
Handbook of Set Theory

Foreman, Kanamori, and Magidor (eds.)

August 5, 2006



2



Contents

I Forcing over models of determinacy 5
by Paul B. Larson

1 Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Pmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Sequences of models and countable closure . . . . . . . . . . . . 18
4 Generalized iterability . . . . . . . . . . . . . . . . . . . . . . . . 22
5 The basic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6 ψAC and the Axiom of Choice . . . . . . . . . . . . . . . . . . . 35
7 Maximality and minimality . . . . . . . . . . . . . . . . . . . . . 36
8 Larger models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9 Ω-logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

10.1 Variations for NSω1 . . . . . . . . . . . . . . . . . . . . . 53
10.2 Conditional variations for Σ2 sentences . . . . . . . . . . 57

3



4 CONTENTS



I. Forcing over models of determinacy

Paul B. Larson

The Axiom of Determinacy (AD) is the statement that all integer games of
perfect information of length ω are determined. This statement contradicts
the Axiom of Choice, and presents a radically different view of the universe
of sets. Nonetheless, determinacy was a subject of intense study by the
mid 1960’s, with an eye towards the possibility that some inner model of
set theory satisfies AD (see, for example, the introductory remarks in [30]).
Since strategies for these games can be coded by real numbers, the natural
inner model to consider is L(R), the smallest model of Zermelo-Fraenkel set
theory containing the reals and the ordinals. This approach was validated by
the following theorem of Woodin (see [13, 19]), building on work of Martin
and Steel [23] and Foreman, Magidor and Shelah [6].

0.1 Theorem. If there exists a measurable cardinal which is greater than
infinitely many Woodin cardinals, then the Axiom of Determinacy holds in
L(R).

A companion to Theorem 0.1, also due to Woodin (see [19]) and building
on the work of Foreman, Magidor and Shelah [6], shows that the existence
of a proper class of Woodin cardinals implies that the theory of L(R) cannot
be changed by set forcing. By Theorem 0.1, the Axiom of Determinacy is
part of this fixed theory for L(R).

0.2 Theorem. If δ is a limit of Woodin cardinals and there exists a measur-
able cardinal greater than δ, then no forcing construction in Vδ can change
the theory of L(R).

Theorem 0.2 has the following corollary. If P is a definable forcing con-
struction in L(R) which is homogeneous (i.e., the theory of the extension
can be computed in the ground model), then the theory of the P -extension
of L(R) also cannot be changed by forcing (i.e., the P -extensions of L(R)
in all forcing extensions of V satisfy the same theory). This suggests that
the absoluteness properties of L(R) can be lifted to models of the Axiom of
Choice, as Choice can be forced over L(R).
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6 I. Forcing over models of determinacy

In [33], Steel and Van Wesep made a major step in this direction, forcing
over a model of a stronger form of determinacy than AD to produce a
model of ZFC satisfying two consequences of AD, that δ∼

1
2 (the supremum

of the lengths of the ∆1
2-definable prewellordings of the reals) is ω2 and the

nonstationary ideal on ω1 (NSω1) is saturated. Woodin [36] later improved
the hypothesis to ADL(R).

In the early 1990’s, Woodin proved the following theorem, showing for
the first time that large cardinals imply the existence of a partial order
forcing the existence of a projective set of reals giving a counterexample
to the Continuum Hypothesis. The question of whether ZFC is consistent
with a projective witness to c ≥ ω3 remains open.

0.3 Theorem. If NSω1 is saturated and there exists a measurable cardinal
then δ∼

1
2 = ω2.

One important point in this proof is the fact that if NSω1 is saturated
then every member of H(ω2) (those sets whose transitive closure has cardi-
nality less than ℵ2) appears in an iterate (in the sense of the next section)
of a countable model of a suitable fragment of ZFC. Since these countable
models are elements of L(R), their iterations induce a natural partial or-
der in L(R). With certain technical refinements, this partial order, called
Pmax, produces an extension of L(R) whose H(ω2) is the direct limit of the
structures H(ω2) of models satisfying every forceable theory (and more). In
particular, the structure H(ω2) in the Pmax extension of L(R) (assuming
that AD holds in L(R)) satisfies every Π2 sentence φ (in the language with
predicates for NSω1 and each set of reals in L(R)) for H(ω2) such that for
some integer n the theory ZFC + “there exist n Woodin cardinals” implies
that φ is forceable. Furthermore, the partial order Pmax can be easily varied
to produce other consistency results and canonical models.

The partial order Pmax and some of its variations (and many other related
issues) are presented in [37]. The aim of this chapter is to prepare the
reader for that book. First, we attempt to give a complete account of the
basic analysis of the Pmax extension of L(R), relative to published results.
Then we briefly survey some of the issues surrounding Pmax, in particular
Pmax variations and forcing over larger models of determinacy. We also
briefly introduce Woodin’s Ω-logic, in order to properly state the maximality
properties of the Pmax extension. For the most part, though, our focus is
primarily on the Pmax extension of L(R), and secondarily on Pmax-style
forcing constructions as a means of producing consistency results. For other
topics, such as the Ω-conjecture and the relationship between Ω-logic and
the Continuum Hypothesis, we refer the reader to [40, 38, 39, 41, 2].

The material in this chapter is due to Woodin, except where noted oth-
erwise. The author would like to thank Howard Becker and John Steel
for advising him on parts of the material in Sections 4 and 9 respectively.
He would also like to thank Andrés Caicedo, Neus Castells and Teruyuki
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Yorioka for making numerous helpful suggestions. The author was sup-
ported in part by the Fields Institute, FAPESP (Grant # 02/11551-3, Uni-
versity of São Paulo) and the Centre de Recerca Matemàtica of the Institut
d’Estudis Catalans.

1. Iterations

The fundamental construction in the Pmax analysis is the iterated generic
elementary embedding. These embeddings can have many forms, but we
will concentrate on the following case. Suppose that I is a normal, uniform,
proper ideal on ω1 (so I is a proper subset of P(ω1) containing all the count-
able subsets, and such that whenever A is an I-positive set (i.e., in P(ω1)\I)
and f : A → ω1 is a regressive function, f is constant on an I-positive set;
notationally, we are going to act as though “proper” and “uniform” are
contained in the definition of normal ideal , and similarly for “measure” and
“ultrafilter”). Then forcing with the Boolean algebra P(ω1)/I creates a V -
normal ultrafilter U on ωV

1 . By convention, we identify the wellfounded part
of the ultrapower Ult(V,U) with its transitive collapse, and we note that
this wellfounded part always contains ωV

2 . The corresponding elementary
embedding j : V → Ult(V,U) has critical point ωV

1 , and since I is normal,
for each A ∈ P(ω1)V , A ∈ U if and only if ωV

1 ∈ j(A). Under certain
circumstances, the corresponding ultrapower of V is wellfounded; if every
condition in P(ω1)/I forces this, then I is precipitous.

