Reals constructible from many countable sets of ordinals

Paul B. Larson

March 20, 2005

Abstract

We show that if there exist proper class many Woodin cardinals, then the set of reals x for which there is exists an ordinal α with $\{a \in \mathcal{P}_{\omega_1}(\alpha) \mid x \in L[a]\}$ stationary is countable. These results were announced in [2].

Given a real x and an ordinal α , we let $C(x, \alpha)$ denote the set

$$\{a \in \mathcal{P}_{\omega_1}(\alpha) \mid x \in L[a]\}$$

We let C denote the set of reals x for which there exists an ordinal α such that $C(x, \alpha)$ is club.

We assume some familiarity with the stationary tower $\mathbb{Q}_{<\delta}$ (see [2]).

Theorem 0.1. Suppose that there exists a proper class of Woodin cardinals. Then for every real x and every ordinal α , $C(x, \alpha)$ is either club or nonstationary, and C is countable.

Proof. Fix a cardinal λ such that, for every real x,

- if there exists an ordinal α with $C(x, \alpha)$ stationary and costationary, then there is such an ordinal below λ ,
- if there exists an ordinal α with $C(x, \alpha)$ club, then there is such an ordinal below λ .

Let G be V-generic for $Coll(\omega_1, \lambda)$, and note that the set of (x, α) such that $C(x, \alpha)$ is stationary (likewise, costationary, club) is the same in V and V[G]. Now let V[G][H] be a semi-proper forcing extension of V[G] in which $u_2 > \lambda$.

If δ is a Woodin cardinal, then since $u_2 \geq \lambda$, $j[\lambda]$ is the same whenever j is the elementary embedding induced by forcing with $\mathbb{Q}_{<\delta}^{V[G][H]}$. Fix a real x and an ordinal $\alpha < \lambda$. Then $x \in L[j[\alpha]]$ if and only if $C(x, \alpha)$ is in the $\mathbb{Q}_{<\delta}^{V[G][H]}$ -generic. Since for all generic filters $x \in L[j[\alpha]]$ is decided in the same way, $C(x, \alpha)$ must be either club or nonstationary.

Suppose that $(x_{\beta}, \alpha_{\beta})$ $(\beta < \omega_1)$ are pairs such that each x_{β} is a distinct real, each $\alpha_{\beta} < \lambda$ and each $C(x, \alpha_{\beta})$ is stationary. Since $u_2 > \lambda$, there is a real z such that for each $\beta < \omega_1$ there is a bijection between ω_1^V and α_{β} in L[z]. Therefore, each x_{β} is in L[z], which is impossible. By contrast, Gitik [1] has shown that for every club subset C of $\mathcal{P}_{\omega_1}(\omega_2)$ and every real z there exist $a, b, c \in C$ such that $z \in L[a, b, c]$.

The Axiom of Determinacy implies that the club filter is an ultrafilter on $\mathcal{P}_{\omega_1}(\omega_2)$ [4]. It follows that if AD holds in $L(\mathbb{R})$, then for each real x the set $C(x, \tilde{\lambda}_2^1)$ is either club or nonstationary. Using this fact in place of the stationary tower argument in the proof of Theorem 0.1, one can easily prove the following.

Theorem 0.2. If AD holds in $L(\mathbb{R})$ in every forcing extension by a forcing of the form $Coll(\omega_1, \gamma)$, then for every real x and every ordinal α , $C(x, \alpha)$ is either club or nonstationary, and C is countable.

The following then follows easily from the fact that the theory of $L(\mathbb{R})$ cannot be changed by set forcing in the presence of a proper class of Woodin cardinals.

Theorem 0.3. If there exists a proper class of Woodin cardinals, then every inner model which is correct about ω_2 contains all the reals in C.

0.4 Question. What are the optimal hypothesis for the conclusions of Theorems 0.1 and 0.2?

0.5 Question. Does C have an independent characterization?

We imagine that the following is true for stronger mice, although we don't know how much stronger.

Theorem 0.6. Suppose that there exists a Woodin cardinal, and $u_2 = \omega_2$. If x is a real and $C(x, \omega_2)$ contains a club, then $C(x^{\#}, \omega_2)$ contains a club.

Proof. If δ is a Woodin cardinal and $u_2 = \omega_2$, then $j[\omega_2]$ is the same for all $\mathbb{Q}_{<\delta}$ -generics, and so for each real x, $C(x, \omega_2)$ is either club or nonstationary. Fix a real x, and suppose that $C(x, \omega_2)$ is club. Then $x \in L[j[\omega_2]]$. But then there is a nontrivial elementary embedding from $L_{\omega_2^V}[x]$ to $L_{j(\omega_2^V)}[x]$ in $L[j[\omega_2]]$, so $x^{\#} \in L[j[\omega_2]]$ and thus $C(x^{\#}, \omega_2)$ is club.

A simple analysis of Shelah's forcing to make the nonstationary ideal on ω_1 (NS_{ω_1}) saturated [3] shows that it cannot add any real from the ground model to C. Since the saturation of NS_{ω_1} plus the existence of a measurable cardinal implies that $u_2 = \omega_2$ [5], we have the following corollary of Theorem 0.6.

Corollary 0.7. If there exist proper class many Woodin cardinals, then the set C is closed under sharps.

References

- [1] M. Gitik, Nonsplitting subset of $\mathcal{P}_{\kappa}(\kappa^+)$, J. Symbolic Logic 50 (1985), no. 4, 881–894
- [2] P. Larson, *The stationary tower. Notes on a course by W. Hugh Woodin*, American Mathematical Society University Lecture Series 32, 2004

- [3] S. Shelah, Proper and improper forcing, second edition. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1998
- [4] W.H. Woodin, AD and the uniqueness of the supercompact measures on P_{ω1}(λ), Cabal seminar 79–81, 67–71, Lecture Notes in Math., 1019, Springer, Berlin, 1983.
- [5] W.H. Woodin, The axiom of determinacy, forcing axioms, and the nonstationary ideal, DeGruyter Series in Logic and Its Applications, vol. 1, 1999