A theorem of Todorcevic on universal Baireness

Paul B. Larson*

December 14, 2005

Abstract

Given a cardinal κ , a set $A \subset \omega^{\omega}$ is κ -universally Baire if there exist trees S, T which project to A and its complement respectively, and which continue to project to complements after the forcing $Coll(\omega, \kappa)$. Todorcevic [3] has shown that under Martin's Maximum every set of reals of cardinality \aleph_1 is \aleph_1 -universally Baire but not \aleph_2 -universally Baire. Here we present alternate proofs of these two facts.

Lemma 0.1. Suppose that S is a tree on $\omega \times \gamma$ for some ordinal γ , and suppose that some forcing P adds a new real to the projection of S. Then the projection of S contains a perfect set in the ground model.

Proof. Let X be a countable elementary submodel of $H((2^{|P|})^+)$ containing P and S and a name τ for a new element of the projection of S. Then there exists a perfect set of filters contained in $X \cap P$ deciding a perfect set of values for τ along with element of γ^{ω} witnessing that these realizations of τ are in the projection of S. Then all of these realizations of τ are in the projection of S. \Box

Recall that Martin's Maximum implies that the nonstationary ideal on ω_1 (NS_{ω_1}) is precipitous, and that $2^{\aleph_1} = \aleph_2$ [1].

Theorem 0.2. Suppose that NS_{ω_1} is precipitous. Let A be an uncountable set of reals not containing a perfect set. Then A is not 2^{\aleph_1} -universally Baire.

Proof. Let A be an uncountable set of reals with no perfect subset, and towards a contradiction let S, T be trees witnessing that A is 2^{\aleph_1} -universally Baire. Since A has no perfect subset, the projection of S in the collapse extension has to be exactly A. Pick an ω_1 -sequence \bar{a} of reals from A. Let $G \subset \mathcal{P}(\omega_1)/NS_{\omega_1}$ be a V-generic filter, and let $j: V \to M$ be the corresponding embedding. Since A is 2^{\aleph_1} -universally Baire, the ω_1^V -st element x of $j(\bar{a})$ is in the projection of T, and so it is in the projection of j(T). Furthermore, since M is wellfounded, $M \models x \in p[j(T)]$. Then in V stationarily many members of \bar{a} are in the projection of T, giving a contradiction.

^{*}Research supported in part by NSF grant DMS-0401603.

Almost-disjoint coding for sets of reals of cardinality κ holds if for every set $\{a_{\alpha} : \alpha < \kappa\}$ of infinite subsets of ω with pairwise finite intersection and every $A \subset \kappa$ there is a $b \subset \omega$ such that for all $\alpha < \kappa$, $b \cap a_{\alpha}$ is infinite if and only if α is in A. Martin's Axiom implies that almost-disjoint coding holds for sets of reals of cardinality less than the continuum [2].

Theorem 0.3. If almost-disjoint coding holds for sets of reals of cardinality κ , then every set of reals of cardinality κ is κ -universally Baire.

Proof. Let $A = \{a_{\alpha} : \alpha < \kappa\}$ be a set of reals of cardinality κ . It suffices to show that if V[G] is an extension by $Coll(\omega, \kappa)$, then every new real in V[G] is in the projection of a tree in V whose projection is disjoint from A. Each new real in V[G] is the realization of a name which is forced by the empty condition to be a new real. Fix such a name τ .

For each real x, let x^* is the set of finite initial segments of x.

For each $p \in Coll(\omega, \kappa)$, there are 2^{ω} many reals which are realizations of τ by filters containing p. Pick one such real, $y_p \notin A$, for each p. Applying almost-disjoint coding, let z be a set of finite sequences from ω intersecting each $y_p \ (p \in Coll(\omega, \kappa))$ infinitely often and each $a^*_{\alpha} \ (\alpha < \kappa)$ finitely often. Then for each condition p and each integer n, there is a condition $p' \leq p$ forcing that $\tau^*_g \cap z$ has size at least n. By genericity, then, the realization of τ will have infinitely many initial segments in z.

The set of reals having infinitely many initial segments in z is an analytic set disjoint from A.

References

- M. Foreman, M. Magidor, S. Shelah, Martin's Maximum. saturated ideals, and non-regular ultrafilters. Part I, Annals of Mathematics, 127 (1988), 1-47
- [2] R.B. Jensen, R.M. Solovay, Some applications of almost disjoint sets, Mathematical Logic and Foundations of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968) North-Holland, Amsterdam (1970) pp. 84-104
- [3] S. Todorcevic, S. Zoble, *Baire Reflection*, preprint

Department of Mathematics and Statistics Miami University Oxford, Ohio 45056 USA larsonpb@muohio.edu