For the most part, we will be concerned only with models of ZFC, but
since occasionally we will want to deal with structures whose existence can
be proved in ZFC, we define the fragment ZFC◦ to be the theory ZFC −
Powerset − Replacement + “P(P(ω1)) exists” plus the following scheme,
which is a strengthening of ω1-Replacement: every (possibly proper class)
tree of height ω1 definable from set parameters has a maximal branch (i.e.,
a branch with no proper extensions; in the cases we are concerned with, this
just means a branch of length ω1). By the Axiom of Choice here we mean
that every set is the bijective image of an ordinal. We will use ZFC◦ in
place of the theory ZFC∗ from [37], which asserts closure under the Gödel
operations (see page 178 of [9]) plus a scheme similar to the one above.
One advantage of using ZFC∗ is that H(ω2) satisfies it (and thus so do
its elementary submodels). On the other hand, it raises some technical
points that we would rather avoid here. Some of these points appear in
Woodin’s proof of Theorem 0.3. Our concentration is on Pmax, but we hope
nonetheless that the reader will have no difficulty in reading the proofs of
that theorem in [4, 37] after reading the material in this section.

With either theory, the point is that one needs to be able to prove the
version of ÃLoś’s theorem asserting that ultrafilters on ω1 generate elementary
embeddings, which amounts to showing the following fact. The fact follows
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immediately from the scheme above.

1.1 Fact. (ZFC◦) Let n be an integer. Suppose that φ is a formula with
n + 1 many free variables and f0, . . . , fn−1 are functions with domain ω1.
Then there is a function g with domain ω1 such that for all α < ω1,

∃xφ(x, f0(α), . . . , fn−1(α)) ⇒ φ(g(α), f0(α), . . . , fn−1(α)).

If M is a model of ZFC and κ is a cardinal of M of cofinality greater than
ωM

1 (in M), then H(κ)M satisfies ZFC◦ if it has |P(P(ω1))|M as a member.
Suppose that M is a model of ZFC◦ , I ∈ M is a normal ideal on ωM

1 and
P(P(ω1))M is countable. Then there exist M -generic filters for the partial
order (P(ω1)/I)M . Furthermore, if j : M → N is an ultrapower embedding
of this form, then P(P(ω1))N is countable, and there exist N -generic filters
for (P(ω1)/j(I))N . We can continue choosing generics in this way for up
to ω1 many stages, defining a commuting family of elementary embeddings
and using this family to take direct limits at limit stages.

We use the following formal definition.

1.2 Definition. Let M be a model of ZFC◦ and let I be an ideal on ωM
1

which is normal in M . Let γ be an ordinal less than or equal to ω1. An
iteration of (M, I) of length γ consists of models Mα (α ≤ γ), sets Gα

(α < γ) and a commuting family of elementary embeddings jαβ : Mα → Mβ

(α ≤ β ≤ γ) such that

• M0 = M ,

• each Gα is an Mα-generic filter for (P(ω1)/j0α(I))Mα ,

• each jαα is the identity mapping,

• each jα(α+1) is the ultrapower embedding induced by Gα,

• for each limit ordinal β ≤ γ, Mβ is the direct limit of the system
{Mα, jαδ : α ≤ δ < β}, and for each α < β, jαβ is the induced
embedding.

If 〈Mα, Gβ , jαδ : β < α ≤ δ ≤ ω1〉 is an iteration of a pair (M, I) and
each ωMα

1 is wellfounded, then {ωMα
1 : α < ω1} is a club subset of ω1. Note

also that if 〈Mα, Gβ , jαδ : β < α ≤ δ ≤ γ〉 is an iteration of a pair (M, I),
then j[OrdM0 ] is cofinal in OrdMγ .

The models Mα in Definition 1.2 are called iterates of (M, I). If M is a
model of ZFC◦ then an iteration of (M, NSM

ω1
) is called simply an iteration

of M and an iterate of (M, NSM
ω1

) is called simply an iterate of M . When
the individual parts of an iteration are not important, we sometimes call
the elementary embedding j0γ corresponding to an iteration an iteration
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itself. For instance, if we mention an iteration j : (M, I) → (M∗, I∗), we
mean that j is the embedding j0γ corresponding to some iteration

〈Mα, Gβ , jαδ : β < α ≤ δ ≤ γ〉

of (M, I), and that M∗ is the final model of this iteration and I∗ = j(I).
If M and I are as in Definition 1.2, then the pair (M, I) is iterable if every

iterate of (M, I) is wellfounded. In this chapter, we are in general interested
only in iterable pairs (M, I). Note that when checking for iterability it
suffices to consider the countable length iterations, as any iteration of length
ω1 whose final model is illfounded contains an illfounded model at some
earlier stage. The following two lemmas show that if

• M is a transitive model of ZFC◦+ Powerset containing ωV
1 ,

• |P(P(ω1)/I)|M is countable,

• κ is a cardinal of M greater than |P(P(ω1)/I)|M with cofinality
greater than ωM

1 in M ,

• I ∈ M is a normal precipitous ideal on ωM
1 ,

then the pair (H(κ)M , I) is iterable. In particular, Lemma 1.5 below shows
that every such pair (M, I) is iterable, and then Lemma 1.4 shows that
(H(κ)M , I) is iterable, as every iterate of (H(κ)M , I) embeds into an iterate
of (M, I). This argument is our primary means of finding iterable models.

1.3 Remark. Note that the statement that a given pair (M, I) is iterable
is Π1

2 in any real x recursively coding the pair. One way to express this (not
necessarily the most direct), is: for every countable model N of ZFC◦ with
x as a member and every object J ∈ N such that N |= “J is an iteration of
(M, I)” and every function f from ω to the “ordinals” of the last model of
J , either N is illfounded (i.e., there exists an infinite descending sequence
of “ordinals” of N) or f(n + 1)“ 6∈”f(n) for some integer n, where “ 6∈” is
the negation of the ∈-relation of the last model of J . Therefore, whether
or not (M, I) is iterable is absolute between models of ZFC◦ containing
the countable ordinals. Furthermore, assuming that x# exists and letting γ

denote ω
L[x#]
1 , any transitive model N of ZFC◦ containing Lγ [x#] is correct

about the iterability of (M, I), as L[x#] is correct about it, and N thinks
that LωN

1
[x#] is correct about it. Similarly, if γ and δ are countable ordinals

coded by reals y and z, then the existence of an iteration of (M, I) of length
γ which is illfounded is a Σ1

1 fact about x and y, and the existence of an
iteration of (M, I) of length γ such that the ordinals of the last model of
the iteration have height at least (or, exactly) δ is a Σ1

1 fact about x, y and
z.
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The first lemma is easily proved by induction. The last part of the lemma
uses the assumption that N is closed under ωM

1 -sequences in M (this is the
main way in which the lemma differs from the corresponding lemma in [37]
(Lemma 3.8)). In our applications, N will often be H(κ)M for some cardinal
κ of of M such that M |= cf(κ) > ωM

1 , in which case H(κ)M is indeed closed
under ωM

1 -sequences in M .

1.4 Lemma. Suppose that M is a model of ZFC◦ and I ∈ M is a nor-
mal ideal on ωM

1 . Let N be a transitive model of ZFC◦ in M containing
P(P(ω1)/I)M and closed under ωM

1 -sequences in M . Let γ ≤ ω1 be an
ordinal and let

〈Nα, Gβ , jαδ : β < α ≤ δ ≤ γ〉
be an iteration of (N, I). Then there exists a unique iteration

〈Mα, G∗β , j∗αδ : β < α ≤ δ ≤ γ〉
of (M, I) such that for all β < α ≤ γ, Gβ = G∗β and

P(P(ω1)/I)Nα = P(P(ω1)/I)Mα .

