Notes on getting presaturation from collapsing a Woodin cardinal

Paul B. Larson

November 18, 2012

1 Measurable cardinals

1.1 Definition. A *filter* on a set X is a set $F \subseteq \mathcal{P}(X)$ which is closed under intersections and supersets, i.e., such that

- for all A, B in $F, A \cap B \in F$;
- for all $B \subseteq \kappa$ and all $A \in F \cap \mathcal{P}(B), B \in F$.

Given a cardinal κ , a filter F is κ -complete if $\bigcap \mathcal{A} \in \mathcal{F}$ whenever \mathcal{A} is a subset of F of cardinality less than κ .

1.2 Definition. An *ultrafilter* on a set X is a filter on X such that for all $A \subseteq X$, exactly one of A and $X \setminus A$ is in U. The ultrafilter U is *nonprincipal* if no singleton is a member of U.

1.3 Definition. A cardinal κ is said to be *measurable* if there exists a κ -complete nonprincipal ultrafilter on κ .

1.4 Exercise. Show that if κ is measurable, then κ is a regular strong limit cardinal (i.e, κ is *strongly inaccessible*).

Suppose that U is an ultrafilter on a set X. Consider the class of functions with domain X, and the equivalence relation \sim on this class defined by setting $f \sim g$ if and only if $\{x \in X \mid f(x) = g(x)\} \in U$. For each function f with domain X, let $[f]_U$ denote the \sim -equivalence class of f. Define the relation E on equivalence classes by setting $[f]_U E[g]_U$ if and only if

$$\{x \in X \mid f(x) \in g(x)\} \in U.$$

Note that this relation does not depend on the representatives chosen from $[f]_U$ and $[g]_U$. Then Ult(V, U), the ultrapower of V by U, consists of the class of all classes (though we could make these sets by restricting to those f such that the range of f is contained in the least V_α for which $\{x \in X \mid f(x) \in V_\alpha\} \in U$) of the form $[f]_U$, with the binary relation E. **Theorem 1.5.** Let U be an ultrafilter on a set X. For all function f_1, \ldots, f_n with domain X, and all n-nary formulas ϕ ,

$$(\mathrm{Ult}(V,U),E) \models \phi([f_1]_U,\ldots,[f_n]_U)$$

if and only if

$$\{x \in X \mid \phi(f_1(x), \dots, f_n(x))\} \in U.$$

Proof. By induction on the complexity of formulas. For = and \in this is true by definition. For \wedge it follows from the fact that U is a filter, and for \neg it follows from the fact that U is an ultrafilter. For \exists , note that by Replacement and the Axiom of Choice, if

$$\{x \in X \mid \exists a\phi(a, f_1(x), \dots, f_n(x))\} \in U$$

then there is a function g with domain X such that

$$\{x \in X \mid \phi(g(x), f_1(x), \dots, f_n(x))\} \in U.$$

This gives the reverse implication for this step; the other direction is easier. \Box

1.6 Remark. Eventually, we will want to come back to this proof and think about the fragment of ZFC needed to carry it out.

Corollary 1.7. Let U be an ultrafilter on a set X, and let $j: V \to \text{Ult}(V, U)$ be the function which sends each set x to $[c_x]_U$, where c_x is the constant function from X to $\{x\}$. Then j is an elementary embedding.

1.8 Remark. Let tc(x) denote the transitive closure of a set x, and let $tc^{E}([f]_{U})$ denote the transitive E-closure of an element $[f]_{U}$ of Ult(V, U). By convention, we identify each $[f]_{U}$ in Ult(V, U) for which $(tc^{E}([f]_{U}), E)$ is wellfounded with its Mostowski collapse, i.e., the unique set a such that $(\{[f]_{U}\} \cup tc^{E}([f]_{U}), E)$ is isomorphic to $(\{a\} \cup tc(a), \in)$.

1.9 Exercise. Given an ultrafilter U on a set X, Ult(V, U) is wellfounded if and only if U is countably complete (i.e., closed under countable intersections).

Lemma 1.10. Suppose that U is an ultrafilter on a set X, $j: V \to \text{Ult}(V, U)$ is the corresponding embedding, i is the identity function on X and f is a function with domain X. Then $[f]_U = j(f)([i]_U)$.

Proof. Let c_f be the constant function from X to $\{f\}$. Applying Theorem 1.5, we have that $[f]_U = j(f)([i]_U)$ if and only if $\{x \in X \mid f(x) = c_f(x)(i(x))\} \in U$. By the definitions of c_f and i, however, $c_f(x)(i(x)) = f(x)$ for all $x \in U$. \Box

The following is a second proof of Lemma 1.10 (the one given in class).

Proof. It suffices to see that for all functions f, g with domain X, and any relation R in $\{\in, =\}$, $[f]_U R[g]_U$ if and only if $j(f)([i]_U)Rj(g)([i]_U)$. Since j(f) and j(g) are represented by the constant functions from X to $\{f\}$ and $\{g\}$ respectively, both expressions reduce to $\{x \in X \mid f(x)Rg(x)\} \in U$.

1.11 Definition. If $j: V \to M$ is an elementary embedding, the *critical point* of j is the least ordinal α such that $j(\alpha) > \alpha$, if one exists.

1.12 Exercise. Suppose that U is a κ -complete ultrafilter on a regular cardinal κ . Show that the critical point of j is κ .

1.13 Exercise (Scott). Show that there are no measurable cardinals in L. (Let κ be the least measurable cardinal in L, and consider the elementary embedding $j: L \to M$ given by a κ -complete ultrafilter U on κ (in L).)

1.14 Definition. Given a filter F on a set X, a set $A \subseteq X$ is said to be *F*-positive if A intersects each member of F.

For an ultrafilter U, being U-positive is the same as being in U, for arbitrary filters this is not the case.

1.15 Definition. A filter F on an ordinal γ is said to be *normal* if for each F-positive $A \subseteq \gamma$ and each regressive function $f: A \to \gamma$ (i.e., $f(\alpha) < \alpha$ for all $\alpha \in A \setminus \{0\}$) there is an $\alpha < \gamma$ such that $f^{-1}[\alpha]$ is F-positive. The filter F is said to be *uniform* if for all $\alpha < \gamma, \gamma \setminus \alpha \in F$.

1.16 Exercise. Show that if U is a normal uniform ultrafilter on κ , U is κ -complete.

1.17 Exercise. Show that if U is a normal uniform ultrafilter on κ and $i: \kappa \to \kappa$ is the identity function on κ , then $[i]_U = \kappa$ (under our identification of elements of Ult(V, U) with their Mostowski collapses).

1.18 Exercise. Suppose that $j: V \to M$ is an elementary embedding with critical point κ . Show that $\{A \subseteq \kappa : \kappa \in j(A)\}$ is a normal ultrafilter on κ .

The previous exercise shows that " κ is a measurable cardinal" is equivalent to "there exists an elementary embedding $j: V \to M$ with critical point κ " and also equivalent to "there exists a normal ultrafilter on κ ."

1.19 Exercise. Suppose that U is a κ -complete ultrafilter on κ , and let $j: V \to M$ be the corresponding elementary embedding. Show that $\mathcal{P}(\kappa) \subseteq M$, but $U \notin M$. Show that M is closed under sequences of length κ . Show that $2^{\kappa} < j(\kappa) < (2^{\kappa})^+$.

Theorem 1.20. Suppose that U is a normal ultrafilter on κ , and that $\lambda > \kappa$ is a regular cardinal. Let X be an elementary submodel of V_{λ} of cardinality less than κ , with $U \in X$. Let γ be any element of $\bigcap (X \cap U)$, and let $Y = \{f(\gamma) \mid f : \kappa \to V_{\lambda}, f \in X\}$. Then $X \subseteq Y, Y \prec V_{\lambda}$, and $Y \cap \gamma = X \cap \gamma$.

Proof. That $X \subseteq Y$ follows from the fact that there is a constant function in X for each element of X. The fact that $Y \cap \kappa = X \cap \kappa$ follows from normality, as follows. If $f \colon \kappa \to V_{\lambda}$ is in X, and $f(\gamma) < \gamma$, then f is regressive on a set in U, so there is an $\alpha < \gamma$ such that $f^{-1}[\{\alpha\}] \in U$. Then $\alpha \in X$ and $f(\gamma) = \alpha$.

For elementarity, by the Vaught-Tarski test we need to see only that if a_1, \ldots, a_n are in Y and $V_{\lambda} \models \exists x \phi(x, a_1, \ldots, a_n)$, then there is a $b \in Y$ such

that $V_{\lambda} \models \phi(b, a_1, \dots, a_n)$. To see that this holds, fix functions f_1, \dots, f_n in Xsuch that each $a_i = f_i(\gamma)$. There is in V_{λ} a function $g \colon \kappa \to V_{\lambda}$ such that, for all $\alpha < \kappa$, if $V_{\lambda} \models \exists y \phi(y, f_1(\alpha), \dots, f_n(\alpha))$, then $V_{\lambda} \models \phi(g(\alpha), f_1(\alpha), \dots, f_n(\alpha))$. By elementarity, there is such a g in X. Then $g(\gamma) \in Y$, and

$$V_{\lambda} \models \phi(g(\gamma), f_1(\gamma), \dots, f_n(\gamma)).$$

1.21 Remark. Note that in the theorem above, the transitive collapse of Y is the ultrapower of the transitive collapse of X by the image of U under the transitive collapse of X.

1.22 Remark. By the previous theorem, applied repeatedly, if κ is a measurable cardinal, and $\lambda > \kappa$ is a regular cardinal, then for every countable $X \prec V_{\lambda}$ there is a $Y \prec V_{\lambda}$ such that $X \cap \omega_1 = Y \cap \omega_1$ and $Y \cap \kappa$ has ordertype ω_1 . Taking the transitive collapse of Y, we get another contradiction to V = L, since for each $\alpha < \omega_1^L$ there is a $\beta < \omega_1^L$ such that α is countable in L_{β} .

1.23 Exercise (Levy-Solovay). Suppose that κ is a measurable cardinal, as witnessed by a κ -complete ultrafilter U on κ . Let P be any partial order of cardinality less than κ . Then, after forcing with P, the collection of subsets of κ containing an element of U is a κ -complete ultrafilter on κ .

2 Precipitous ideals

2.1 Definition. Given a set X, a set $I \subseteq \mathcal{P}(X)$ is an *ideal* on X if I is closed under subsets and unions (i.e., if $\{X \setminus A : A \in I\}$ is a filter). We call $\{X \setminus A : A \in I\}$ the filter *dual* to I. The ideal I is said to be κ -complete (for some cardinal κ) or normal or uniform if and only if its dual filter is. A subset of X is *I*-positive if it is not in I; I^+ denotes the collection of I-positive sets.

2.2 Exercise. If γ is an ordinal of cofinality κ , every normal uniform ideal on γ is κ -complete.

2.3 Definition. Given a model M of a sufficient fragment of ZFC, and a set $X \in M$, an *M*-ultrafilter is a filter U on X such that

- $U \subseteq \mathcal{P}(X) \cap M;$
- for all $A \in \mathcal{P}(X) \cap M$, $|U \cap \{A, X \setminus A\}| = 1$.

