (

∏
nXn) be

the set of measures µ on
∏
nXn such that for each n ∈ ω, the pushforward

of µ to
∏
m∈nXm belongs to M0 ∗ M1 ∗ · · · ∗ Mn−1. It is clear that the set

∗nMn ⊆ P (
∏
nXn) is analytic.

Now we apply the operation of iteration of sets of measures to the iteration
of polar ideals.

Claim 4.3. Let I0 and I1 be iterable Σ1
1-polar ideals on respective Polish spaces

X0 and X1. Then I0 ∗ I1 is an iterable Σ1
1-polar ideal.

Proof. The whole argument below should be applied in an arbitrary forcing
extension. Since I0 and I1 are Π1

1 on Σ1
1, so is the iteration I0 ∗ I1 as proved

in [15, Section 5.1.3]. The quotient forcing is proper as it is the iteration of the
quotient forcings PI0 and PI1 . We need only verify then that if M0 and M1 are
analytic sets of measures witnessing the respective polarity of ideals I0 and I1
then M0 ∗M1 witnesses the polarity of the ideal I0 ∗ I1.

Let B ⊆ X0 × X1 be an analytic I0 ∗ I1-positive set. Shrinking the set if
necessary, we may assume that B is in fact Borel, the projection B0 ⊆ X of
B to X0 is Borel and I0-positive, and for all x ∈ B0 the vertical section Bx is
I1-positive. Let µ0 ∈ M0 be a measure assigning the set B0 mass one. The
set D = {〈x, ν〉 ∈ X0 × P (X1) : x ∈ B0, ν ∈ M1, ν(Bx) = 1} is analytic by
Fact 2.1, with all sections above B0 nonempty. By the Jankov–von Neumann
uniformization theorem [6, Theorem 18.1] there is a Borel set C ⊆ B0 of full µ0-
mass and a Borel function f : C → P (X1) such that for all x ∈ C, 〈x, f(x)〉 ∈ D.
Let µ be the measure on X0×X1 defined by µ(E) =

∫
f(x)(Ex) dµ0(x), observe

that µ ∈M0 ∗M1, and µ(B) = 1 as desired.
For the other direction, let B ⊆ X0 × X1 be an analytic set in the ideal

I0 ∗ I1 and µ ∈ M0 ∗M1 be a measure. The set B0 = {x ∈ X0 : Bx /∈ I1} is
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analytic as the ideal I1 is a Π1
1 on Σ1

1. It is also in the ideal I0 as B ∈ I0 ∗ I1
holds. Thus, the pushforward µ0 of µ to X0 assigns it mass zero, as µ0 ∈ M0.
Let f : X0 →M1 be the disintegration function for µ as posited in the definition
of M0 ∗M1. For all x ∈ X0 \B0 it is the case that f(x)(Bx) = 0 as Bx ∈ I1 and
f(x) ∈M1. We conclude that µ(B) =

∫
f(x)(Bx) dµ0(x) = 0 as desired.

Claim 4.4. Let Xn for n ∈ ω be Polish spaces and for each n ∈ ω let In be an
iterable Σ1

1-polar ideal on Xn. Then ∗nIn is an iterable Σ1
1-polar ideal.

Proof. The whole argument below should be applied in an arbitrary forcing
extension. Let πm :

∏
n∈ωXn →

∏
n∈mXn denote the projection maps for each

m ∈ ω. Since In are Π1
1 on Σ1

1, so is the iteration ∗nIn as proved in [15, Section
5.1.3]. The quotient forcing is proper as it is the iteration of the quotient forcings
PIn for n ∈ ω. We show that ∗nMn witnesses the polarity of the ideal ∗nIn.

Let B ⊂
∏
nXn be an analytic ∗nIn-positive set. Shrinking the set B if

necessary, we may assume [15, Theorem 5.1.9] that

• the set B is Borel,

• the projections π′′nB are Borel for each n ∈ ω,

• for each n ∈ ω and each x ∈ π′′nB the set {y ∈ Xn : xay ∈ π′′n+1B} is
In-positive, and

• for each point x ∈
∏
nXn, if x � n ∈ π′′nB for all n ∈ ω then x ∈ B.