Furthermore, Nα = j∗0α(N) for all α ≤ γ.

Given ordinals α, β, the partial order Col(α, β) is the set of partial func-
tions from α to β whose domain has cardinality less than that of α, ordered
by inclusion. In particular, Col(ω, β) makes β countable. Given ordinals α
and β, Col(α,<β) is the partial order consisting of all finite partial func-
tions p : β ×α → β such that for all (δ, γ) ∈ dom(p), p(δ, γ) ∈ δ, ordered by
inclusion (we will not use this definition until the next section).

The proof of Lemma 1.5 is a modification of standard arguments.

1.5 Lemma. Suppose that M is a transitive model of ZFC◦+ Powerset and
that I ∈ M is a normal precipitous ideal on ωM

1 . Suppose that j : (M, I) →
(M∗, I∗) is an iteration of (M, I) whose length is in (ωV

1 + 1) ∩M . Then
M∗ is wellfounded.

Proof. If j and M∗ are as in the statement of the lemma, then M∗ is the
union of all sets of the form j(H(κ)M ), where κ is a regular cardinal in M ,
and for each such κ > |P(P(ω1))|M , j¹H(κ)M is an iteration of (H(κ)M , I).
If the lemma fails, then, we may let (γ̄, κ̄, η̄) be the lexicographically least
triple (γ, κ, η) such that

• κ is a regular cardinal in M greater than |P(P(ω1)/I)|M ,

• η < κ,

• there is an iteration 〈Nα, Gβ , jαδ : β < α ≤ δ ≤ γ〉 of (H(κ)M , I) such
that j0γ(η) is not wellfounded.
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Since I is precipitous in M , γ̄ is a limit ordinal, and clearly η̄ is a limit
ordinal as well. Fix an iteration 〈Nα, Gβ , jαδ : β < α ≤ δ ≤ γ̄〉 of (H(κ̄)M , I)
such that j0γ̄(η̄) is not wellfounded, and let 〈Mα, Gβ , j′αδ : β < α ≤ δ ≤ γ̄〉
be the corresponding iteration of M as in Lemma 1.4. By the minimality of γ̄
we have that Mα is wellfounded for all α < γ̄. Since Nγ̄ is the direct limit of
the iteration leading up to it, we may fix γ∗ < γ̄ and η∗ < j0γ∗(η̄) such that
jγ∗γ̄(η∗) is not wellfounded. Note that by Lemma 1.4, j′γ∗,γ̄(η∗) = jγ∗,γ̄(η∗)
and j′γ∗,γ̄(η̄) = j′γ∗,γ̄(η̄).

M0 Mγ∗ Mγ̄

»»»»»»»»»»»»»»»:

»»»»»»»»:

η̄
η∗

The key point is that if N is a model of ZFC◦, J is a normal ideal on
ωN

1 in N , γ is an ordinal and η is an ordinal in N , then the statement
positing an iteration of (N, J) of length γ whose last model is illfounded
below the image of η is a Σ1

1 sentence in a real parameter recursively coding
N , η and γ, and so this statement is absolute between wellfounded models
of ZFC◦ containing such a real. In particular, if

• N is a transitive model of ZFC◦ + Powerset,

• J is a normal ideal on ωN
1 in N ,

• κ is a regular cardinal in N greater than |P(P(ω1))|N ,

• η < κ and γ are ordinals in N and β ∈ N is an ordinal greater than
or equal to max{(2κ)N , γ},

then if G is N -generic for Col(ω, β), then N [G] satisfies the correct answer
for the assertion that there exists an iteration of (H(κ)N , J) of length γ
whose last model is illfounded below the image of η. Let φ(γ, κ, η, J) be the
formula asserting that

• J is a normal ideal on ω1,

• κ is a regular cardinal greater than |P(P(ω1))|,

• η < κ,

• letting β = max{2κ, γ}, every condition (equivalently, some condition)
in Col(ω, β) forces that there exists an iteration of (H(κ), J) of length
γ whose last model is illfounded below the image of η.
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Then, in M , (γ̄, κ̄, η̄) is the lexicographically least triple (γ, κ, η) such that
φ(γ, κ, η, I) holds. Furthermore, since j′0γ∗ is elementary, in Mγ∗ ,

(j′0γ∗(γ̄), j′0γ∗(κ̄), j′0γ∗(η̄))

is the least triple (γ, κ, η) such that φ(γ, κ, η, j′0γ∗(I)) holds. However, the
tail of the iteration 〈Nα, Gβ , jαδ : β < α ≤ δ ≤ γ̄〉 starting with Nγ∗ is an
iteration of

(H(j0γ∗(κ̄))Mγ∗ , j0γ∗(I))

(note that j′0γ∗(H(κ̄)M ) = j0,γ∗(H(κ̄)M )) of length less than or equal to γ̄
which in turn is less than or equal to j′0γ∗(γ̄). Furthermore, η∗ < j′0γ(η̄) =
j0γ(η̄), and jγ∗γ̄(η∗) is not wellfounded, which, by the correctness property
mentioned above (using the fact that Mγ∗ is wellfounded) contradicts the
minimality of j′0γ∗(η̄). a
1.6 Example. Let M be any countable transitive model of ZFC in which
there exists a measurable cardinal κ and a normal measure µ ∈ M on κ such
that all countable iterates of M by µ are wellfounded. Iterating M by µ ω1

times, we obtain a model N of ZFC containing ω1 such that (Vκ)M = (Vκ)N .
Now suppose that I is a normal precipitous ideal on ωM

1 in M . By Lemmas
1.4 and 1.5, ((Vκ)M , I) iterable.

Before moving on, we prove an important fact about iterations of iterable
models which will show up later (in Lemmas 3.3, 6.2 and 7.8). This fact is
a key step in Woodin’s proof of Theorem 0.3.

1.7 Lemma. Suppose that M is a countable transitive model of ZFC◦ and
I ∈ M is a normal ideal on ωM

1 such that the pair (M, I) is iterable. Let x
be a real coding the pair (M, I) under some recursive coding. Let

I = 〈Mα, Gβ , jαδ : β < α ≤ δ ≤ ω1〉
be an iteration of (M, I). Then every countable ordinal γ such that Lγ [x]
satisfies ZFC is on the critical sequence of I.
Proof. Fix a countable ordinal γ such that Lγ [x] |= ZFC. We want to see
that for every η < γ there is a δ < γ such that the ordinals of the final
model of every iteration of (M, I) of length η are contained in δ. To see
this, fix η and let g ⊂ Col(ω, η) be Lγ [x]-generic. Then Lγ [x][g] |= ZFC,
and in Lγ [x][g], the set of ordertypes of the ordinals of iterates of (M, I)
by iterations of length η is a Σ1

1 set in a real coding (M, I) and g. By the
boundedness lemma for Σ∼

1
1 sets of wellorderings (see [24]), then, there is a

countable (in Lγ [x][g]) ordinal δ such that all of these ordertypes are less
than δ. Furthermore, the nonexistence of an iteration of (M, I) of length η
such that δ can be embedded in an order-preserving way into the ordinals of
the final model is absolute between Lγ [x][g] and V , by Σ∼

1
1-absoluteness. a
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Lemma 1.7 has the following useful corollary. The case where γ is count-
able follows immediately from Lemma 1.7. The case where γ = ω1 follows
by applying the countable case to a forcing extension where ω1 is collapsed.