If X is an ordinal in M, U is said to be *M*-normal if for all $A \in U$ and all regressive $f: A \to X$, f is constant on a set in U.

2.4 Remark. If U is an M-ultrafilter, we can form Ult(M, U) as before, and get an elementary embedding from M into Ult(M, U), as in Theorem 1.5. If U is an normal M-ultrafilter on an ordinal κ of M, then the critical point of the corresponding embedding is κ . The corresponding versions of Lemma 1.10 and Exercise 5.9 also go through in this context.

Suppose that I is an ideal on a set X, and consider the Boolean algebra $\mathcal{P}(X)/I$, consisting of the powerset of X modulo the equivalence relation $A \sim B \Leftrightarrow A \bigtriangleup B \in I$. Removing the class corresponding to I, we consider this a forcing notion, under the order $[A] \leq [B] \Leftrightarrow A \setminus B \in I$. Often for the sake of convenience we identify this with the non-separative partial order $(\mathcal{P}(X) \setminus I, \subseteq)$, since as forcing notions they are equivalent. If I contains a cofinite set, then this partial order is trivial as a forcing construction, so in general we will assume otherwise.

2.5 Exercise. If I is an ideal on a set X, and I contains no cofinite sets, and $G \subseteq \mathcal{P}(X)/I$ is a generic filter, then $\{A \mid [A] \in G\}$ is a V-ultrafilter on X which is disjoint from I. If X is an ordinal and I is normal, then the generic ultrafilter added by $\mathcal{P}(X)/I$ is also normal.

2.6 Exercise. Suppose that I is a normal uniform ideal on a regular cardinal κ . For each $\alpha \in \kappa^+$, let $\pi_\alpha : \kappa \to \alpha$ be a surjection, and define the function $f_\alpha : \kappa \to \kappa$ by setting $f_\alpha(\beta) = \operatorname{ot}(\pi_\alpha[\beta])$ for all $\beta < \kappa$ (show that any two choices for π_α induce f_α 's which agree on a club). Show that $[f_\alpha]_G = \alpha$ whenever G is a generic filter for $\mathcal{P}(\kappa)/I$ (such an f_α is called a *canonical function* for α). Show then that $j(\kappa) \geq \kappa^+$ for any generic elementary embedding induced by $\mathcal{P}(\kappa)/I$, and that a set $A \in I^+$ forces that $j(\kappa) = \kappa^+$ if and only if, for each $B \subseteq A$ in I^+ and every function $g : B \to \kappa$, there exist an $\alpha < \kappa^+$, a canonical function f_α for α , and an I-positive set $C \subseteq B$ such that $f_\alpha(\beta) \geq g(\beta)$ for all $\beta \in C$ (let's call this condition *canonical function bounding on I-positive sets*).

2.7 Exercise. Show that if κ is a limit cardinal, then for no normal uniform ideal *I* on κ does canonical function bounding on *I*-positive sets hold.¹

2.8 Definition. We say that an ideal I on a set X is *precipitous* if whenever U is a V-ultrafilter added by forcing with $\mathcal{P}(X)/I$, Ult(V, U) is wellfounded.

Usually we identify U and G, and write Ult(V, G).

2.9 Remark. Suppose that I is an ideal on a set X, and $G \subseteq \mathcal{P}(X)/I$ is a generic filter for which Ult(V, G) is wellfounded. Then some condition $A \in G$ forces the ultrapower to be wellfounded, which implies that the ideal generated by $I \cup \{X \setminus A\}$ is precipitous.

We will not prove (or use) the following theorem, as its proof would take us too far afield.

Theorem 2.10 ([5]). If there is a κ -complete precipitous ideal on an uncountable cardinal κ , then there is an inner model in which κ is a measurable cardinal.

Theorem 2.11 ([5]). If there is a measurable cardinal, then there is a forcing extension in which there is a normal precipitous ideal on ω_1 .

Before we begin the proof of Theorem 2.11, we introduce some terminology.

¹Thanks to Giorgio Audrito and Alessandro Vignati for suggesting this example.

2.12 Definition. Given a set X and a cardinal κ , the partial order $\operatorname{Col}(\kappa, <X)$ consists of partial functions p of cardinality less than κ , from $(X \setminus \{0\}) \times \kappa$ to $\bigcup X$, with the requirement that $p(a, \beta) \in a$ for all (a, β) in the domain of p. The order is containment.

Forcing with $\operatorname{Col}(\kappa, <X)$ explicitly adds a surjection from κ onto each element of X.

2.13 Exercise. Show that if $\kappa < \lambda$ are regular cardinals, and $\gamma^{<\kappa} < \lambda$ for all $\gamma < \lambda$, then $\operatorname{Col}(\kappa, <\lambda)$ is λ -c.c.

For instance, if λ is a regular cardinal then $\lambda = \omega_1$ after forcing with $\operatorname{Col}(\omega, <\lambda)$.

2.14 Remark. If X and Y are disjoint sets, and κ is a cardinal, then $\operatorname{Col}(\kappa, \langle X \cup Y \rangle)$ is isomorphic to $\operatorname{Col}(\kappa, \langle X \rangle \times \operatorname{Col}(\kappa, \langle Y \rangle)$, so a generic filter for $\operatorname{Col}(\kappa, \langle X \rangle)$ can be extended to one for $\operatorname{Col}(\kappa, \langle X \cup Y \rangle)$.

Proof of Theorem 2.11. Let κ be a measurable cardinal, and let U be a normal ultrafilter on κ . Let $j: V \to M$ be the elementary embedding induced by U. Let $H \subseteq \operatorname{Col}(\omega, <j(\kappa))$ be a V-generic filter, and let $G = H \cap \operatorname{Col}(\omega, <\kappa)$. Then G is V-generic for $\operatorname{Col}(\omega, <\kappa)$, H is M-generic for $\operatorname{Col}(\omega, <j(\kappa))$, and $H \setminus G$ is V[G]-generic for $\operatorname{Col}(\omega, <[\kappa, j(\kappa)))$.

The embedding j lifts to an elementary embedding $j^* \colon V[G] \to M[H]$, defined by setting $j^*(\tau_G) = j(\tau)_H$ for each $\operatorname{Col}(\omega, <\kappa)$ -name τ . To see that this works, note that j is the identity function on $\operatorname{Col}(\omega, <\kappa)$, so if $p \in G, \tau_1, \ldots, \tau_n$ are $\operatorname{Col}(\omega, <\kappa)$ -names and ϕ is a formula such that $p \Vdash_{\operatorname{Col}(\omega, <\kappa)}^V \phi(\tau_1, \ldots, \tau_n)$, then j(p) = p is in H and $j(p) \Vdash_{\operatorname{Col}(\omega, <j(\kappa))}^M \phi(j(\tau_1), \ldots, j(\tau_n))$. Let I be the set of $A \in \mathcal{P}(\kappa)^{V[G]}$ such that A is disjoint from some set in U.

Let *I* be the set of $A \in \mathcal{P}(\kappa)^{V[G]}$ such that *A* is disjoint from some set in *U*. Then *I* is an ideal on ω_1 in V[G]. We claim that for each $A \in \mathcal{P}(\kappa)^{V[G]}$, $A \notin I$ if and only if there is an $s \in \operatorname{Col}(\omega, \langle [\kappa, j(\kappa)) \rangle)$ such that

$$s \Vdash_{\operatorname{Col}(\omega, <[\kappa, j(\kappa)))}^{V[G]} \check{\kappa} \in j^*(\check{A}).$$

To see this, suppose that τ is a $\operatorname{Col}(\omega, <\kappa)$ -name in V such that $A = \tau_G$. For the forward direction, since $A \notin I$, for each $p \in G$ the set

$$\{\alpha < \kappa \mid \exists q \le p \ q \Vdash \check{\alpha} \in \tau\}$$

is in U. It follows then that for each $p \in G$, there is a $q \in \operatorname{Col}(\omega, \langle j(\kappa) \rangle)$ extending p such that

$$q \Vdash^{M}_{\operatorname{Col}(\omega, < j(\kappa))} \check{\kappa} \in j(\tau)$$

By genericity, then, there is a $q \in \operatorname{Col}(\omega, \langle j(\kappa) \rangle)$ such that $q \Vdash_{\operatorname{Col}(\omega, \langle j(\kappa) \rangle)}^{M} \check{\kappa} \in j(\tau)$ and $q \cap \operatorname{Col}(\omega, \langle \kappa \rangle) \in G$. Then $q \upharpoonright ([\kappa, j(\kappa)) \times \omega)$ is the desired condition s.

To see the reverse direction, since $A \in I$ there exist $B \in U$ and $p \in G$ such that $p \models_{\operatorname{Col}(\omega, <\kappa)}^{V} \tau \cap \check{B} = \emptyset$. Since every condition in $\operatorname{Col}(\omega, <[\kappa, j(\kappa)))$ forces that $\check{\kappa} \in j^{*}(B)$, no condition in $\operatorname{Col}(\omega, <[\kappa, j(\kappa)))$ can force that $\check{\kappa} \in j^{*}(A)$.

Let us see that I is normal. Fix a set $A \in \mathcal{P}(\kappa)^{V[G]} \setminus I$, a regressive function $f: A \to \kappa$ in V[G] and an $s \in \operatorname{Col}(\omega, \langle [\kappa, j(\kappa)) \rangle)$ such that

$$s \Vdash_{\operatorname{Col}(\omega, <[\kappa, j(\kappa)))}^{V[G]} \check{\kappa} \in j^*(\check{A})$$

We may strengthen s to a condition s' deciding $j^*(f)(\kappa)$ to be some fixed ordinal α . It follows then that

$$s' \Vdash_{\operatorname{Col}(\omega, <[\kappa, j(\kappa)))}^{V[G]} \check{\kappa} \in j^*(f^{-1}[\{\alpha\}]),$$

so $f^{-1}[\{\alpha\}] \notin I$.

Let $D = \{A \in \mathcal{P}(\kappa)^{V[G]} \mid \kappa \in j^*(A)\}$. We wish to see that $D \cap I = \emptyset$, that D is V[G]-generic for $\mathcal{P}(\kappa)/I$, and that $\mathrm{Ult}(V[G], D)$ is wellfounded. The first of these follows from the reverse direction of the claim above. To see that $\mathrm{Ult}(V[G], D)$ is wellfounded, note that it embeds into M[H] via the function sending $[f]_D$ to $j^*(f)(\kappa)$.

Finally, we check that D is V[G]-generic for $\mathcal{P}(\kappa)/I$. Suppose that E is a subset of $\mathcal{P}(\kappa)/I$ in V[G], and that $E \cap D = \emptyset$. It suffices to show that E is not dense in $\mathcal{P}(\kappa)/I$. Let r be a condition in $\operatorname{Col}(\omega, \langle [\kappa, j(\kappa)) \rangle \cap H$ such that

$$r \Vdash_{\operatorname{Col}(\omega, <[\kappa, j(\kappa)))}^{V[G]} \forall A \in \check{E} \ \check{\kappa} \notin j^*(A).$$

Let $f: \kappa \to \operatorname{Col}(\omega, \langle \kappa \rangle)$ be a function in V such that $[f]_U = r$, and let

$$B = \{ \alpha \in \kappa \mid f(\alpha) \in G \}$$

Then $B \in V[G]$ and $\kappa \in j^*(B)$, so $B \in D$ and $B \notin I$.