Now, by induction on n ∈ ω let µn be a measure on
∏
m∈nXm such that

µn ∈ ∗m∈nMm and µn(π′′nB) = 1 and the pushforward of µn+1 to
∏
m∈nXm

is µn; such a sequence is obtained by an application of the proof of Claim 4.3.
Let µ be the limit of the measures µn: that is, µn is a measure on

∏
nXn such

that for every basic open set O = {x ∈
∏
nXn : x(m) ∈ P} for some open set

P ⊆ Xm, µ(O) = µm+1(P ). Clearly, µ ∈ ∗nMn; we need to conclude that
µ(B) = 1. However, this is immediate from the fact that B =

⋂
n Cn where

Cn = π′′nB ×
∏
m≥nXm, and each of the sets Cn has full µ-mass.

Now let B ⊂
∏
nXn be an analytic set in the ideal ∗nIn. By the proof of

[15, Theorem 5.1.9], there are coanalytic sets Cn ⊆
∏
m∈n+1Xm for n ∈ ω such

that for each n ∈ ω and each x ∈
∏
m∈n the vertical section (Cn)x is Borel

and belongs to the ideal In, and for each x ∈ B there exists n ∈ ω such that
x � n + 1 ∈ Cn. Let µ ∈ ∗nMn; we have to show that µ(B) = 0. Let µn be
the pushforward of µ to

∏
m∈nXm, so µn ∈ ∗m∈nMm. The definition of the

set ∗m∈n+1Mm as well as the fact that the measures in Mn assign mass zero to
all Borel sets in the ideal In shows that µn+1(Cn) = 0. Thus, for each n ∈ ω
µ({x ∈ X : x � n+ 1 ∈ Cn}) = 0 and µ(B) = 0 as desired.

The theorem now follows by an easy transfinite induction on α.
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5 Measured extensions

The axiomatic treatment for preservation theorems for polar forcings starts with
the following abstract notion.

Definition 5.1. Let N0 ⊆ N1 be transitive models of set theory with the same
ordinals. We say that N1 is a measured extension of N0 if the following hold.

1. Every set a1 ∈ N1 such that a1 ⊆ N0 and N1 |= a1 is countable is a subset
of a set a0 ∈ N0 such that N0 |= a0 is countable.

2. Suppose that ε > 0 is a rational number, X ∈ N0 is a Polish space
and N0 |= F is a collection of Borel subsets of X. If there is a Borel
probability measure µ1 on i(X) in the model N1 such that for every B ∈ F ,
µ1(i(B)) ≥ ε, then there is a Borel probability measure µ0 in the model
N0 such that for every B ∈ F , µ0(B) ≥ ε.

Propositions 5.3-5.5 below outline some of the basic properties of measured
extensions. We start with a simple technical proposition which will be used
many times over in our arguments.

Proposition 5.2. Suppose that N1 is a measured extension of N0 and that, in
N0, for each Borel probability measure µ on X, Bµ ⊆ X is a Borel set of µ-mass
smaller than one. Let x ∈ N1 be a point in i(X). Then there is µ such that
x /∈ i(Bµ) holds.

Proof. In the model N0, let F = {Bµ : µ ∈ P (X)}. There is no Borel probability
measure on X which gives each set in F mass one, because F contains a null set
for each Borel probability measure. Suppose towards a contradiction that x ∈⋂
µ i(Bµ) holds. Then in N1, the Borel probability measure giving the singleton
{x} mass one would give each set i(B) for B ∈ F mass one, contradicting the
assumption that N1 is a measured extension of N0.

Next we present three classical and not particularly surprising properties of
measured extensions.

Proposition 5.3. Measured extensions are bounding.

Proof. This is to say that ifN0 is a transitive model of ZFC andN1 is a measured
extension of N0 then every function in ωω ∩ N1 is bounded by a function in
ωω ∩ N0. Indeed, work in the model N0, let X = ωω, and for each Borel
probability measure µ on X find a Kσ-subset Bµ ⊆ X of µ-mass one. By
Proposition 5.2, for every point x ∈ ωω ∩N1 there must be a measure µ ∈ N0

such that x ∈ i(Bµ). This means that x ∈ i(K) for some compact set K ⊂ ωω

in the model N0. Each compact subset of X is dominated by a single function,
so there is y ∈ ωω ∩N0 such that x is dominated by y as desired.

Proposition 5.4. Measured extensions preserve outer measure.