1.8 Corollary. Suppose that M is a countable transitive model of ZFC◦,
I is normal ideal on ωM

1 in M , (M, I) is iterable and x is a real coding
(M, I). Suppose that γ is an x-indiscernible less than or equal to ω1, and
let j : (M, I) → (M∗, I∗) be an iteration of (M, I) of length γ. Then the
ordinals of M∗ have height less than the least x-indiscernible above γ.

We note one more useful fact about sharps. The fact can be proved
directly using the remarkable properties of sharps, or by noting that the
two functions implicit in the fact necessarily represent the same ordinal in
any generic ultrapower.

1.9 Fact. Let x be a real and let γ be the least x-indiscernible above ω1.
Let π : ω1 → γ be a bijection. Then the set of α < ω1 such that o.t.(π[α])
is the least x-indiscernible above α contains a club.1

1.10 Remark. Often in this chapter will we use recursive codings of ele-
ments of H(ω1) by reals (by which we mean elements of ωω). The following
coding is sufficient in all cases: fixing a recursive bijection π : ω × ω → ω,
let x be a real coding the set of sets coded by those y ⊆ ω for which there
exists an i < ω such that π(0, i) ∈ x and y = {j < ω | π(j + 1, i) ∈ x}.
Note that under this coding, the relations “∈” and “=” are both Σ1

1, since
permutations of ω can give rise to different codes for the same set.

1.11 Remark. If there exists a precipitous ideal on ω1, then A# exists
for every A ⊆ ω1. To see this, note first of all that the existence of a
precipitous ideal implies that for each real x there is an nontrivial elementary
embedding from L[x] to L[x] in a forcing extension, which means that x#

exists already in the ground model. Furthermore, if I is a precipitous ideal
on ω1 and j : V → M is the generic embedding derived from a V -generic
filter G ⊂ P(ω1)/I, then P(ω1)V ⊆ H(ω1)M . Therefore, for every A ∈
P(ω1)V , A ∈ M and M |= “A# exists.” Since M and V [G] have the same
ordinals, V [G] and V then must also satisfy “A# exists.”

Similarly, if (M, I) is an iterable pair, then M is correct about the sharps
of the reals of M , since M is elementarily embeddeded into a transitive
model containing ω1, and thus M is correct about the sharps of the members
of P(ω1)M . In particular, if (M, I) is an iterable pair and A is in P(ω1)M ,
then P(ω1)L[A] ⊆ M , so M correctly computes ω

L[A]
1 .

1Given a function f and subset X of the domain of X, we let f [X] denote the set
{f(x) | x ∈ X}.
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2. Pmax

We are now ready to define the partial order Pmax. We will make one
modification of the definition given in [37] and require the conditions to
satisfy ZFC◦ instead of the theory ZFC∗ defined in [37]. Our Pmax is a
dense suborder of the original; furthermore, the basic analysis of the two
partial orders is the same, though the proofs of Lemma 7.10 and Theorem
7.11 are less elegant than they might otherwise be.

Recall that MAℵ1 is the version of Martin’s Axiom for ℵ1-many dense
sets, i.e., the statement that whenever P is a c.c.c. partial order and Dα

(α < ω1) are dense subsets of P there is a filter G ⊂ P intersecting each
Dα.

2.1 Definition. The partial order Pmax consists of all pairs 〈(M, I), a〉 such
that

1. M is a countable transitive model of ZFC◦+ MAℵ1 ,

2. I ∈ M and in M , I is a normal ideal on ω1,

3. (M, I) is iterable,

4. a ∈ P(ω1)M ,

5. there exists an x ∈ P(ω)M such that ωM
1 = ω

L[a,x]
1 .

The order on Pmax is as follows: 〈(M, I), a〉 < 〈(N, J), b〉 if N ∈ H(ω1)M

and there exists an iteration j : (N, J) → (N∗, J∗) such that

• j(b) = a,

• j, N∗ ∈ M ,

• I ∩N∗ = J∗.

We say that a pair (M, I) is a (Pmax) pre-condition if there exists an a
such that 〈(M, I), a〉 is in Pmax.

2.2 Remark. If 〈(M, I), a〉 is a Pmax condition, then M is closed under
sharps for reals (see Remark 1.11), and so a cannot be in L[x] for any real
x in M . Therefore, a is unbounded in ωM

1 , and this in turn implies that
the iteration witnessing that a given Pmax condition 〈(M, I), a〉 is stronger
than another condition 〈(N, J), b〉 must have length ωM

1 .

2.3 Remark. To see that the order on Pmax is transitive, let j0 be an
iteration witnessing that 〈(M1, I1), a1〉 < 〈(M0, I0), a0〉 and let j1 be an it-
eration witnessing that 〈(M2, I2), a2〉 < 〈(M1, I1), a1〉. Then j0 is an element
if M1, and it is not hard to check that j1(j0) witnesses that 〈(M2, I2), a2〉 <
〈(M0, I0), a0〉.
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2.4 Remark. As we shall see in Lemma 2.7, the requirement that the
models satisfy MAℵ1 , along with condition (5) above, ensures that there is a
unique iteration witnessing the order on each pair of comparable conditions.
One can vary Pmax by removing condition (5) and the requirement that
MAℵ1 holds, and replace a with a set of iterations of smaller models into
M , as in the definition of the order, satisfying this uniqueness condition.
Alternately, one can require that the models satisfy the statement ψAC

(see Definition 6.1 and Remark 6.4), which implies that the image of any
stationary, co-stationary subset of ω1 under an iteration determines the
entire iteration.

2.5 Remark. Instead of using ideals on ω1, we could use the stationary
tower Q<δ (see [19]) to produce the iterations giving the order on conditions.
This gives us another degree of freedom in choosing our models, since in
this case a small forcing extension of a condition is also a condition, roughly
speaking. The resulting extension is essentially identical.

2.6 Remark. Given a real x, x† (“x dagger”) is a real such that in L[x†]
there exists a transitive model M of ZFC containing ωV

1 ∪ {x} in which
some ordinal countable in L[x†] is a measurable cardinal (see [13]; this
fact about x† does not characterize it, but it is its only property that we
require in this chapter). By [10], if there exists a measurable cardinal, then
there is a partial order forcing that NSω1 is precipitous. By [20, 12], c.c.c.
forcings preserve precipitousness of NSω1 . Essentially the same arguments
show that if κ is a measurable cardinal and P is a c.c.c. forcing in the
Col(ω,<κ)-extension, then there is a normal precipitous ideal on ω1 (which
is κ) in the Col(ω,<κ) ∗ P -extension. By Lemmas 1.4 and 1.5, then, the
statement that x† exists for each real x implies that every real exists in the
model M of some Pmax condition, and, by Lemma 2.8 below, densely many.
However, the full strength of Pmax will require the consistency strength of
significantly larger cardinals.

We will now prove two facts about iterations which are central to the
Pmax analysis.

2.7 Lemma. Let 〈(M, I), a〉 be a condition in Pmax and let A be a subset of
ω1. Then there is at most one iteration of (M, I) for which A is the image
of a. Furthermore, this iteration is in L[〈(M, I), a〉, A], if it exists.