It suffices now to see that $B \cap A \in I$ for all $A \in E$. Fix such an A. If $B \cap A \notin I$, then there is an $s \in \operatorname{Col}(\omega, \langle [\kappa, j(\kappa)) \rangle)$ such that

$$s \Vdash_{\operatorname{Col}(\omega, <[\kappa, j(\kappa)))}^{V[G]} \check{\kappa} \in j^*((A \cap B)).$$

However, $s \Vdash_{\operatorname{Col}(\omega, <[\kappa, j(\kappa)))}^{V[G]} \check{\kappa} \in j^*(\check{B})$ implies that

$$s \Vdash_{\operatorname{Col}(\omega, <[\kappa, j(\kappa)))}^{V[G]} j^*(\check{f})(\check{\kappa}) \in G^*.$$

Since $j^*(f)(\kappa) = j(f)(\kappa) = r$, this implies that $s \leq r$, which means that $s \Vdash_{\operatorname{Col}(\omega, <[\kappa, j(\kappa)))}^{V[G]}\check{\kappa} \notin j^*(\check{A})$, giving a contradiction.

2.15 Definition. Let A be a subset of an ordinal γ . The set A is *closed* if, for all $\alpha < \gamma$, $\sup(A \cap \alpha) \in A$. The set A is *cofinal* if, for all $\alpha < \gamma$, $A \setminus \alpha \neq \emptyset$. We say that A is *club* if it is both closed and cofinal. The set A is *stationary* if it intersects every club subset of γ , and *nonstationary* otherwise.

2.16 Definition. The collection of supersets of club subsets of an ordinal γ is called the *club filter* on γ , and the set of nonstationary sets is called the *nonstationary ideal*. The nonstationary ideal on γ is denoted NS $_{\gamma}$. If κ is a regular cardinal, the ideal generated by NS $_{\gamma} \cup \{\alpha < \gamma \mid cof(\alpha) \neq \kappa\}$ is called the *nonstationary ideal on* γ *restricted to cofinality* κ and denoted NS $_{\gamma}^{\kappa}$.

2.17 Exercise. For any ordinal γ of uncountable cofinality κ , the club filter γ is a κ -complete filter (so the set of nonstationary subsets of γ is a κ -complete ideal).

2.18 Exercise. Every normal uniform ideal on a regular cardinal κ contains NS_{κ} .

2.19 Exercise. If κ is a measurable cardinal, then stationarily many $\gamma < \kappa$ are strongly inaccessible.

2.20 Exercise. If κ is a regular cardinal, $\theta \geq \kappa$ is a cardinal, $A \subseteq \kappa$ is stationary and $x \in H(\theta)$, then there is an elementary submodel X of $H(\theta)$ of cardinality less than κ such that $X \cap \kappa \in A$ and $x \in X$.

2.21 Remark. It is proved in [5] that the normal precipitous ideal on ω_1 in Theorem 2.11 can be made to be the nonstationary ideal, but again we will skip the proof.

2.22 Remark. Exercise 1.18 implies that if there is a κ -complete ultrafilter on a cardinal κ then there is a normal ultrafilter on κ . Gitik [4] has shown that the existence of a precipitous ideal on ω_1 does not imply the existence of a normal precipitous ideal on ω_1 .

2.23 Remark. As the ideal dual to a countably complete ultrafilter is precipitous, and $\operatorname{Col}(\omega, <\kappa)$ is $\kappa.c.c.$ when κ is a regular cardinal, Theorem 2.25 below strengthens Theorem 2.11.

2.24 Definition. A subset S of a partial order P is *predense* if every element of P is compatible with a member of S.

Theorem 2.25 (Kakuda [6], Magidor [9]). If I is a precipitous κ -complete ideal on a regular cardinal κ , then I generates a precipitous ideal after any κ -c.c. forcing.

Proof. Suppose that G is a V-generic filter for some κ -c.c. forcing P. Let J be the κ -complete ideal generated by I in V[G], and suppose that U is a V[G]-ultrafilter added by forcing with $(\mathcal{P}(\kappa)/J)^{V[G]}$.

Let us see first that $U \cap V$ is V-generic for $(\mathcal{P}(\kappa)/I)^V$. First, note that since P is κ -c.c., and I is κ -complete, I-positive sets in V are J-positive in V[G]. Now, let \mathcal{A} be any subset of $\mathcal{P}(\kappa) \setminus I$ in V which is predense in $\mathcal{P}(\kappa) \setminus I$ in the order of mod-I containment. Let τ be a name for a J-positive subset of κ which has intersection in J with each $A \in \mathcal{A}$. Since P is κ -c.c. and I is κ -complete, we can find for each $A \in \mathcal{A}$ a set $B_A \in I$ for which is it forced that $\tau \cap \check{A} \subseteq \check{B}_A$. Then τ is forced to be a subset of $\bigcap_{A \in \mathcal{A}} ((\kappa \setminus A) \cup B_A)$. This set must be in I, however, since it has intersection in I with each element of \mathcal{A} .

We have then that $\operatorname{Ult}(V, U \cap V)$ is wellfounded. It suffices now to see that every function $f: \kappa \to \operatorname{Ord}$ in V[G] is equal to a function $h: \kappa \to \operatorname{Ord}$ from Von a set in U. To see that this is the case, let τ be a P-name for a function from κ to the ordinals, and, for each $\alpha < \kappa$, let D_{α} be the set of conditions in *P* deciding the value of τ at α . We need to find a $g: \kappa \to P$ in *V* for which $\{\alpha < \kappa \mid g(\alpha) \in D_{\alpha} \cap G\} \in U$. Let \mathcal{B} be the collection of sets of the form $\{\alpha < \kappa \mid g(\alpha) \in D_{\alpha} \cap G\}$, for some $g: \kappa \to P$ in *V*. We claim that \mathcal{B} is predense in $(\mathcal{P}(\kappa)/J)^{V[G]}$. Let σ be a *P*-name for an element of $\mathcal{P}(\kappa) \setminus J$ for which it is forced that for each $g: \kappa \to P$ in *V*, that

$$\{\alpha \in \sigma \mid \check{g}(\alpha) \in \check{D}_{\alpha} \cap G\} \in J.$$

By the κ -completeness of I and the κ -c.c. of P, we may fix for each such g a set $E_g \in I$ for which it is forced that

$$\{\alpha \in \sigma \mid \check{g}(\alpha) \in \check{D}_{\alpha} \cap G\} \subseteq E_g.$$

Suppose that there is a $p_0 \in P$ forcing that $\sigma \notin J$. Then for any $p \leq p_0$ the set F_p consisting of those $\alpha < \kappa$ for which there is a $p' \leq p$ forcing that $\check{\alpha} \in \sigma$ is not in I. For each such p we can find a function $g_p \colon \kappa \to P$ in V such that, for all $\alpha \in F_p$, $g_p(\alpha) \in D_\alpha$ and $g_p(\alpha) \Vdash \check{\alpha} \in \sigma$. Again for each such p, there is an $\alpha_p \in F_p \setminus E_{g_p}$. Then $g_p(\alpha_p) \leq p$ forces that $\check{\alpha}_p \in \sigma$. By genericity, some such $g_p(\alpha_p)$ is in G, giving a contradiction.

2.26 Exercise. Show that if I is a normal uniform ideal on a regular cardinal κ , then in any κ -c.c. forcing extension the ideal formed by closing I under subsets.

2.27 Remark. Kakuda's proof actually shows that Ult(V[G], U) is (isomorphic to) a forcing extension of $Ult(V, U \cap V)$ via i(P), where $i: V \to Ult(V, U \cap V)$ is the canonical embedding.

3 Stationary sets

3.1 Definition. Let X be a nonempty set. A set $c \in \mathcal{P}(X)$ is *club* in $\mathcal{P}(X)$ if there is a function $f: X^{<\omega} \to X$ for which c is the set of $A \subset X$ closed under f. Given a cardinal $\kappa \leq |X|$, c is *club* in $[X]^{\kappa}$ (or in $[X]^{<\kappa}$) if c is the set of $A \in [X]^{\kappa}$ (or $[X]^{<\kappa}$) closed under f. A set $a \subset \mathcal{P}(X)$ is *stationary* in $\mathcal{P}(X)$ if it intersects every club subset of $\mathcal{P}(X)$, and *stationary* in $[X]^{\kappa}$ (or $[X]^{<\kappa}$) if it intersects every c which is club in $[X]^{\kappa}$ (or $[X]^{<\kappa}$).

If c is club in $\mathcal{P}(X)$, then $\bigcup c = X$, so we can simply say that c is club if it is club in $\bigcup c$. Similarly, if a is stationary in $\mathcal{P}(X)$, then $\bigcup a = X$, so we can simply say that a is stationary if it is stationary in $\mathcal{P}(\bigcup a)$.

3.2 Exercise. If κ is a regular cardinal and A is a subset of κ , then A is stationary in the sense of Definition 2.15 if and only if it is stationary in $\mathcal{P}(\gamma)$ in the sense of Definition 3.1. A set $A \subseteq \omega_1$ contains a club in the sense of Definition 2.15 if and only if it contains club in $\mathcal{P}(\omega_1)$ in the sense of Definition 3.1.

3.3 Remark. For any first order structure on a nonempty set X, a Skolem function for the structure induces a club of elementary substructures.

Lemma 3.4 (The projection lemma for stationary sets). Suppose that $X \subseteq Y$ are nonempty sets, and $\kappa \leq |X|$ is a cardinal.

- 1. If a is stationary in $\mathcal{P}(Y)$, then $\{B \cap X \mid B \in a\}$ is stationary in $\mathcal{P}(X)$.
- 2. If a is stationary in $\mathcal{P}(X)$, then $\{B \subset Y \mid B \cap X \in a\}$ is stationary in $\mathcal{P}(Y)$.
- 3. If a is stationary in $[X]^{\kappa}$, then $\{B \in [Y]^{\kappa} \mid B \cap X \in a\}$ is stationary in $[Y]^{\kappa}$.
- 4. If a is stationary in $[X]^{<\kappa}$, then $\{B \in [Y]^{<\kappa} \mid B \cap X \in a\}$ is stationary in $[Y]^{\kappa}$.

Proof. For the first part, given a function f on $X^{<\omega}$, extend it in any way to a function g on $Y^{<\omega}$. Then if $B \in a$ is closed under g, then $B \cap X$ is closed under f. For the other parts, given a function f on $Y^{<\omega}$, replace it with a function f' such that for all $A \subset Y$, the f'-image of $A^{<\omega}$ contains A and is closed under f. We may also fix a point $x \in X$ and assume that the f'-image of any nonempty set contains x. One way to do this is to fix a bijection $\pi \colon \omega \to \omega \times \omega$ (with projections π_0 and π_1 , and $\pi_0(n) \leq n$ for all n) and let $f'(y_0, \ldots, y_{n-1})$ be the value of the $\pi_1(n)$ -th term formed from compositions of f and $\pi_0(n)$ many variables, evaluated a $(y_0, \ldots, y_{\pi_0(n)-1})$. Finally, replace f' with a function f'' which agrees with f' when f' takes a value in X, and returns the value x otherwise. Then any subset of X closed under f'' is the intersection with X of a subset of Y closed under f.