Proof. This is to say that if
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• N0 is a transitive model of ZFC and N1 is a measured extension of N0,

• X is a Polish space in the model N0 and µ is a Borel probability measure
on X,

• ε < 1 is a rational number and

• A ⊆ X is a set of outer µ-mass greater than ε,

then in N1, A still has outer i(µ)-mass greater than ε. To see this, let Y be
the set of all open subsets of X of µ-mass ≤ ε. Equip Y with a natural Polish
topology. For each Borel probability measure ν on Y , the Fubini theorem implies
that the set Cν = {x ∈ X : {y ∈ Y : x ∈ y} has ν-mass smaller than 1} has µ-
mass at least 1 − ε. Pick a point xν ∈ A ∩ Cν and let Bν = {y ∈ Y : xν ∈ y}.
By Proposition 5.2, in the model N1 for every point y ∈ i(Y ) there is a measure
ν ∈ N0 such that y /∈ i(Bν) so xν /∈ y. It follows that outer µ-mass of A in the
model N1 is greater than ε.

Proposition 5.5. The relation of being a measured extension is transitive.

Proof. LetN1 be a measured extension ofN0 and letN2 be a measured extension
of N1; we must show that N2 is a measured extension of N0. To verify (1)
of Definition 5.1, suppose that a2 ⊆ N0 is a set which belongs to N2 and is
countable there. Since N2 is a measured extension of N1, a2 is covered by a set
a1 ∈ N1 which is countable there. Since N1 is a measured extension of N0, the
set a1 ∩ N0 is covered by a set a0 ∈ N0 which is countable there. Clearly, a0
witnesses (1).

To verify (2) of Definition 5.1, suppose that X ∈ N0 is a Polish space and
F0 ∈ M0 is a σ-complete filter of Borel subsets of X and ε > 0 is a rational
number. Suppose that µ2 ∈ N2 is a Borel probability measure on i(X) such
that µ2(i(B)) ≥ ε for all B ∈ F0. Let F1 ∈M1 be the collection {i(B) : B ∈ F}.
Clearly, µ2(i(C)) ≥ ε holds for all C ∈ F1. Since N2 is a measured extension
of N1, there is a Borel probability measure µ1 ∈ N1 such that µ(C) ≥ ε for all
C ∈ F1. Since N1 is a measured extension of N0, there is a Borel probability
measure µ0 ∈ N0 such that µ0(B) ≥ ε for all B ∈ F0. The proof of (2) is
complete.

As a less classical feature of measured extensions, we will show that in mea-
sured extensions the σ-algebra of universally measurable sets allows a unique
interpretation commuting with many natural operations on universally measur-
able sets. Let X be a Polish space. A set A ⊆ X is universally measurable if
for every Borel probability measure µ on X there is a Borel set B ⊆ X such
that µ(A∆B) = 0. The universally measurable subsets of X form a σ-algebra,
denoted by UM(X).

Theorem 5.6. Let N0 ⊆ N1 be a transitive model of ZFC and its measured
extension. Let X ∈ N0 be a Polish space. Then there is a unique map from
(UM(X))N0 to (UM(i(X)))N1 which commutes with the σ-algebra operations
and extends the interpretation map on open sets. Moreover, the map commutes
with products, continuous preimages, and the Suslin operation.
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Proof. For a universally measurable set A ⊆ X in the model N0 let π(A) =⋃
{i(B) : B ⊆ X is a Borel set in N0 which is a subset of A} (this is called the

Borel reinterpretation of A in [10]). We claim that the map π works and it is
unique. It appears that we should first prove that the set π(A) is universally
measurable in N1. In fact, this is nearly the last thing we can prove after a
series of informative claims. At first, it is only clear that π preserves inclusion
and coincides with the usual interpretation map on Borel sets.

Claim 5.7. The map π commutes with complements.

Proof. Let A ⊆ X be a universally measurable set in N0. We need to show that
the sets π(A), π(X \A) form a partition of i(X) in N1. It is clear that the two
sets are disjoint. To see this, suppose towards contradiction that x ∈ i(X) is a
point in π(A) ∩ π(X \ A). Then there must be Borel sets B,C ∈ N0 such that
B ⊆ A, C ⊆ X \ A, and x ∈ i(B) and x ∈ i(C). But then, in the model N0,
B ∩ C = 0 and by Mostowski absoluteness i(B) ∩ i(C) = 0, contradicting the
assumption that x belongs to both i(B) and i(C).