Proof. The consequence of MAℵ1 that we need is known as almost disjoint
coding [11]. This says that if Z = {zα : α < ω1} is a collection of infinite
subsets of ω whose pairwise intersections are finite (i.e., Z is an almost
disjoint family), then for every B ⊆ ω1 there exists a y ⊆ ω such that for
all α < ω1, α ∈ B if and only if y ∩ zα is infinite.

Fix a real x in M such that ωM
1 = ω

L[a,x]
1 , and let

Z = 〈zα : α < ωM
1 〉
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be the almost disjoint family defined recursively from the constructibility
order in L[a, x] on P(ω)L[a,x] by letting zα be the (constructibly, in L[a, x])
least infinite subset of ω almost disjoint from each zβ (β < α).

Suppose that

I = 〈Mα, Gβ , jαδ : β < α ≤ δ ≤ γ〉

and
I ′ = 〈M ′

α, G′β , j′αδ : β < α ≤ δ ≤ γ′〉
are two iterations of (M, I) such that j0γ(a) = A = j′0γ′(a). Then j0γ(Z) =
j′0γ′(Z) (again, this uses Remark 1.11 to see that the constructibility order
on reals in L[A, x] is computed correctly in Mγ and M ′

γ′).
Since j0γ(ωM

1 ) = sup(j0γ(a)) = sup(j′0γ′(a)) = j′0γ′(ω
M
1 ), if either itera-

tion is an initial segment of the other, then the two iterations are the same.
Supposing that this is not the case, let γ̄ be the length of the shortest initial
segment of I which is not an initial segment of I ′ and let γ∗ be the length
of the shortest initial segment of I ′ which is not an initial segment of I.
Then γ̄ and γ∗ are both successor ordinals, and since the iterations up to
their predecessors must be the same, they are both equal to η + 1 for some
ordinal η, with Mη = M ′

η.
Note that since j0γ(Z) = j′0γ′(Z), and the critical points of j(η+1)γ and

j′(η+1)γ′ are both greater than ω
Mη

1 , j0(η+1)(Z)
ω

Mη
1

= j′0(η+1)(Z)
ω

Mη
1

. Let

〈zα : α < ω
Mη

1 〉 list the members of j0η(Z) (and note that this is consistent
with the definition of Z above). We now derive a contradiction by showing
that Gη and G′η are the same.

For every B ∈ P(ω1)Mη , B ∈ Gη if and only if ω
Mη

1 ∈ jη(η+1)(B) and
B ∈ G′η if and only if ω

Mη

1 ∈ j′η(η+1)(B) . Fixing such a B, let y ∈ P(ω)Mη

be such that for all α ∈ ω
Mη

1 , y ∩ zα is infinite if and only if α ∈ B.
Then ω

Mη

1 ∈ jη(η+1)(B) if and only if j0(η+1)(Z)
ω

Mη
1

∩ y is infinite, which
holds if and only if j′0(η+1)(Z)

ω
Mη
1

∩ y is infinite, which holds if and only if

ω
Mη

1 ∈ j′η(η+1)(B). Thus Gη and G′η are the same.
For the last part of the lemma, note that the argument just given gives

a definition for each Gα in terms of A, x and the iteration up to α. a
One consequence of Lemma 2.7 is that, if G ⊂ Pmax is an L(R)-generic

filter, and A =
⋃{a | 〈(M, I), a〉 ∈ G}, then L(R)[G] = L(R)[A]. Therefore,

the Pmax extension of L(R) satisfies the sentence “V = L(P(ω1))” (see the
discussion at the beginning of Section 5).

2.8 Lemma. (ZFC◦) If (M, I) is a pre-condition in Pmax and J is a normal
ideal on ω1 then there exists an iteration j : (M, I) → (M∗, I∗) such that
j(ωM

1 ) = ω1 and I∗ = J ∩M∗.
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Proof. First let us note that if 〈Mα, Gβ , jαδ : β < α ≤ δ ≤ ω1〉 is any
iteration of (M, I), then j0ω1(I) ⊆ J ∩ Mω1 . To see this, note that if
E ∈ j0ω1(I), then E ∈ Mω1 and E = jαω1(E

′) for some α < ω1 and
E′ ∈ j0α(I). Then for all β ∈ [α, ω1), jαβ(E′) 6∈ Gβ , so ω

Mβ

1 6∈ E. Therefore,
E is nonstationary, so E ∈ J by the normality of J .

Now, noting that J is a normal ideal, let {Aiα : i < ω, α < ω1} be a
collection of pairwise disjoint members of P(ω1) \ J . We build an iteration
〈Mα, Gβ , jαδ : β < α ≤ δ ≤ ω1〉 by recursively choosing the Gβ ’s. As we do
this, for each α < ω1 we let the set {Bα

i : i < ω} enumerate P(ω1)Mα\j0α(I).
Given

〈Mα, Gβ , jαδ : β < α ≤ δ ≤ γ〉,
then, for some γ ≤ ω1, if ω

Mγ

1 ∈ Aiα for some i < ω and α ≤ γ, then (noting
that there can be at most one such pair (i, α)) we let Gγ be any Mγ-generic
filter for (P(ω1)/j0γ(I))Mγ with jαγ(Bα

i ) as a member. If ω
Mγ

1 is not in Aiα

for any i < ω and α ≤ γ, then we let Gγ be any Mγ-generic filter.
To see that this construction works, fix E ∈ P(ω1)Mω1 \ j0ω1(I). We

need to see that E is not in J . We may fix i < ω and α < ω1 such that
E = jαω1(B

α
i ). Then F = (Aiα ∩ {ωMβ

1 : β ∈ [α, ω1)}) ⊆ E. Since F is the
intersection of a club and set not in J , F is not in J , so E is not in J . a

The construction in the proof of Lemma 2.8 appears repeatedly in the
analysis of Pmax. In order to make our presentation of Pmax more modular
(i.e., to avoid having to write out the proof of Lemma 2.8 repeatedly), we
give the following strengthening of the lemma in terms of games. We note
that the games defined here (and before Lemmas 3.5 and 5.2 and at the end
of Section 10.2) are not part of Woodin’s original presentation of Pmax.

Suppose that (M, I) is a pre-condition in Pmax, let J be a normal ideal
on ω1 and let B be a subset of ω1. Let G((M, I), J, B) be the following game
of length ω1 where Players I and II collaborate to build an iteration

〈Mα, Gβ , jαδ : β < α ≤ δ ≤ ω1〉
of (M, I) of length ω1. In each round α, if α ∈ B, then Player I chooses a
set Aα in P(ω1)Mα \ j0α(I) and then Player II chooses an Mα-generic filter
Gα contained in (P(ω1)/j0α(I))Mα with Aα ∈ Gα. If α 6∈ B, then Player II
chooses any Mα-generic filter Gα ⊆ (P(ω1)/j0α(I))Mα . After all ω1 many
rounds have been played, Player I wins if j0ω1(I) = J ∩Mω1 .

The proof of Lemma 2.9 is almost identical to the proof of Lemma 2.8.

2.9 Lemma. (ZFC◦) Suppose that (M, I) is a pre-condition in Pmax, let J
be a normal ideal on ω1, and let B be a subset of ω1. Then Player I has a
winning strategy in G((M, I), J, B) if and only if B 6∈ J .