3.5 Remark. Exercise 2.20 is an instance of the Lemma 3.4. Moreover, suppose that X is a nonempty set which is a definable element of some $H(\theta)$, $\kappa \leq |X|$ is a cardinal, $C \subset [X]^{\kappa}$ is definable in $H(\theta)$ and C is club in $[X]^{\kappa}$. Then for every $Y \prec H(\theta)$ of cardinality $\kappa, Y \cap X \in C$.

3.6 Definition. Suppose that P is a partial order, θ is a regular cardinal greater than $2^{|P|}$, and X is a countable elementary submodel of $H(\theta)$ with $P \in X$. A condition $p \in P$ is (X, P)-generic if for every dense subset $D \subseteq P$ in X there is a condition $q \in D \cap X$ with $q \ge p$.

We note that the term (X, P)-generic is often used to mean something more general than the definition given here; our notion is sometimes called *completely* (X, P)-generic.

3.7 Definition. Given a cardinal κ , a partial order P is said to be κ -closed if whenever $\gamma < \kappa$ and $\{p_{\alpha} : \alpha < \gamma\} \subseteq P$ such that that $p_{\alpha} \ge p_{\beta}$ for all $\alpha < \beta < \gamma$, there exists a $p \in P$ such that $p \le p_{\alpha}$ for all $\alpha < \gamma$. We usually say countably closed for ω_1 -closed.

3.8 Remark. For any cardinal κ and any set X, the partial order $\operatorname{Col}(\kappa, <X)$ is κ -closed. It follows that if θ is a regular cardinal greater than $2^{|\operatorname{Col}(\kappa, <X)|}$, X is a countable elementary submodel of $H(\theta)$, $p \in P \cap X$ and $P \in X$, then there exists an (X, P)-generic condition $q \leq p$.

3.9 Definition. A sequence of sets $\langle N_{\alpha} : \alpha < \gamma \rangle$ is said to be \subseteq -increasing if $N_{\alpha} \subseteq N_{\beta}$ for all $\alpha < \beta < \gamma$, and continuous if $N_{\beta} = \bigcup_{\alpha < \beta} N_{\alpha}$ for all limit ordinals $\beta < \gamma$.

3.10 Exercise. Suppose that X is a set, κ is a cardinal less than |X|, $a \subseteq [X]^{<\kappa}$ is stationary, and $\lambda > |X| \ge \kappa$. Then $\operatorname{Col}(\kappa, <\lambda)$ adds a continuous, \subseteq -increasing sequence $\langle N_{\alpha} : \alpha < \kappa \rangle$ of subsets of X of cardinality less than κ with $\bigcup \{N_{\alpha} : \alpha < \kappa\} = X$. If $\kappa = \aleph_1$, then the set $\{\alpha < \kappa \mid N_{\alpha} \in a\}$ will be stationary.

We will not be using the following definition, but we include it just to mention the issues that arise in the case $\kappa > \aleph_1$ in the previous exercise.

3.11 Remark. The last part of Exercise 3.10 is more complicated when κ is uncountable. Say that a set N is *internally approachable* (see page 33 of [3], for instance) if there exist a limit ordinal γ and a sequence $\langle N_{\alpha} : \alpha < \gamma \rangle$ such that $N = \bigcup_{\alpha < \gamma} N_{\alpha}$ and $\langle N_{\alpha} : \alpha < \beta \rangle \in N$ for all $\beta < \alpha$. Note that every countable elementary substructure of a set of the form $H(\theta)$ or V_{θ} (for infinite θ) is internally approachable. Exercise 3.10 holds for uncountable κ if one assumes, for some regular cardinal $\theta > 2^{|\text{Col}(\kappa, <\lambda)|}$ that the set of internally approachable $M \prec H(\theta)$ of cardinality less than κ with $M \cap X \in a$ is stationary.

The following exercise uses Theorem 1.20 and Lemma 3.4.

3.12 Exercise. Suppose that κ is a measurable cardinal, $\lambda < \kappa$ is a regular cardinal, A is a stationary subset of λ , and $f: A \to \lambda$ is a function. Then the set of $X \in [\kappa]^{<\lambda}$ for which $X \cap \lambda \in \lambda$ and $\operatorname{ot}(X) > f(X \cap \lambda)$ is stationary.

Exercises 2.13, 3.10 and 3.12 give the following result. By Exercise 2.13, if λ is a strongly inaccessible cardinal, and $\kappa < \lambda$, then forcing with $\operatorname{Col}(\kappa, <\lambda)$ makes $\lambda = \kappa^+$. Furthermore, every subset of κ in the $\operatorname{Col}(\kappa, <\lambda)$ -extension is added by some initial segment of the partial order (i.e., $\operatorname{Col}(\kappa, <\gamma)$ for some $\gamma < \lambda$).

3.13 Exercise. If λ is a strongly inaccessible limit of measurable cardinals, then NS_{ω_1} satisfies canonical function bounding for stationary sets after forcing with $Col(\omega_1, <\lambda)$.

3.14 Remark. For $\kappa > \omega_1$, NS^{ω}_{κ} satisfies canonical function bounding for stationary sets after forcing with $Col(\kappa, <\lambda)$, but this consistently fails for $NS^{\omega_1}_{\omega_2}$ by the argument for Theorem 2.13 of [2].

4 Presaturated ideals

4.1 Definition. Let $\gamma < \kappa$ be cardinals, with γ regular. Let I be a κ -complete ideal I on κ . We say that I is γ -presaturated if whenever $B \in I^+$ and \mathcal{A}_{α} $(\alpha < \gamma)$ are antichains in $\mathcal{P}(\omega_1)/I$, there is a $C \in I^+ \cap \mathcal{P}(B)$ such that for each $\alpha < \gamma$, $[C]_I$ is compatible with at most κ many members of \mathcal{A}_{α} . When $\kappa = \gamma^+$ we say simply that I is presaturated.

4.2 Exercise. Suppose that I is a κ -complete ideal on an uncountable cardinal κ . Let $G \subseteq \mathcal{P}(\kappa)/I$ be a V-generic filter and let $j: V \to \text{Ult}(V, G)$ be the corresponding embedding. Show that if $\gamma < \kappa$ is an infinite cardinal and I is γ -presaturated, then Ult(V, G) is closed under γ -sequences in V[G], and therefore wellfounded. Show that if $\kappa = \gamma^+$, then $j(\kappa) = \kappa^+$.

4.3 Exercise. Given a cardinal κ , find κ many partitions of κ^+ into κ^+ many sets such that no stationary subset of κ^+ has stationary intersection with just κ many members of each partition.

4.4 Remark. If there is a presaturated ideal on ω_1 , then there is a normal presaturated ideal on ω_1 [1]. Presaturation of NS_{ω_1} is not necessarily preserved by c.c.c. forcing ([13, 8]).

4.5 Exercise. A theorem of Shelah says that if κ is a regular cardinal and P is a partial order such that forcing with P makes $\operatorname{cof}(\kappa) < \operatorname{cof}(|\kappa|)$ hold, then P collapses κ^+ . Show that this implies that $\operatorname{NS}_{\omega_2}^{\omega}$ is not presaturated.

4.6 Remark. Woodin has shown (from determinacy hypotheses, see Section 9.7 of [14]) that it is possible to have a normal ω -presaturated ideal on ω_2 .

4.7 Definition. Let κ be an uncountable cardinal. Given a collection \mathcal{A} of subsets of κ and an ordinal $\beta > \kappa$, we let $\operatorname{sp}_{\beta}(\mathcal{A})$ be the set of $X \prec V_{\beta}$ for which there exist a $Y \prec V_{\beta}$ and a $B \in \mathcal{A} \cap Y$ such that $X \subseteq Y, X \cap \kappa = Y \cap \kappa$ and $X \cap \kappa \in B$. We say that a set Y captures a collection $\mathcal{A} \subseteq \mathcal{P}(\kappa)$ if there is a $B \in \mathcal{A} \cap Y$ such that $Y \cap \kappa \in B$. A collection \mathcal{A} of subsets of ω_1 is semi-proper if $\operatorname{sp}_{\omega_1+\omega}(\mathcal{A})$ contains a club subset of $[V_{\omega_1+\omega}]^{\aleph_0}$.

4.8 Remark. To generalize Definition 4.7 to an arbitrarily uncountable κ , say that \mathcal{A} is *semi-proper* if for a club of $M \in [V_{\kappa+\omega}]^{<\kappa}$, if M is internally approachable, then $M \in \operatorname{sp}_{\kappa+\omega}(\mathcal{A})$.

Note that Y in the definition of semi-proper can be taken to have the same cardinality as X.

4.9 Exercise. If \mathcal{A} is a subset of $\mathcal{P}(\omega_1)$ and \mathcal{A} is not semi-proper, then $[V_\beta]^{\aleph_0} \setminus \operatorname{sp}_\beta(\mathcal{A})$ is stationary for all $\beta \geq \omega_1 + \omega$.

Lemma 4.10. Let \mathcal{A} be a collection of subsets of ω_1 , and let $\beta > \omega_1 + \omega$ be an ordinal of cofinality greater than $\beth_{\omega_1+\omega}$. Then \mathcal{A} is semi-proper if and only if for each countable $X \prec V_\beta$ of with $\mathcal{A} \in X$ there exists a $Y \prec V_\beta$ capturing \mathcal{A} with $X \subseteq Y$ and $X \cap \omega_1 = Y \cap \omega_1$.

Proof. The reverse direction follows from upwards projection of stationary sets, plus the fact that the set of countable elementary substructures of a structure contains a club. For the forward direction, recall that $\beth_{\omega_1+\omega} = |V_{\omega_1+\omega}|$. Suppose that $\operatorname{sp}(\mathcal{A})$ contains a club and \mathcal{A} is an element of a countable elementary substructure X of V_{β} . Then there is a function $F: V_{\omega_1+\omega}^{<\omega} \to V_{\omega_1+\omega}$ in X such that every subset of $V_{\omega_1+\omega}$ closed under F is in $\operatorname{sp}(\mathcal{A})$. Then there is a countable $Y \prec V_{\omega_1+\omega}$ capturing \mathcal{A} such that $X \cap V_{\omega_1+\omega} \subseteq Y$, and $X \cap \omega_1 = Y \cap \omega_1$. Let

$$X[Y] = \{ f(y) \mid f \colon V_{\omega_1 + \omega} \to V_\beta, \ y \in Y \}.$$

We want to see that $X[Y] \prec V_{\beta}$, and that $X[Y] \cap \omega_1 = X \cap \omega_1$. For the first of these, it suffices to see that if f_1, \ldots, f_n are functions from $V_{\omega_1+\omega}$ to V_{β} , y_1, \ldots, y_n are in Y and $V_{\beta} \models \exists x \phi(x, f_1(y_1), \ldots, f_n(y_n))$, then there is a function $g: (V_{\omega_1+\omega})^n \to V_{\beta}$ in X such that $V_{\beta} \models \phi(g(y_1, \ldots, y_n), f_1(y_1), \ldots, f_n(y_n))$. For the second part, if $f: V_{\omega_1+\omega} \to \omega_1$ is in $X, y \in Y$, then $y \in V_{\omega_1+m}$ for some m, and $f \upharpoonright V_{\omega_1+m}$ is in $X \cap V_{\omega_1+\omega}$.