To show that the two sets are complementary, work in the model N0 and
for each Borel probability measure µ on X pick a Borel µ-null set Bµ ⊆ X
such that A \ Bµ ⊆ X is a Borel set. Suppose that x ∈ i(X) is a point. By
Proposition 5.2, there must be a measure µ in N0 such that x /∈ i(Bµ) holds.
Now, i(X) = i(Bµ) ∪ i(A \ Bµ) ∪ i(X \ (A ∪ Bµ)) so either x ∈ i(A \ Bµ) (and
then x ∈ π(A)) or x ∈ i(X \ (A ∪Bµ)) (and then x ∈ π(X \A)).

It follows that the map π, if it works, must be unique satisfying the requirements
of the theorem. To see this, recall [16] that the interpretation of Borel sets is
unique if it is to commute with the σ-algebra operations and extend interpreta-
tion of open sets. It follows that any other map π̂ satisfying the demands of the
theorem must satisfy π(A) ⊆ π̂(A) for every universally measurable set A ⊆ X
in N0 in order to preserve the inclusion between A and its Borel subsets. At
the same time, π̂(A) must have empty intersection with π̂(X \A) and therefore
with π(X \A), leaving π̂(A) = π(A) as the only possibility in view of the claim.

Claim 5.8. The map π commutes with countable intersections.

Proof. Suppose that in the model N0, An ⊆ X are universally measurable sets
for all n ∈ ω. We need to show that π(

⋂
nAn) =

⋂
n π(An). The left-to-

right inclusion is clear as the map π preserves inclusion. For the right-to-left
inclusion, suppose that x ∈

⋂
n π(An). Then there are Borel sets Bn ⊆ An in

N0 such that x ∈ i(Bn), for all n ∈ ω. Since N1 is a measured extension of N0,
there is in N0 a countable set a such that {Bn : n ∈ ω} ⊆ a. Working in the
model N0, let Cn =

⋃
{B : B ∈ a is a Borel subset of X and B ⊆ An}. The

set Cn ⊆ An is a Borel set for each n ∈ ω,
⋃
n Cn ⊂

⋃
nAn is a Borel set, and

x ∈ i(
⋂
n Cn) ⊂ π(

⋂
nAn) as desired.

It follows that the map π commutes with countable unions as unions can be
reconstructed from intersections and complements.
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Claim 5.9. The map π commutes with continuous preimages.

Proof. Suppose that f : X → Y is a continuous map between Polish spaces and
A ⊆ Y is a universally measurable set, all in the model N0. Suppose that
x ∈ X is a point in i(f)−1π(A). Then i(f)(x) ∈ π(A), so by the definition
of the map π there must be a Borel set B ⊆ A such that i(f)(x) ∈ i(B).
Since interpretation of Borel sets commutes with continuous preimages [16] we
have that x ∈ i(f−1B). However, f−1B ⊆ f−1A is a Borel set, so i(f−1B) ⊂
π(f−1A) and x ∈ π(f−1A).

Suppose on the other hand that x ∈ π(f−1A) holds. Then there must
be a Borel set B ⊆ f−1A such that x ∈ i(B). Move to the model N0. For
every Borel probability measure µ on X choose a µ-null Borel set Cµ ⊆ X
such that f ′′(B \ Cµ) ⊆ Y is a Borel set. By Proposition 5.2, there must be a
measure µ in N0 such that x /∈ i(Cµ). By a Shoenfield absoluteness argument
i(f ′′(B \ Cµ)) = i(f)′′i(B \ Cµ) holds. The former set is a subset of π(A) by
the definition of the map π. The point i(f)(x) ∈ Y belongs to the latter set so
x ∈ i(f)−1π(A).

It follows that the map π commutes with countable products: If An ⊆ Xn are
universally measurable subsets of their respective Polish spaces for n ∈ ω, then∏
nAn is the intersection of the preimages of the sets An under the continuous

projection functions from
∏
nXn to the separate coordinates.

Claim 5.10. The map π commutes with the Suslin operation.

Proof. Recall that for a collection {At : t ∈ ω<ω} of subsets of a Polish space
X, the Suslin operation returns the set B = {x ∈ X : ∃y ∈ ωω ∀n x ∈ Ay�n},
which we also denote by S(At : t ∈ ω<ω).