Using Remark 2.6 and Lemmas 2.7 and 2.8, we can show that Pmax is
homogeneous and countably closed. By homogeneity we mean the following
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property: for each pair of conditions p0, p1 in Pmax there exist conditions
q0, q1 such that q0 ≤ p0, q1 ≤ p1 and the suborders of Pmax below the
conditions q0 and q1 are isomorphic. The importance of this property is
that it implies that the theory of the Pmax extension can be computed in
the ground model.

2.10 Lemma. If x† exists for each real x, then Pmax is homogeneous.

Proof. Let p0 = 〈(M0, I0), a0〉 and p1 = 〈(M1, I1), a1〉 be conditions in Pmax.
By Remark 2.6, we can fix a pre-condition (N, J) with p0, p1 ∈ H(ω1)N .
Applying Lemma 2.8 in N , we may fix iterations j0 : (M0, I0) → (M∗

0 , I∗0 )
and j1 : (M1, I1) → (M∗

1 , I∗1 ) in N such that I∗0 = J ∩M∗
0 and I∗1 = J ∩M∗

1 .
Letting a∗0 = j0(a0) and a∗1 = j1(a1), then,

q0 = 〈(N, J), a∗0〉
and

q1 = 〈(N, J), a∗1〉
are conditions in Pmax and j0 and j1 witness that q0 ≤ p0 and q1 ≤ p1

respectively.
Now, if q′0 = 〈(N ′, J ′), a′〉 is a condition below q0, then there is an it-

eration j′ : (N, J) → (N∗, J∗) witnessing this. Then a′ = j′(a∗0), and
q′1 = 〈(N ′, J ′), j′(a∗1)〉 is a condition below q1. Let π be the map with
domain the suborder of Pmax below q0 which sends each 〈(N ′, J ′), a′〉 to the
corresponding 〈(N ′, J ′), j′(a∗1)〉 as above. By Lemma 2.7, this map is an
isomorphism between the suborders below q0 and q1 respectively. a

In order to show that Pmax is countably closed, we must define a new
class of iterations.

3. Sequences of models and countable closure

For each i < ω, let pi = 〈(Mi, Ii), ai〉 be a Pmax condition, and for each such
i let ji(i+1) : (Mi, Ii) → (M∗

i , I∗i ) be an iteration witnessing that pi+1 < pi.
Let {jik : i ≤ k < ω} be the commuting family of embeddings generated by
the ji(i+1)’s. Let a =

⋃{ai : i < ω}. By Lemma 2.7, for each i < ω there is a
unique iteration jiω : (Mi, Ii) → (Ni, Ji) sending ai to a. Since each (Mi, Ii)
is iterable, each Ni is wellfounded, and the structure (〈(Ni, Ji) : i < ω〉, a)
satisfies the following definition.

3.1 Definition. A limit sequence is a pair (〈(Ni, Ji) : i < ω〉, a) such that
the following hold for all i < ω:

1. Ni is a countable transitive model of ZFC◦+ MAℵ1 ,

2. Ji ∈ Ni and in Ni, Ji is a normal ideal on ω1,
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3. ωNi
1 = ωN0

1 ,

4. for all k < i, Nk ∈ H(ω2)Ni ,

5. for all k < i, Jk = Ji ∩Nk,

6. a ∈ P(ω1)N0 ,

7. there exists an x ∈ P(ω)N0 such that ωN0
1 = ω

L[a,x]
1 .

A structure 〈(Ni, Ji) : i < ω〉 is a pre-limit sequence if there exists a set a
such that (〈(Ni, Ji) : i < ω〉, a) is a limit sequence.

If we write a sequence as 〈Nk : k < ω〉 (as we will in Section 10.1), the
ideals are presumed to be the nonstationary ideal on ω1.

If pi (i < ω) is a descending sequence of Pmax conditions, then the limit
sequence corresponding to pi (i < ω) is the structure

(〈(Ni, Ji) : i < ω〉, a)

defined above. Note that in this case each 〈(Ni, Ji), a〉 is a condition in
Pmax.

If 〈(Ni, Ji) : i < ω〉 is a pre-limit sequence, then a filter

G ⊂
⋃
{P(ω1)Ni \ Ji : i < ω}

is a
⋃{Ni : i < ω}-normal ultrafilter for the sequence if for every regressive

function f on ωN0
1 in any Ni, f is constant on some member of G. Given

such G and 〈(Ni, Ji) : i < ω〉, we form the ultrapower of the sequence
by letting N∗

i be the ultrapower of Ni formed from G and all functions
f : ωN0

1 → Ni existing in any Nk (this ensures that the image of each Ni

in the ultrapower of each Nk (k > i) is the same as the ultrapower of Ni).
As usual, we identify the transitive parts of each N∗

i with their transitive
collapses. If (for each i < ω) we let j∗i be the induced embedding of Ni into
N∗

i then for each i < k < ω, j∗i = j∗k¹Ni, so we can let j∗ = ∪{j∗i : i < ω} be
the embedding corresponding to the ultrapower of the pre-limit sequence.

3.2 Definition. Let 〈(Ni, Ji) : i < ω〉 be a pre-limit sequence, and let γ
be an ordinal less than or equal to ω1. An iteration of 〈(Ni, Ji) : i < ω〉
of length γ consists of pre-limit sequences 〈(Nα

i , Jα
i ) : i < ω〉 (α ≤ γ),

normal ultrafilters Gα (α < γ) and a commuting family of embeddings jαβ

(α ≤ β ≤ γ) such that

• 〈(N0
i , J0

i ) : i < ω〉 = 〈(Ni, Ji) : i < ω〉
• for all α < γ, Gα ⊆

⋃{P(ω1)Nα
i \ Jα

i : i < ω} is a normal ultrafilter
for the sequence 〈(Nα

i , Jα
i ) : i < ω〉, and jα(α+1) is the corresponding

embedding,
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• for each limit ordinal β ≤ γ, 〈(Nβ
i , Jβ

i ) : i < ω〉 is the direct limit of
the system {〈(Nα

i , Jα
i ) : i < ω〉, jαδ : α ≤ δ < β} and for each α < β

jαβ is the induced embedding.

As with iterations of single models, we sometimes describe an iteration
of a pre-limit sequence by fixing only the initial sequence, the final sequence
and the embedding between them. An iterate of a pre-limit sequence p̄ is
a pre-limit sequence appearing in an iteration of p̄. If every iterate of a
pre-limit sequence is wellfounded, then the sequence is iterable.

By Lemma 1.7 and Corollary 1.8, pre-limit sequences derived from de-
scending chains {〈(Mi, Ii), ai〉 : i < ω} in Pmax satisfy the hypotheses of
the following lemma, letting xi be any real in Mi+1 coding Mi. Yet another
way to vary Pmax is to replace the model M in the definition of Pmax con-
ditions with sequences satisfying this hypothesis. This approach is used for
the order Q∗max defined in section 10.1.

3.3 Lemma. Suppose that p̄ = 〈(Ni, Ji) : i < ω〉 is a pre-limit sequence, and
suppose that for each i < ω there is a real xi ∈ Ni+1 such that x#

i ∈ Ni+1

and

• the least xi-indiscernible above ωN0
1 is greater than the ordinal height

of Ni,

• every club subset of ωN0
1 in Ni contains a tail of the xi-indiscernibles

below ωN0
1 .

Then p̄ is iterable.