4.11 Exercise. Let \mathcal{A}_i $(i < \omega)$ be semi-proper collections of subsets of ω_1 , and let $\beta > \omega_1 + \omega$ be an ordinal of cofinality greater than $\beth_{\omega_1+\omega}$. Then the set of countable $X \prec V_\beta$ which capture each \mathcal{A}_i is stationary.

4.12 Remark. Suppose that $\kappa < \theta$ are cardinals. If $Y \prec H(\theta)$ with $Y \cap \kappa \in \kappa$, and A, B are two subsets of κ in Y with nonstationary intersection, it cannot be that $Y \cap \kappa \in A \cap B$.

Lemma 4.13. If every predense set in $\mathcal{P}(\omega_1) \setminus NS_{\omega_1}$ is semi-proper, then NS_{ω_1} is precipitous.

Proof. Suppose towards a contradiction that E is a stationary subset of ω_1 such that there exist $\mathcal{P}(E)/I$ -names τ_i $(i \in \omega)$ for an ω -sequence of functions in V from ω_1 to the ordinals giving rise to a descending ω -sequence in a generic ultrapower via $\mathcal{P}(E)/\mathrm{NS}_{\omega_1}$. For each $i \in \omega$, let \mathcal{A}_i be the union of $\{\omega_1 \setminus E\}$ with the collection of stationary sets $B \subseteq E$ such that B chooses a value $f_j \colon \omega_1 \to \mathrm{Ord}$ for each τ_j for j < i, and such that $f_0(\beta) > f_1(\beta) > \ldots > f_{i-1}(\beta)$ holds for each $\beta \in B$. Then each \mathcal{A}_i is predense. Let $\eta > \beth_{\omega_1 + \omega}$ be a regular cardinal, and let X be an elementary submodel of V_η of cardinality less than ω_1 with $X \cap \omega_1 \in E$ and each \mathcal{A}_i in X. Iteratively apply the definition of semi-proper (and Lemma 4.10) to the predense sets \mathcal{A}_i $(i \in \omega)$ to find a countable $Y \prec V_\eta$ and $B_i \in \mathcal{A}_i \cap Y$ $(i \in \omega)$ such that

- $X \subseteq Y;$
- $X \cap \omega_1 = Y \cap \omega_1;$
- $\omega_1 \cap X \in B_i$ for all $i \in \omega$.

The various sets B_i must be compatible in $\mathcal{P}(\omega_1)/\mathrm{NS}_{\omega_1}$ (i.e., have stationary intersection), as they are all in X, and $\omega_1 \cap X$ is an element of all of them. Then each B_i decides the value of τ_i to be some f_i , and the values $f_i(X \cap \omega_1)$ $(i \in \omega)$ form a descending ω -sequence, giving a contradiction.

Lemma 4.14. Suppose that $\delta < \kappa$ are regular cardinals, $\gamma < \kappa$, and τ_{α} ($\alpha < \gamma$) are $\mathcal{P}(\kappa)/\mathrm{NS}^{\delta}_{\kappa}$ -names for a γ -sequence of elements of the generic ultrapower. For each $\alpha < \gamma$, let \mathcal{A}_{α} be the collection of $\mathrm{NS}^{\delta}_{\kappa}$ -positive sets deciding that some

fixed function from κ to V in V will give rise to the value of τ at α . Suppose that $\langle X_{\alpha} : \alpha < \kappa \rangle$ is a continuous, \subseteq -increasing sequence of subsets of $\kappa \cup \mathcal{P}(\kappa)$ of cardinality less than κ , and $B \subseteq \kappa$ is an $\mathrm{NS}_{\kappa}^{\delta}$ -positive set such that, for all $\beta \in B, X_{\beta} \cap \kappa = \beta$, and X_{β} captures each \mathcal{A}_{α} . Then $[B]_{\mathrm{NS}_{\kappa}^{\delta}}$ forces in $\mathcal{P}(\kappa)/\mathrm{NS}_{\kappa}^{\delta}$ that the realization of τ will be an element of the generic ultrapower.

Proof. Define the function $f: B \to {}^{\omega}V$ by letting $f(\beta)(i)$ be $g(\beta)$, where g is forced by some $A \in \mathcal{A}_i \cap X_\beta$ for which $X_\beta \cap \omega_1 \in A$ to be the function giving rise to the *i*th element of the sequence represented by τ . We want to see that $[B]_{\mathrm{NS}^{\delta}_{\kappa}}$ forces that $[f]_G = \tau_G$, where G is the generic ultrafilter added by forcing with $\mathcal{P}(\kappa)/\mathrm{NS}^{\delta}_{\kappa}$.

If C is a stationary subset of B and h is a function on C which picks an element of X_{β} for each $\beta \in C$, then h is constant on an $\mathrm{NS}_{\kappa}^{\delta}$ -positive set. Suppose now that C is an $\mathrm{NS}_{\kappa}^{\delta}$ -positive subset of B, and i is an element of ω for which C has forced some function $g \colon \kappa \to V$ to represent the *i*th value of the sequence corresponding to τ . Let h be the function on C which picks for each $\beta \in C$ a set $A \in \mathcal{A}_i \cap X_\beta$ such that $\kappa \cap X_\beta \in A$. Recall also that $\beta = \kappa \cap X_\beta$ for $\beta \in C$. It follows that h is constant on an $\mathrm{NS}_{\kappa}^{\delta}$ -positive $D \subseteq C$, and that D is contained in this constant value A. Since A and C have $\mathrm{NS}_{\kappa}^{\delta}$ -positive intersection, they must choose the same function g, which means that $f(\beta)(i) = g(\beta)$ for all $\beta \in D$, and therefore that D forces the *i*th member of $[f]_G$ to be the *i*th member of τ_G .

Lemma 4.15. Suppose that κ is a regular cardinal, and \mathcal{A} is a collection of NS_{κ}-positive sets, pairwise having intersection in NS_{κ}. Suppose that $\langle X_{\alpha} : \alpha < \kappa \rangle$ is a continuous, \subseteq -increasing sequence of subsets of $\kappa \cup \mathcal{P}(\kappa)$ of cardinality less than κ , and $B \subseteq \kappa$ is a stationary set such that, for each $\beta \in B$, $X_{\beta} \cap \kappa = \beta$, and X_{β} captures \mathcal{A} . Suppose that $C \in \mathcal{A}$ and $B \cap C$ is stationary. Then $C \in \bigcup_{\beta < \kappa} X_{\beta}$.

Proof. Let h be the function on $B \cap C$ which picks for each β a set $A \in \mathcal{A} \cap X_{\beta}$ such that $\kappa \cap X_{\beta} \in A$. It follows that h is constant on a stationary $D \subseteq C$, and that D is contained in this constant value A. Since A and C have stationary intersection, and they are both members of \mathcal{A} , they must be the same set. \Box

4.16 Definition. A Woodin cardinal is a cardinal δ such that for every function $f: \delta \to \delta$ there exist a $\kappa < \delta$ closed under f and an elementary embedding $j: V \to M$ with critical point κ and $V_{j(f)(\kappa)} \subseteq M$.

4.17 Remark. Theorem 5.19 shows how to express the definition of *Woodin* cardinal in the language of set theory. It also shows that one can require that M is closed under sequences of length κ , without strengthening the definition. Similarly, by Remark 5.8, one can add the requirement that $j(\delta) = \delta$

4.18 Exercise. A Woodin cardinal is strongly inaccessible, and stationary limit of measurable cardinals. A stationary limit of Woodin cardinals is Woodin. The least Woodin cardinal is not measurable.

Theorem 4.19 (Shelah-Woodin[11]). Suppose that δ is a Woodin cardinal. Let $G \subseteq \operatorname{Col}(\omega_1, <\delta)$ be a V-generic filter, and let $\{A^i_{\alpha} : i < \omega, \alpha < \delta\}$ be stationary

subsets of ω_1 such that for each $i < \omega$, $\{A^i_{\alpha} : \alpha < \delta\}$ is predense in $\mathcal{P}(\omega_1)/NS_{\omega_1}$. Then there is a $\lambda < \delta$ such that, for each $i < \omega$, $\{A^i_{\alpha} : \alpha < \lambda\}$ is predense and semi-proper in $V[G \cap \operatorname{Col}(\kappa, <\lambda)]$.

Proof. Fix a collection of $\operatorname{Col}(\omega_1, <\delta)$ -names τ_{α}^i ($\alpha < \delta, i < \omega$) such that for each $i < \omega$, $\langle \tau_{\alpha}^i : \alpha < \delta \rangle$ forms a $\operatorname{Col}(\omega_1, <\delta)$ -name σ_i for a predense set in $\mathcal{P}(\omega_1)/\operatorname{NS}_{\omega_1}$. For each $\lambda < \delta$, let $\sigma_{i,\lambda}$ be the $\operatorname{Col}(\omega_1, <\lambda)$ -name induced by $\langle \tau_{\alpha}^i : \alpha < \lambda \rangle$. We will find a $\lambda < \delta$ for which it is forced that in the $\operatorname{Col}(\omega_1, <\lambda)$ -extension, the realization of each $\sigma_{i,\lambda}$ is presense in $\mathcal{P}(\omega_1)/\operatorname{NS}_{\omega_1}$ and semi-proper.

Let us adopt the notation that H_{α} refers to the generic filter for $\operatorname{Col}(\omega_1, <\alpha)$ (we are not fixing these objects, just fixing notation for the forcing relation).

For any $\lambda < \delta$ and $i < \omega$, if $\sigma_{i,\lambda,H_{\lambda}}$ is not semi-proper in $V[H_{\lambda}]$, then

$$a = [V_{\lambda \cdot 2}]^{\aleph_0} \setminus \operatorname{sp}_{\lambda \cdot 2}(\sigma_{i,\lambda,H_\lambda})$$

is stationary in $V[H_{\lambda}]$, and the $\operatorname{Col}(\omega_1, \langle |V_{\lambda\cdot 2}|^+)$ -extension adds a continuous, \subseteq -increasing sequence of countable sets, $\langle N_{\alpha} : \alpha < \omega_1 \rangle$ with union $V_{\lambda\cdot 2}^{V[H_{\lambda}]}$, and $\{\alpha \mid N_{\alpha} \in a\}$ will be a stationary subset of ω_1 . Moreover, for any two such sequences $\langle N_{\alpha} : \alpha < \omega_1 \rangle$, the set $\{\alpha \mid N_{\alpha} \in a\}$ is the same modulo a nonstationary subset of ω_1 .

Fix a function $f: \delta \to \delta$ with the following properties.

- For all $\alpha < \delta$, $f(\alpha)$ is a strongly inaccessible cardinal greater than α .
- If $\lambda < \delta$ is closed under f, then, for each $i \in \omega$, $\sigma_{i,\lambda}$ is forced to be a predense set in $\mathcal{P}(\omega_1)/\mathrm{NS}_{\omega_1}$ in the $\mathrm{Col}(\omega_1, <\lambda)$ -extension.
- If $\lambda < \delta$ is closed under f, it is forced that if $i \in \omega$ is such that $\sigma_{i,\lambda,H_{\lambda}}$ is not semi-proper, then for some β with $\tau_{\beta}^{i} \in V_{f(\lambda)}, \tau_{\alpha,H_{f(\lambda)}}^{i}$ will have stationary intersection with any set of the form $\{\alpha < \omega_{1} \mid N_{\alpha} \in a\}$ as above.