Suppose that the collection {At : t ∈ ω<ω} is in N0 and consists of universally
measurable sets there. Suppose that x ∈ i(X) is a point in the model N1

and x ∈ π(B) holds. This means that in N0 there is a Borel set C ⊆ B
such that x ∈ i(C). Working in the model N0, for each Borel probability
measure µ on X let Dµ ⊆ X be a Borel µ-null set such that for each t ∈ ω<ω,
At \Dµ is a Borel set. By Proposition 5.2, there is µ ∈ N0 such that x /∈ Dµ.
Observe that C \ Dµ ⊆ S(At \ Dµ). By a Shoenfield absoluteness argument,
i(C \Dµ) ⊆ S(i(At \Dµ) : t ∈ ω<ω), the latter set is by definition a subset of
S(π(At) : t ∈ ω<ω), so x ∈ S(π(At) : t ∈ ω<ω) as desired.

Suppose on the other hand that x ∈ S(π(At) : t ∈ ω<ω) holds. Working in
N1, pick y ∈ ω<ω such that for all n ∈ ω, x ∈ π(Ay�n). Pick for each n ∈ ω
a Borel set Bn ∈ N0 such that Bn ⊆ Ay�n and x ∈ i(Bn). By item (1) of
Definition 5.1, there is a countable set a ∈ N0 such that Bn ∈ a holds for all
n ∈ ω. Move to the model N0. For each t ∈ ω<ω let Ct =

⋃
{D ∈ a0 : D ⊆ At, D

Borel} and let E = S(Ct : t ∈ ω<ω). Note that the sets Ct are Borel and the
set E is analytic. For each Borel probability measure µ on X let Eµ ⊆ X be a
Borel µ-null set such that E \ Eµ is Borel. By Proposition 5.2, there is a Borel
probability measure µ such that x /∈ i(Eµ). Note that E \Eµ = S(Ct \Eµ : t ∈
ω<ω) ⊆ B and by Shoenfield absoluteness, i(E \Eµ) = S(i(Ct \Eµ) : t ∈ ω<ω).
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Note that x belongs to the set on the right side of this equation, so it belongs
to the set on the left side as well. It follows that x ∈ π(B) by the definition of
π as desired.

Finally, we are ready for the cinch.

Claim 5.11. The map π sends universally measurable sets to universally mea-
surable sets.

Proof. Suppose that A is a universally measurable subset of a Polish space X
in the model N0. To show that π(A) is universally measurable in N1, work for
N0 for a while. Consider the Polish space Y of all Borel probability measures
on X, and the universally measurable set B = A × Y ⊆ X × Y . For each
probability measure µ on Y let µ̂ be the Borel probability measure on X × Y
defined by µ̂(C) =

∫
ν(Cν) dµ(ν). Since the set B is universally measurable,

for each measure µ on Y there exist a µ̂-null Borel set Cµ ⊆ X × Y such that
B \ Cµ is Borel, and a µ-null Borel set Dµ ⊆ Y such that for all ν ∈ Y \ Dµ,
the horizontal section (Cµ)ν is ν-null.

Move to the model N1 and let ν be a Borel probability measure on X. By
Proposition 5.2, there must be a Borel probability measure µ in the model N0

such that ν /∈ i(Dµ). Working in N0, consider the Borel subsets B \ Cµ, (X ×
Y )\ (B∪Cµ) and Cµ of the space X×Y . They cover the space X×Y , the first
is a subset of B = A×Y and the second is a subset of (X×Y )\B = (X \A)×Y .
Now look at the model N1. By the definition of the map π, i(B \Cµ) ⊆ π(B) =
π(A) × i(Y ) and i(X × Y ) \ (B ∪ Cµ)) ⊆ π(X \ A) × i(Y ). It follows that the
Borel horizontal sections i(B \ Cµ)ν and i((X × Y ) \ (B ∪ Cµ))ν are subsets of
π(A) and π(X \A) respectively. So, π(A)\ (i(Cµ))ν = i(B \Cµ)ν is Borel. By a
standard absoluteness argument, the ν-mass of the horizontal section (i(Cµ))ν
must be zero, so (i(Cµ))ν witnesses that π(A) is ν-measurable.

This concludes the proof of the theorem.

Finally, we record the most important theorem which ties the previous sections
together.

Theorem 5.12. Let I be an iterable Σ1
1-polar ideal on a Polish space X. Let α

be any ordinal. Let P be the countable support iteration of the quotient forcing
PI of length α. The P -extension is a measured extension of the ground model.

