Turing Determinacy, Countable Choice and Ultrafilters

Paul Larson * Miami University

June 8, 2020

We let Turing Determinacy (TD) be the statement that every Turing-invariant set of reals contains a Turing cone, and Countable Choice for reals $(CC_{\mathbb{R}})$ be the statement that every countable family of nonempty sets of reals has a Choice function. It is apparently an open question whether TD implies $CC_{\mathbb{R}}$. We note here that the conjunction $TD \land \neg CC_{\mathbb{R}}$ implies the existence of a nonprincipal ultrafilter on ω .

To see this, let $\{A_i : i \in \omega\}$ witness the failure of $\mathsf{CC}_{\mathbb{R}}$. For each $x \in \omega^{\omega}$, there is a minimal *i* such that *x* is not Turing above any member of A_i . Let f(x) be this *i*, and note that *f* is a Turing invariant function. For each $B \subseteq \omega$, $f^{-1}[B]$ is Turing invariant. Let *U* be the set of $B \subseteq \omega$ for which $f^{-1}[B]$ contains a Turing cone. Then *U* is a nonprincipal ultrafilter on ω .

^{*}Partially supported by NSF grant DMS-1764320.