Since δ is Woodin, there exists an elementary embedding $j: V \to M$ with critical point λ , where λ is closed under f and $V_{j(f)(\lambda)} \subseteq M$. We may assume that that M is closed under countable sequences, so that $\operatorname{Col}(\omega_1, <\alpha)^V = \operatorname{Col}(\omega_1, <\alpha)^M$ for every ordinal α , and also (by Theorem 5.19) that for each $i \in \omega$,

$$j(\langle \tau_{\alpha}^{i} : \alpha < \delta \rangle) \restriction j(f)(\kappa) = \langle \tau_{\alpha}^{i} : \alpha < \delta \rangle \restriction j(f)(\kappa).$$

We claim that each $\sigma_{i,\lambda,H_{\lambda}}$ will be semi-proper in $V[H_{\lambda}]$.

Supposing otherwise, fix $i < \omega$ and a condition $p_0 \in \operatorname{Col}(\omega_1, <\lambda)$ forcing that a, the set of countable elementary submodels of $V_{\lambda \cdot 2}[H_{\lambda}]$ (which is equal to $V_{\lambda \cdot 2}^{V[H_{\lambda}]}$) which are not in $\operatorname{sp}_{\lambda \cdot 2}(\sigma_{i,\lambda,H_{\lambda}})$ is stationary. Then p_0 also forces this for the $\operatorname{Col}(\omega_1, <\lambda)$ extension of M, since $[V_{\lambda \cdot 2}]^{\aleph_0} \setminus \operatorname{sp}_{\lambda \cdot 2}(\sigma_{i,\lambda,H_{\lambda}})$ is the same in $V[H_{\lambda}]$ and $M[H_{\lambda}]$ (for the same H_{λ}). There are names ν_{α} ($\alpha < \omega_1$) in the forcing $\operatorname{Col}(\omega_1, <|V_{\lambda \cdot 2}|^+)$ for a continuous, \subseteq -increasing sequence of countable sets whose union is the model $V_{\lambda \cdot 2}[H_{\lambda}]$, and a name ρ for the set of α for which $\nu_{\alpha,H_{|V_{\lambda,2}|^+}} \notin \operatorname{sp}_{\lambda\cdot 2}(\sigma_{i,\lambda,H_{\lambda}})$. Then some condition $p_1 \leq p_0$ in $\operatorname{Col}(\omega_1, \langle j(f)(\lambda))$ forces in M that for some fixed $\beta < j(f)(\lambda)$ that the realizations of ρ and τ^i_{β} will have stationary intersection. As $V_{j(f)(\lambda)} \subseteq M$, p_1 forces this about τ^i_{β} in Vas well.

Whenever $H_{j(\lambda)}$ is V-generic for $\operatorname{Col}(\omega_1, \langle j(\lambda) \rangle$ below p_1 , then, there will be stationarily many countable elementary submodels Z of $V_{\delta}^{V[H_{j(\lambda)}]}$ such that $Z \cap \omega_1 \in \rho_{H_{|V_{\lambda},2}|^+} \cap \tau^i_{\beta,H_{j(f)(\lambda)}}$ (since λ is closed under $f, j(\lambda)$ is a strongly inaccessible cardinal greater than $|V_{\lambda\cdot 2}|^+$ and $j(f)(\lambda)$) and such that every dense subset of $\operatorname{Col}(\omega_1, \langle j(\lambda) \rangle$ in $Z \cap V$ will intersect $Z \cap H_{j(\lambda)}$, which implies that

$$\nu_{Z\cap\omega_1,H_{|V_{\lambda\cdot2}|^+}} = Z\cap V_{\lambda\cdot2}^{V[H_{\lambda}]}$$

Since $\operatorname{Col}(\omega_1, \langle j(\lambda) \rangle)$ adds no countable subsets of V, the restriction of any such elementary submodel to V will be an element of V.

Then there is a countable elementary submodel X of V_{δ} such that

$$\sigma_i, p_1, \beta, j(V_{\lambda \cdot 2}), j \upharpoonright V_{\lambda \cdot 2}, \leq_*$$

are all elements of X (where \leq_* is a wellordering of $j(V_{\lambda \cdot 2})$ in M), and such that there is a condition $p_2 \leq p_1$ which is $\operatorname{Col}(\omega_1, \langle j(\lambda) \rangle)$ -generic for X and forces that

$$(X \cap V_{\lambda \cdot 2})[H_{\lambda}] \notin \operatorname{sp}_{\lambda \cdot 2}(\sigma_{i,\lambda,H_{\lambda}})$$

(this part is actually forced by $p_2 \cap \operatorname{Col}(\omega_1, <\lambda)$ and $X \cap \omega_1 \in \tau^i_\beta$. Note that p_2 also forces then that $X \cap \omega_1 \in \rho$.

It follows that, in $M, p_2 \cap \operatorname{Col}(\omega_1, <\lambda)$ forces in $\operatorname{Col}(\omega_1, <j(\lambda))$ that

$$j(X \cap V_{\lambda \cdot 2})[H_{j(\lambda)}] \in j(a).$$

Let Y be the Skolem closure of $\{\tau_{\beta}^i\} \cup j \upharpoonright (X \cap V_{\lambda \cdot 2})$ in $j(V_{\lambda \cdot 2})$ according to \leq_* . We want to see that Y contradicts the previous paragraph. We have that $Y \in M, j(X \cap V_{\lambda \cdot 2}) \subseteq Y \subseteq X$, and $\tau_{\beta}^i \in Y$.

Let H be M-generic for $\operatorname{Col}(\omega_1, \langle j(\lambda) \rangle)$, with $p_2 \in H$. Then since p_2 forces $X \cap \omega_1 = X[H] \cap \omega_1 = Y[H] \cap \omega_1$ (here we are using that $\operatorname{Col}(\omega_1, \langle j(\lambda) \rangle)$ is the same partial order in V and M, so every $\operatorname{Col}(\omega_1, \langle j(\lambda) \rangle^M$ -name in Y for an ordinal is a $\operatorname{Col}(\omega_1, \langle j(\lambda) \rangle^V$ -name in X) into the realization of τ_{β}^i , which is in Y[H], we have a contradiction.

Corollary 4.20. Suppose that δ is a Woodin cardinal. Then NS_{ω_1} is presaturated in the $Col(\omega_1, <\delta)$ -extension.

Proof. By Lemmas 4.15 and Exercises 3.10 and 4.11 and Theorem 4.19, it suffices to show that if B is a stationary subset of ω_1 and \mathcal{A}_i $(i < \omega)$ are semi-proper subsets of $\mathcal{P}(\omega_1)$, then for any regular cardinal $\chi > |\beta_{\omega_1+\omega}|$, stationarily many countable $Y \prec V_{\chi}$ capture each \mathcal{A}_i . This follows from Lemma 4.10.

4.21 Remark. If δ is a Woodin cardinal and κ is a regular cardinal below δ , NS_{κ}^{ω} is ω -presaturated in the $Col(\kappa, <\delta)$ -extension. The proof for this is similar to the proof of Theorem 27 of [3]. Theorem 2.13 of [2] shows that this can fail to hold for $NS_{\omega^{2}}^{\omega_{1}}$.

4.22 Remark. The results of this section were first proved by Foreman, Magidor and Shelah, using supercompact cardinals [3]. The improvement to Woodin cardinals came shortly afterwards.

Let us call Lebesgue measurability, the property of Baire, the perfect set property and the Ramsey property the *regularity properties*. Solovay [12] showed that if κ is a strongly inaccessible cardinal, then in the $\operatorname{Col}(\omega, <\kappa)$ -extension every set of reals in $L(\mathbb{R})$ is Lebesgue measurable, and satisfies the property of Baire and the perfect set property. Mathias [10] later added the Ramsey property.

Theorem 4.23 (Woodin). Suppose κ is a weakly compact cardinal and there is a κ -c.c. partial ordering P such that whenever $G \subseteq P$ is a V-generic filter, in V[G] there is an elementary embedding $j: V \to M$ with $j(\omega_1) = \kappa$ and $\mathbb{R}^{V[G]} \subseteq M$. Then in a generic extension there is a V-generic filter $H \subseteq \operatorname{Col}(\omega, \langle \kappa \rangle)$ such that $\mathbb{R}^{V[G]} = \mathbb{R}^{V[H]}$.

Foreman, Magidor and Shelah [3] showed that (in more than one way) if δ is a supercompact cardinal, then there is a δ -c.c. forcing, not adding reals but producing a normal ideal I on ω_1 for which $\mathcal{P}(\omega_1)/I$ is \aleph_2 -c.c. (i.e., I is *saturated*). One way in which they showed this was the following.

Theorem 4.24 (Foreman-Magidor-Shelah[3]). If δ is a supercompact cardinal, then in the Col($\omega_1, <\delta$)-extension there is an \aleph_2 -c.c. partial order forcing that NS_{ω_1} is saturated.

It follows from this and the following exercise (due to Kunen [7]) that when δ is supercompact, $\operatorname{Col}(\omega_1, <\delta)$ forces the existence of a normal saturated ideal on ω_1 .

4.25 Exercise. Suppose that there is an \aleph_2 -c.c. partial order P forcing that NS_{ω_1} is saturated. Let I be the set of $B \subseteq \omega_1$ which are forced to be nonstationary by every condition in P. Show that I is a normal saturated ideal on ω_1 .

Putting all of this together, we get that the existence of a supercompact cardinal implies that the regularity properties hold in $L(\mathbb{R})$, and, since forcings of cardinality less than a supercompact cardinal preserve the supercompact cardinals, that forcings of cardinality less than a supercompact cardinal cannot change the theory of $L(\mathbb{R})$.

5 Extenders

5.1 Definition. Given finite sets of ordinal $s \subseteq t$, define the projection map

 $\pi_{t,s} \colon [\operatorname{Ord}]^{|t|} \to [\operatorname{Ord}]^{|s|}$

as follows. Suppose that $t = \{\gamma_0, \ldots, \gamma_{n-1}\}$ (listed in increasing order), and that $a \subseteq n$ is such that $s = \{\gamma_i : i \in a\}$. Then for each $\{\alpha_0, \ldots, \alpha_{n-1}\} \in [\kappa]^n$ (listed in increasing order), we let $\pi_{t,s}(\{\alpha_0, \ldots, \alpha_{n-1}\}) = \{\alpha_i : i \in a\}$.