Proof. First we will show that any iterate of p̄ is wellfounded if its version
of ω1 is wellfounded. Then we will show that the ω1 of each iterate of p̄ is
wellfounded.

For the first part, if 〈(N∗
i , J∗i ) : i < ω〉 is an iterate of p̄, then by elemen-

tarity the ordinals of each N∗
i embed into the least xi-indiscernible above

ω
N∗

0
1 . So, if ω

N∗
0

1 is actually an ordinal (i.e., is wellfounded), then N∗
i+1

constructs this next xi-indiscernible correctly, and so N∗
i is wellfounded.

We prove the second part by induction on the length of the iteration,
noting that the limit case follows immediately, and the successor case follows
from the case of an iteration of length 1. What we want to see is that if G
is a normal ultrafilter for p̄ and j is the induced embedding, then j(ωN0

1 ) =⋃{Ni ∩ Ord : i < ω}. Notice that for each xi, if fi : ωN0
1 → ωN0

1 is defined
by letting fi(α) be the least xi-indiscernible above α, then j(fi)(ωN0

1 ) is the
least indiscernible of xi above ωN0

1 . Thus

j(ωN0
1 ) ≥ sup{j(fi)(ωN0

1 ) : i < ω} =
⋃
{Ni ∩Ord : i < ω}.

For the other direction, let h : ωN0
1 → ωN0

1 be a function in some Ni. Then
the closure points of h contain a tail of the xi-indiscernibles, which means
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that fi > h on a tail of the ordinals below ωN0
1 , so [fi]G > [h]G. Thus

j(ωN0
1 ) =

⋃{Ni ∩Ord : i < ω}. a
The following lemma has essentially the same proof as Lemma 2.8, and

shows (given that x† exists for each real x) that Pmax is countably closed.
The point is that if 〈pi : i < ω〉 is a descending sequence of Pmax conditions,
letting p̄ = (〈(Ni, Ji) : i < ω〉, a) be the limit sequence corresponding to
〈pi : i < ω〉, if (M, I) is a Pmax pre-condition with {pi : i < ω}, p̄ ∈ H(ω1)M ,
then by letting j∗ be an iteration of p̄ resulting from applying Lemma 3.4
inside of M , the embedding j∗(jiω) (where jiω is as defined in the first
paragraph of this section) witnesses that 〈(M, I), j∗(a)〉 is below pi in Pmax,
for each i < ω.

3.4 Lemma. (ZFC◦) Suppose that 〈(Ni, Ji) : i < ω〉 is an iterable pre-limit
sequence, and let I be a normal ideal on ω1. Then there is an iteration

j∗ : 〈(Ni, Ji) : i < ω〉 → 〈(N∗
i , J∗i ) : i < ω〉

such that j∗(ωN0
1 ) = ω1 and J∗i = I ∩N∗

i for each i < ω.

Suppose that 〈(Ni, Ji) : i < ω〉 is an iterable pre-limit sequence, let I be
a normal ideal on ω1, and let B be a subset of ω1. Let

Gω(〈(Ni, Ji) : i < ω〉, I, B)

be the following game of length ω1 where Players I and II collaborate to
build an iteration of 〈(Ni, Ji) : i < ω〉 consisting of pre-limit sequences
〈(Nα

i , Jα
i ) : i < ω〉 (α ≤ ω1), normal ultrafilters Gα (α < ω1) and a family

of embeddings jαβ (α ≤ β ≤ ω1), as follows. In each round α, let

Xα =
⋃
{P(ω1)Nα

i \ Jα
i : i < ω}.

If α ∈ B, then Player I chooses a set A ∈ Xα, and then Player II chooses
a

⋃{Nα
i : i < ω}-normal filter Gα contained in Xα with A ∈ Gα. If α

is not in B, then Player II chooses any
⋃{Nα

i : i < ω}-normal filter Gα

contained in Xα. After all ω1 many rounds have been played, Player I wins
if Jω1

i = I ∩Nω1
i for each i < ω.

Lemma 3.4 can be rephrased in terms of games as follows.

3.5 Lemma. (ZFC◦) Suppose that 〈(Ni, Ji) : i < ω〉 is an iterable pre-limit
sequence, let I be a normal ideal on ω1 and let B be a subset of ω1. Then
Player I has a winning strategy in Gω(〈(Ni, Ji) : i < ω〉, I, B) if and only if
B 6∈ I.

At this point, we have gone as far with the Pmax analysis as daggers can
take us.
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4. Generalized iterability

The following definition gives a generalized iterability property with respect
to a given set of reals. In the Pmax analysis, these sets of reals often code
Pmax-names for sets of reals.

4.1 Definition. Let A be a set of reals. If M is a transitive model of
ZFC◦ and I is an ideal on ωM

1 which is normal and precipitous in M , then
the pair (M, I) is A-iterable if

• (M, I) is iterable,

• A ∩M ∈ M ,

• j(A∩M) = A∩M∗ whenever j : (M, I) → (M∗, I∗) is an iteration of
(M, I).

4.2 Remark. The definition of A-iterability in [37] is more general than
this one, in ways which we won’t require.

In order to achieve the full effects of forcing with Pmax over a given model
(for now we will deal with L(R)) we need to see (and in fact it is enough
to see) that for each A ⊆ R in the model there exists a Pmax pre-condition
(M, I) such that

• (M, I) is A-iterable,

• 〈H(ω1)M , A ∩M〉 ≺ 〈H(ω1), A〉.
As it turns out, the existence of such a condition for each A ⊆ R in L(R) is
equivalent to the statement that the Axiom of Determinacy holds in L(R)
(see pages 285-290 of [37]).

There are two basic approaches to studying the Pmax extension. One
can think of V as being a model of some form of determinacy, and use
determinacy to analyze the Pmax forcing construction and its corresponding
extension. Alternately, one can assume that Choice holds and certain large
cardinals exist and use these large cardinals to analyze the Pmax extension of
some inner model of ZF satisfying determinacy. Accordingly, the existence
of A-iterable conditions (for a given set A) can be derived from determinacy
or from large cardinals. We give here an example of each method, quoting
some standard facts which we will briefly discuss.

The proof from large cardinals uses weakly homogeneous trees. Very
briefly, a countably complete tower is a sequence of measures 〈σi : i < ω〉
such that each σi is a measure on Zi for some fixed underlying set Z and
for every sequence {Ai ∈ i < ω} of sets such that each Ai ∈ σi there
exists a function g ∈ Zω such that g¹i ∈ Ai for all i < ω. Given a tree
T ⊂ (ω × Z)<ω, for some set Z, the projection of T is the set

p[T ] = {y ∈ ωω | ∃z ∈ Zω ∀i < ω(x¹i, z¹i) ∈ T}.
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Given a set Z and a cardinal δ, a tree T ⊆ ω×Z is δ-weakly homogeneous if
there exists a countable family Σ of δ-complete measures on Z<ω such that
for each x ∈ ωω, x ∈ p[T ] if and only if there exists a sequence of measures
{σi : i < ω} ⊆ Σ such that

• for all i < ω, {z ∈ Zi | (x¹i, z) ∈ T} ∈ σi,

• 〈σi : i < ω〉 forms a countably complete tower.

A set of reals A is δ-weakly homogeneously Suslin if there exists a δ-weakly
homogeneous tree T whose projection is A, and weakly homogeneously Suslin
if it is δ-weakly homogeneously Suslin for some uncountable ordinal δ. The
following fact is standard.