Proof. Recall that the iteration can be presented in the following way. A con-
dition in P is a set p such that, for some countable set supp(p) ⊂ α, p is a
Borel Isupp(p)-positive subset of Xsupp(p). The ordering is defined by q ≤ p if
supp(p) ⊂ supp(q) and for all x ∈ q, x � supp(p) ∈ p. The iteration adds a
generic sequence ẋgen ∈ Xα such that the generic filter is exactly the set of all
conditions p ∈ P such that ẋgen � supp(p) ∈ p. For every Polish space Y and
every condition p ∈ P and every name τ such that p  τ ∈ Y there is a condition
q ≤ p and a Borel function f : q → Y such that q  τ = f(ẋgen � supp(q)).

Now, suppose that
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• Y is a Polish space,

• F is a set of Borel subsets of Y ,

• ε is a rational number,

• p ∈ P is a condition and

• τ is a P -name for a measure on Y

such that, for all Borel sets B ∈ F , p  τ(B) ≥ ε. We must find a measure µ
on Y in the ground model such that for every Borel set B ∈ F , µ(B) ≥ ε holds.
To this end, find a condition q ≤ p and a Borel function f : q → P (Y ) such that
q  τ = f(ẋgen � supp(p)). By Theorem 4.1, there is a probability measure ν
on Xsupp(p) such that ν(q) = 1 and all analytic sets in the ideal Isupp(p) have
ν-mass zero.

Let µ be the Borel probability measure on Y defined by the formula

µ(B) =

∫
f(x)(B) dν(x).

It will be enough to argue that for all sets B ∈ F , µ(B) ≥ ε. Suppose to-
wards a contradiction that this fails for some B ∈ F . Then the set r = {x ∈
q : f(x)(B) < ε} is Borel and must have ν-positive mass. Thus, r ≤ q is a
condition in P and by a standard absoluteness argument it forces f(ẋgen �
supp(q))(B) = τ(B) < ε. This contradicts the initial assumptions on p and
τ .

To finish, we observe that if N1 is a measured extension of N0, and

m0 : P(ω)N0 → [0, 1]

is a medial limit in N0, then m0 induces a medial limit m1 in N1. This is a
standard fact rephrased in our context. Recall that a medial limit m is a finitely
additive probability measure on P(ω) giving finite sets measure 0 and having
the property that for each open set U ⊆ [0, 1], m−1[U ] is universally measurable.

Fix m0, N0 and N1 and in the previous paragraph, and let π be the cor-
responding reinterpretation function defined in this section. For each rational
q ∈ [0, 1], let

• G0
q = {x ∈ P(ω)N0 : m0(x) ≥ q},

• L0
q = {x ∈ P(ω)N0 : m0(x) ≤ q},

• G1
q = π(G0

q) and

• L1
q = π(L0

q).
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Since π(∅) = ∅, and π preserves intersections and complements, for each x ⊆ ω
in N1, sup{q ∈ Q ∩ [0, 1] : x ∈ G1

q} is equal to inf{q ∈ Q ∩ [0, 1] : x ∈ L1
q}; we

let m1(x) be this value. Then m1 extends m0, and, since π maps universally
measurable sets to universally measurable sets (and the collection of universally
measurable sets is closed under countable unions), N0 thinks that m−11 [U ] is
universally measurable for each open U ⊆ [0, 1].

It remains to see that m1 is finitely additive. To see this, note that for
any rational numbers q0 ≤ q1 and q2 ≤ q3 in [0, 1], if A is, in N0, the set of
(x, y, z) ∈ P(ω)3 for which z is the disjoint union of x and y, m0(x) ∈ [q0, q1],
m0(y) ∈ [q2, q3] and m0(z) 6∈ [q0 + q2, q1 + q3], then A is universally measurable
in N0, and π(A) is in N1 the set of (x, y, z) ∈ P(ω)3 for which z is the disjoint
union of x and y, m1(x) ∈ [q0, q1], m1(y) ∈ [q2, q3] and m1(z) 6∈ [q0 +q2, q1 +q3].
Moreover, if A is empty, then π(A) is too. A suitable choice of q0, . . . , q3 shows
then that no triple x, y, z can form a counterexample to the finite additivity of
m1 in N1.

It is a standard fact that, for any finitely additive probability measure m on
P(ω) giving finite sets measure 0, the set m−1[{1}] does not satisfy the Baire
property (see [11], for instance).

The paper [12] presents a class of forcing iterations which give rise to mea-
sured extensions but which are not evidently polar.
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