5.2 Example. If $s = \{1, 3, 7\}$ and $t = \{0, 1, 3, 6, 7, 9\}$, then

$$\pi_{t,s}(\{3,7,\omega,\omega+2,\omega_1,\omega_1\cdot 2\}) = \{7,\omega,\omega_1\}.$$

5.3 Definition. Given an uncountable cardinal κ and an ordinal $\gamma > \kappa$, a (κ, γ) -extender is a function

$$E\colon [\gamma]^{<\omega}\setminus\{\emptyset\}\to V_{k+2}$$

such that

- 1. each E(s) is a κ -complete ultrafilter on $[\kappa]^{|s|}$;
- 2. (coherence) For all finite $s \subseteq t \subset \gamma$, for each $A \subseteq [\kappa]^{|s|}$,

$$A \in E(s) \Leftrightarrow \pi_{t,s}^{-1}[A] \in E(t).$$

3. (normality) for each s and each $f : [\kappa]^{|s|} \to \kappa$ such that

$$\{a \in [\kappa]^{|s|} \mid f(a) < \max(s)\} \in E(s),\$$

there exists a $t \supseteq s$ in $[\gamma]^{<\omega}$ such that

$$\{b \in [\kappa]^{|t|} \mid (f \circ \pi_{t,s})(b) \in b\} \in E(t).$$

We say that γ is the *length* of the extender *E*. Extenders satisfying condition (1) above are often called *short* extenders; these are sufficient for our needs.

5.4 Exercise. Suppose that $E: [\gamma]^{<\omega} \setminus \{\emptyset\} \to V_{k+2}$ is an extender. Prove the following facts directly from the definition of extender (i.e., without using the embedding defined below).

- 1. $E(\{0\})$ is the principal ultrafilter on κ generated by $\{0\}$.
- 2. For all $\alpha < \kappa$, $E(\{\alpha\})$ is the principal ultrafilter on κ generated by $\{\alpha\}$. (This is also true for each finite subset of κ , and these are the only principal E(s)'s.)
- 3. For all $\alpha < \gamma$ and all $A \subseteq \kappa$, $A \in E(\{\alpha\})$ if and only if

$$\{\beta+1 \mid \beta \in A\} \in E(\{\alpha+1\}).$$

- 4. For all $s \subseteq t \in [\gamma]^{<\omega}$, and all $A \subseteq [\kappa]^{|t|}$, $A \in E(t) \Rightarrow \pi_{t,s}[A] \in E(s)$. (The opposite direction is not necessarily true, see Example 5.16)
- 5. $E(\{\kappa\})$ is normal and uniform (modulo being a measure on sets of singleton ordinals as opposed to a measure on sets of ordinals).

Suppose that $E: [\gamma]^{<\omega} \setminus \{\emptyset\} \to V_{k+2}$ is an extender. For each $s \in [\gamma]^{<\omega}$, E(s) induces an ultrapower embedding $j_s: V \to M_s$, as usual. Furthermore, given $s \subseteq t \in [\gamma]^{<\omega}$, there is an embedding $k_{s,t}: M_s \to M_t$ defined by setting

$$k_{s,t}([f]_{E(s)}) = [f \circ \pi_{t,s}]_{E(t)}$$

Lemma 5.5. Suppose that $E: [\gamma]^{<\omega} \setminus \{\emptyset\} \to V_{k+2}$ is an extender. For each $s \subseteq t \in [\gamma]^{<\omega}$, $k_{s,t}$ is elementary.

Proof. By the coherence property of E, and Theorem 1.5, for any *n*-ary formula ϕ and any functions f_1, \ldots, f_n on $[\kappa]^{|s|}$, $M_s \models \phi([f_1]_{E(s)}, \ldots, [f_n]_{E(s)})$ if and only if

$$\{a \in [\kappa]^{|s|} \mid \phi(f_1(a), \dots, f_n(a))\} \in E(s)$$

if and only if

$$\pi_{t,s}^{-1}(\{a \in [\kappa]^{|s|} \mid \phi(f_1(a), \dots, f_n(a))\}) \in E(t)$$

if and only if

$$\{b \in [\kappa]^{|t|} \mid \phi(f_1 \circ \pi_{t,s}(b), \dots, f_n \circ \pi_{t,s}(b))\} \in E(t)$$

if and only if $M_t \models \phi([f_1 \circ \pi_{t,s}]_{E(t)}, \dots, [f_n \circ \pi_{t,s}]_{E(t)}).$

The directed system of models M_s $(s \in \gamma^{<\omega})$ with embeddings

$$k_{s,t} \colon M_s \to M_t \quad (s \subseteq t \in [\gamma]^{<\omega})$$

gives rise to a limit model Ult(V, E). Elements of Ult(V, E) are represented by pairs (f, s), where $s \in \gamma^{<\omega}$ and $f \colon \kappa^{|s|} \to V$. Given a relation $R \in \{\in, =\}$ and pairs (f, s) and (g, t), we set $[f, s]_E R[g, t]_E$ if and only if

$$\{a \in [\kappa]^{|s \cup t|} \mid f(\pi_{s \cup t,s}(a)) Rg(\pi_{s \cup t,t}(b))\} \in E(s \cup t),$$

i.e., if and only if

$$[f \circ \pi_{s \cup t,s}]_{E(s \cup t)} R[g \circ \pi_{s \cup t,t}]_{E(s \cup t)}$$

We let $j_E: V \to \text{Ult}(V, E)$ be the embedding sending each x to $[c_x, \{\kappa\}]_E$, for $c_x: \kappa \to \{x\}$ constant (note : we could pick any element of γ in place of κ here). For each $s \in \gamma^{<\omega}$, there is an embedding $k_{s,\infty}: M_s \to \text{Ult}(V, E)$ defined by setting $[f]_{E(s)} = [f, s]_E$.

5.6 Exercise. Given an *n*-ary formula, sets $s_1, \ldots, s_n \in [\gamma]^{<\omega}$ and functions $f_i: [\kappa]^{|s_i|} \to V$, $\operatorname{Ult}(V, E) \models \phi([f_1, s_1]_E, \ldots, [f_n, s_n]_E)$ if and only if, letting $t = s_1 \cup \ldots \cup s_n$,

$$\{a \in [\kappa]^{|t|} \mid \phi(f_1(\pi_{t,s_1}(a)), \dots, f_n(\pi_{t,s_n}(a)))\} \in E(t).$$

It follows that the embeddings j_E and $k_{s,\infty}$ $(s \in [\gamma]^{<\omega})$ are all elementary.

5.7 Remark. While each M_s as above is wellfounded, Ult(V, E) need not be. It will be, however, in the cases we are interested in. When Ult(V, E) is wellfounded we denote it by M_E .

5.8 Remark. By cardinality considerations, it follows that if δ is a strongly inaccessible cardinal and E is a (κ, λ) -extender in V_{δ} for which Ult(V, G) is wellfounded past δ , then $j(\delta) = \delta$, for j the corresponding embedding.

5.9 Exercise. Let $E: [\gamma]^{<\omega} \setminus \{\emptyset\} \to V_{\kappa+2}$ be a (κ, γ) -extender. For each $n \in \omega$, let i_n be the identity function on $[\kappa]^n$. Show that for each set $s \in [\gamma]^{<\omega}$, the pair $(i_{|s|}, s)$ represents s in Ult(V, E). (Hint : It suffices to prove this for the singletons. Use induction, and normality.)

From Exercise 5.9 it follows that for each pair (f, s) representing an element of Ult(V, E), $[f, s]_E = j_E(f)(s)$, as

$$\{a \in [\kappa]^{|s|} \mid f(a) = c_f(a)(i_{|s|}(a))\} \in E(s).$$

Lemma 5.10. Let $E: [\gamma]^{<\omega} \setminus \{\emptyset\} \to V_{\kappa+2}$ be a (κ, γ) -extender. For each nonempty finite $s \subseteq \lambda$, and each $A \subseteq [\kappa]^{|s|}$, $A \in E(s) \Leftrightarrow s \in j_E(A)$.

Proof. Since $[i_{|s|}, s]_E = s, s \in j_E(A)$ if and only if

$$\{b \in [\kappa]^{|s \cup \{\kappa\}|} \mid (i_{|s|} \circ \pi_{s \cup \{\kappa\}, s})(b) \in (c_A \circ \pi_{s \cup \{\kappa\}, \{\kappa\}})(b)\} \in E(s),\$$

which holds if and only if $A \in E(s)$.

5.11 Definition. Suppose that $j: V \to M$ is an elementary embedding with critical point κ . For any $\gamma \in (\kappa, j(\kappa)]$, we define the (κ, γ) -extender *derived from* j by setting $E(s) = \{A \subseteq [\kappa]^{|s|} \mid s \in j(A)\}$, for each nonempty $s \in [\gamma]^{<\omega}$.

5.12 Exercise. Verify, for any elementary embedding $j: V \to M$ with critical point κ , and any $\gamma \in (\kappa, j(\kappa)]$, that the (κ, γ) -extender derived from j is a (κ, γ) -extender.

5.13 Definition. Let $j: V \to M$ be an elementary embedding with critical point κ , let $\gamma \in (\kappa, j(\kappa)]$ and let E be the (κ, γ) -extender derived from j. The *factor map* corresponding to j and E is the function $k: \text{Ult}(V, E) \to M$ defined by setting $k([f, s]_E) = j(f)(s)$.

Lemma 5.14. Let $j: V \to M$ be an elementary embedding with critical point κ , let $\gamma \in (\kappa, j(\kappa)]$ and let E be the (κ, γ) -extender derived from j. Then the factor map corresponding to j and E is elementary.

Proof. Fix an *n*-ary formula ϕ , sets s_1, \ldots, s_n in $[\gamma]^{<\omega}$ and functions f_1, \ldots, f_n , where each f_i has domain $[\gamma]^{|s_i|}$. Then $\text{Ult}(V, E) \models \phi([f_1, s_1]_E, \ldots, [f_n, s_n]_E)$ if and only if, letting $t = s_1 \cup \ldots \cup s_n$,

$$\{a \in [\kappa]^{|t|} \mid \phi(f_1(\pi_{t,s_1}(a)), \dots, f_n(\pi_{t,s_n}(a)))\} \in E(t),\$$

which holds if and only if

 $t \in j(\{a \in [\kappa]^{|t|} \mid \phi(f_1(\pi_{t,s_1}(a)), \dots, f_n(\pi_{t,s_n}(a)))\}),$

which holds if and only if

$$M \models \phi(j(f_1)(\pi_{t,s_1}(t)),\ldots,j(f_n)(\pi_{t,s_n}(t)))$$

which holds if and only if

$$M \models \phi(j(f_1)(s_1), \dots, j(f_n)(s_n)).$$

Again, let $j: V \to M$ be an elementary embedding, let $\gamma \in (\kappa, j(\kappa)]$ and let E be the (κ, γ) -extender derived from j. Since Ult(V, E) embeds into M, we have that Ult(V, E) is wellfounded if M is (which the notation M suggests that it is).

5.15 Example. Let $j: V \to M$ be an elementary embedding induced by a normal uniform ultrafilter U on κ . Let γ be any ordinal in the interval $(\kappa, j(\kappa)]$, and let E be the (κ, γ) -extender derived from j. Then $E(\{\kappa\}) = U$ and $j = j_E$. To see that $j = j_E$, note every element of M has the form $j(f)(\kappa)$ for some function f. It follows that the map $k([f, s]_E) = j(f)(s)$ is a surjective elementary embedding, and it therefore an isomorphism.

5.16 Example. Let U be a normal uniform ultrafilter on κ , and let $j_0: V \to M_0$ be the corresponding ultrapower embedding. In $M_0, j_0(U)$ is a normal uniform ultrafilter on $j_0(\kappa)$. Let $j_1: M_0 \to M_1$ be the corresponding ultrapower embedding. Let $j: V \to M_1$ be defined by setting $j = j_1 \circ j_0$. Then j is elementary. For each $\gamma \in (\kappa, j(\kappa)]$, let E_{γ} denote the (κ, γ) -extender corresponding to j. If $\gamma \in (\kappa, j_0(\kappa)]$, then $j_{E_{\gamma}} = j_0$, as for all $A \subseteq [\kappa]^n$ and all $s \in [\gamma]^n$, $s \in j(A)$ if and only if $s \in j_0(A)$. If $\gamma \in (j_0(\kappa), j(\kappa)]$, then $j_{E_{\gamma}} = j$, as every member of M_1 has the form $j(f)(\{\kappa, j_0(\kappa)\})$ for some function f in V with domain $[\kappa]^2$ (so we are in a case similar to the previous example).

Let $A = \{\{\alpha, \alpha + 1\} : \alpha \in \kappa\}$. Then $A \notin E_{j_0(\kappa)+1}(\{\kappa, j_0(\kappa)\})$ but

 $\pi_{\{\kappa, j_0(\kappa)\}}[A] \in E_{j_0(\kappa)+1}(\{\kappa\}).$

Lemma 5.17. Suppose that $j: V \to M$ is an elementary embedding with critical point κ , let $\gamma \in (\kappa, j(\kappa)]$, and let E be the (κ, γ) -extender derived from j. Let $k: M_E \to M$ be the factor map. Then the following hold.

- 1. The critical point of k is at least γ .
- 2. If α is such that $M \models 2^{\alpha} < \gamma$, then $\mathcal{P}(\alpha)^M = \mathcal{P}(\alpha)^{M_E}$.

Proof. For each $\alpha < \gamma$, $[i_1, \{\alpha\}]_E = \alpha$, so $k(\alpha) = j(i_1)(\{\alpha\}) = \alpha$. Since $k((2^{\alpha})^{M_E}) = (2^{\alpha})^M < \gamma$, $k((2^{\alpha})^{M_E}) = (2^{\alpha})^{M_E}$, and $k(\mathcal{P}(\alpha)^{M_E})$ is equal to both $\mathcal{P}(\alpha)^{M_E}$ and $\mathcal{P}(\alpha)^M$.

Lemma 5.18. Let $\delta \leq \kappa$ be cardinals. Suppose that γ is a strong limit cardinal of cofinality greater than δ , and that E is a (κ, γ) -extender with $V_{\gamma} \subseteq M_E$. Then M_E is closed under sequences of length δ .

Proof. Suppose that γ is a strong limit cardinal of cofinality greater than δ , with $V_{\gamma} \subseteq M_E$. Each element of M_E has the form $j_E(f)(s)$ for some finite $s \subseteq \gamma$ and some function f with domain $[\kappa]^{|s|}$. Let (f_{α}, s_{α}) $(\alpha < \delta)$ be such that each s_{α} is a finite subset of γ and each f_{α} is a function with domain $[\kappa]^{|s_{\alpha}|}$. Since $\operatorname{cof}(\gamma) > \delta$, $\langle s_{\alpha} : \alpha < \delta \rangle \in V_{\gamma}$, and since $V_{\gamma} \subseteq M_E$, $\langle s_{\alpha} : \alpha < \delta \rangle \in M_E$. Let F be a function on $([\kappa]^{<\omega})^{\delta}$ such that $F(\langle a_{\alpha} : \alpha < \delta \rangle) = \langle f_{\alpha}(a_{\alpha}) : \alpha < \delta \rangle$ whenever each a_{α} has size $|s_{\alpha}|$. Then $j_E(F)(\langle s_{\alpha} : \alpha < \delta \rangle) | \delta = \langle j_E(f_{\alpha})(s_{\alpha}) : \alpha < \delta \rangle$ is an element of M_E .

Theorem 5.19. Suppose that δ is a Woodin cardinal, and fix $f: \delta \to \delta$ and $A \subseteq \delta$. Then there exist κ and λ below δ , and a (κ, λ) -extender F such that the following hold.

- 1. $f[\kappa] \subseteq \kappa$.
- 2. $j_F(f)(\kappa) = f(\kappa)$.
- 3. $V_{f(\kappa)} \subseteq M_F$.
- 4. $j_F(A) \cap f(\kappa) = A \cap f(\kappa)$.
- 5. M_F is closed under sequences of length κ .

5.20 Exercise. Show that by replacing A with a set coding (A, f), and replacing f with a faster function, it suffices to prove the version of the theorem with conclusion (2) removed, and the assumption that f is an increasing function mapping into the strongly inaccessible cardinals below δ added. (For instance, let $H: L_{\delta} \to \delta$ be the function induced by the constructibility order, let $B = H[(A \times \{0\}) \cup (f \times \{1\})]$ and let g be an increasing function for which each value $g(\alpha)$ is a strongly inaccessible cardinal greater than α closed under f.)

Proof of Theorem 5.19. Applying Exercise 5.20, we prove the version of the theorem with conclusion (2) removed, and assume that f is an increasing function mapping into the strongly inaccessible cardinals below δ . Let $g: \delta \to \delta$ be the function defined by letting $g(\alpha)$ be the least strongly inaccessible cardinal above α which is closed under f. Applying the fact that δ is Woodin, let $j: V \to M$ be an elementary embedding whose critical point κ is closed under g, such that $V_{j(g)(\kappa)} \subseteq M$. Then κ is closed under f, and $V_{j(f)(\kappa)} \subseteq M$.

In M, $j(g)(\kappa)$ is closed under j(f), and is a strongly inaccessible limit of strongly inaccessible cardinals. Let η be a strongly inaccessible cardinal of Min the interval $(j(f)(\kappa), j(g)(\kappa))$. Since $V_{j(g)(\kappa)} \subseteq M$, η is strongly inaccessible in V, and $V_{\eta} = V_{\eta}^{M}$. Let $E: [\eta]^{\leq \omega} \setminus \{0\} \to V_{\kappa+2}$ be the (κ, η) -extender derived from j. Then $E \in V_{\eta+1} = V_{\eta+1}^{M}$.

The critical point of the factor map $k_E \colon M_E \to M$ is at least η , which implies the following facts.

- $V^{M_E}_{\eta} = V^M_{\eta};$
- $j_E(f)(\kappa) = j(f)(\kappa);$
- $j_E(A) \cap j(f)(\kappa) = j(A) \cap j(f)(\kappa);$
- $j_E(\kappa) > \eta$.

The first of these follow from Lemma 5.17, and the last from the fact that $\eta < j(g)(\kappa) < j(\kappa)$. Let $j_E^M : M \to \text{Ult}(M, E)$ be the embedding induced by applying E to M.

Let $j_E^M : M \to \text{Ult}(M, E)$ be the embedding induced by applying E to M. By the elementarity of j, it suffices to show that, in M, E satisfies our desired properties with respect to j(f) and j(A). That is, we wish to see the following.

- 1. $j(f)[\kappa] \subseteq \kappa$.
- 2. $V^M_{j(f)(\kappa)} \subseteq \text{Ult}(M, E).$

3.
$$j_E^M(j(A)) \cap j(f)(\kappa) = j(A) \cap j(f)(\kappa).$$

4. In M, Ult(M, E) is closed under sequences of length κ .

The first of these follows from the fact that $j(f) \upharpoonright \kappa = f \upharpoonright \kappa$, and $f[\kappa] \subseteq \kappa$. For the second, note that $V_{j_E(\kappa)}^{M_E}$ is constructed from $V_{\kappa+1}$ and E. Since $V_{\kappa+1} \subseteq M$, this implies that

$$V_{j_E(\kappa)}^{M_E} = V_{j_E^M(\kappa)}^{\text{Ult}(M,E)}.$$

Since $V_{\eta}^{M_E} = V_{\eta}^M$ and $j_E(\kappa) > \eta > j(f)(\kappa) = j_E(f)(\kappa)$, this gives that

$$V_{j(f)(\kappa)}^{M} = V_{j_{E}(f)(\kappa)}^{M_{E}} = V_{j_{E}(f)(\kappa)}^{\text{Ult}(M,E)}.$$

For the third point,

$$j^M_E(j(A)) \cap j(f)(\kappa) = j^M_E(A) \cap j(f)(\kappa)$$

(since $j_E(\kappa) > j_E(f)(\kappa) = j(f)(\kappa)$ and $j(A) \cap \kappa = A \cap \kappa$), which is equal to

 $j_E(A) \cap j(f)(\kappa)$

(since both are computed using $V_{\kappa+1}$ and E), which is equal to $j(A) \cap j(f)(\kappa)$, since the critical point of k_E is at least η , which is greater than $j(f)(\kappa)$.

The last item follows from Lemma 5.18, the fact that η is strongly inaccessible and the fact that $V_{\eta}^{M} = V_{\eta}^{M_{E}}$ is contained in Ult(M, E), which follows the fact that $V_{j_{E}(\kappa)}^{M_{E}} = V_{j_{E}^{M}(\kappa)}^{\text{Ult}(M,E)}$.

References

- J.E. Baumgartner, A.D. Taylor, Properties of ideals in generic extensions II, Trans. Amer. Math. Soc. 271 (1982) 2, 587-609
- [2] M. Foreman, M. Magidor, Large cardinals and definable counterexamples to the Continuum Hypothesis, Ann. Pure App. Logic 76 (1995) 1, 47-97.
- [3] M. Foreman, M. Magidor, S. Shelah, Martin's Maximum, saturated ideals and non-regular ultrafilters, part I, Ann. Math. 127 (1988) 1, 1–47
- [4] M. Gitik, A model with a precipitous ideal but without normal one, http://www.math.tau.ac.il/gitik/nnpi4.pdf
- [5] T. Jech, M. Magidor, W. Mitchell, K. Prikry, *Precipitous ideals*, J. Symb. Logic 45 (1980) 1, 1-8
- Y. Kakuda, On a condition for Cohen extensions which preserve precipitous ideals, J. Symbolic Logic 46 (1981) 2, 296-300
- [7] K. Kunen, Saturated ideals, J. Symb. Logic 43 (1978), 65–76
- [8] P.B. Larson, T. Yorioka, Another c.c.c. forcing that destroys presaturation, Proceedings of the 2009 RIMS set theory workshop, 2010
- [9] M. Magidor, Precipitous ideals and Σ_4^1 sets, Israel J. Math. 35 (1980) 1-2, 109-134
- [10] A.R.D. Mathias, Happy families, Ann. Math. Logic 12 (1977), 59-111
- [11] S. Shelah, H. Woodin, Large cardinals imply that every reasonably definable set of reals is Lebesgue measurable, Israel J. Math 70 (1990) 3, 381–343
- [12] R.M. Solovay, A model of set theory in which every set of reals in Lebesgue measurable, Ann. Math. 92 (1970) 1, 1–56
- [13] B. Velickovic, Forcing axioms and stationary sets, Adv. Math. 94 (1992) 2, 256-284
- [14] W.H. Woodin, The axiom of determinacy, forcing axioms, and the nonstationary ideal, De Gruyter, 2010