4.3 Theorem. Let θ be a regular cardinal, suppose that T ∈ H(θ) is a
weakly homogeneous tree on ω × Z, for some set Z. Let δ ≥ 2ω be an ordi-
nal such that there exists a countable collection Σ of δ+-complete measures
witnessing the weak homogeneity of T . Then for every elementary submodel
Y of H(θ) of cardinality less than δ with T, Σ ∈ Y there is an elementary
submodel X of H(θ) containing Y such that X ∩ δ = Y ∩ δ, and such that,
letting S be the image of T under the transitive collapse of X, p[S] = p[T ].

Proof. Fixing θ, T , Σ and δ as in the statement of the theorem, the theorem
follows from the following fact. Suppose that Y is an elementary submodel of
H(θ) with T, Σ ∈ Y and |Y | < δ, and fix x ∈ p[T ]. Fix a countably complete
tower {σi : i < ω} ⊆ Σ such that for all i < ω, {a ∈ Zi : (x¹i, a) ∈ T} ∈ σi,
and for each i < ω, let Ai =

⋂
(σi∩Y ). Then since {σi : i < ω} is countably

complete, there exists a z ∈ Zω such that for all i < ω, z¹i ∈ Ai. Then the
pair (x, z) forms a path through T , and, letting

Y [z] = {f(z¹i) | i < ω ∧ f : Zi → H(θ) ∧ f ∈ Y },

Y [z] is an elementary submodel of H(θ) containing Y and {z¹i : i < ω},
and, since each σi is δ+-complete, Y ∩ δ = Y [z] ∩ δ. Repeated application
of this fact for each real in the projection of T proves the theorem. a

Proofs of the following facts about weakly homogeneous trees and weakly
homogeneously Suslin sets of reals appear in [19]. Some of these facts follow
directly from the definitions, and none are due to the author. Theorem 4.6
derives ultimately from [21].

4.4 Fact. For every cardinal δ, the collection of δ-weakly homogeneously
Suslin sets of reals is closed under countable unions and continuous images.

4.5 Theorem. (Woodin) If δ is a limit of Woodin cardinals and there exists
a measurable cardinal above δ then every set of reals in L(R) is <δ-weakly
homogeneously Suslin (i.e., γ-weakly homogeneously Suslin for all γ < δ).
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4.6 Theorem. If δ is a cardinal and T is a δ-weakly homogeneous tree,
then there is a tree S such that p[T ] = ωω \ p[S] in all forcing extensions by
partial orders of cardinality less than δ (including the trivial one).

4.7 Theorem. (Woodin) If δ is a Woodin cardinal and A is a δ+-weakly
homogeneously Suslin set of reals, then the complement of A is <δ-weakly
homogeneously Suslin.

Note also that if S and T are trees whose projections are disjoint, then
they remain disjoint in all forcing extensions, as there is a ranking function
on the tree of attempts to build a real in both projections. This fact plus
Theorem 4.6 gives the following corollary.

4.8 Corollary. If δ is a cardinal and T0 and T1 are δ-weakly homogeneous
trees with the same projection, then T0 and T1 still have the same projection
in all forcing extensions by forcings of cardinality less than δ.

Given a set of reals A, a set of reals B is projective in A if it can be
defined by a projective formula (i.e., all unbounded quantifiers ranging over
reals) with A as a parameter. Fact 4.4 and Theorem 4.7 together imply that
if δ is a limit of Woodin cardinals then the set of <δ-weakly homogeneously
Suslin sets of reals is projectively closed.

The following theorem is a generalized existence result which is useful in
analyzing variations of Pmax.

4.9 Theorem. Let γ be a strongly inaccessible cardinal, let A be a set of
reals, and suppose that θ is a strong limit cardinal of cofinality greater than
ω1 such that every set of reals projective in A is γ+-weakly homogeneously
Suslin as witnessed by a tree and a set of measures in H(θ). Let X be a
countable elementary submodel of H(θ) with γ, A ∈ X, and let M be the
transitive collapse of X ∩ H(γ). Let N be any forcing extension of M in
which there exists a normal precipitous ideal I on ωN

1 . Let j : (N, I) →
(N∗, I∗) be any iteration of (N, I). Then

• N∗ is wellfounded,

• N ∩A ∈ N ,

• j(N ∩A) = N∗ ∩A,

• 〈H(ω1)N∗
, A ∩N∗,∈〉 ≺ 〈H(ω1), A,∈〉.

Proof. Let {Ai : i < ω} be a listing in X of the sets of reals projective
in A (with A0 = A), and let {Ti : i < ω} and {Σi : i < ω} be sets in
X such that each Ti is a γ+-weakly homogeneous tree (as witnessed by
Σi) projecting to Ai. By the proof of Theorem 4.3, there is an elementary
submodel Y of H(θ) containing X such that X ∩ H(γ) = Y ∩ H(γ) and
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such that, letting M+ be the transitive collapse of Y , and letting, for each
i < ω, Si be the image of Ti under this collapse, p[Si] = Ai. Note that since
there are sets projective in A which are not the projections of countable
trees, ω1 ⊆ M+. Now, let N be a forcing extension of M with I a normal
precipitous ideal on ωN

1 in N , and let N+ be the corresponding extension
of M+. Let j : (N, I) → (N∗, I∗) be an iteration of (N, I). By Lemmas 1.4
and 1.5, j extends to an iteration of (N+, I) (which we will also call j), and
N∗ is wellfounded. Furthermore, for each i < ω there is a j < ω such that
Si and Sj project to complements. Then

• p[Si] ⊆ p[j(Si)],

• p[Sj ] ⊆ p[j(Sj)],

• p[j(Si)] ∩ p[j(Sj)] = ∅,
which means that p[Si] = p[j(Si)], so j(N ∩Ai) = N∗ ∩Ai.

To verify the last part of the theorem, noting that the theory of H(ω1)
is recursive in the theory of R (see Remark 1.10), we need to see that for
each formula φ (with a predicate for A) with all unbounded quantifiers
ranging over the reals, if Ai is the set of reals satisfying φ, then in N+,
Si projects to the set of reals satisfying φ (i.e., that this relationship is
preserved in the forcing extension from M+ to N+). This is easily shown by
induction on the complexity of formulas, using Theorem 4.6 and Corollary
4.8. Note first of all that this holds for all such φ whose quantifiers are
all bounded, as 〈H(ω1)N+

, A ∩ N+,∈〉 is elementary in 〈H(ω1), A,∈〉 for
such formulas simply by virtue of being a substructure. The verification for
∧ and ∃ follows from Corollary 4.8. Letting γ∗ be the image of γ under
the collapse of Y , fix integers i and j and formulas φi and φj such that Si

and Sj project to the sets of reals satisfying φi and φj respectively in both
M+ and N+. Then, working in M+, we can directly construct γ∗-weakly
homogeneous trees T and T ′ projecting to the sets of reals satisfying ∃xφi(x)
and φi ∧ φj respectively in both M+ and N+. Then, letting k and k′ be
integers such that Sk and Sk′ project in M+ to the sets of reals satisfying
∃xφi(x) and φi∧φj respectively, Corollary 4.8 gives us that p[T ] = p[Sk] and
p[T ] = p[Sk′ ] in N+. The verification for ¬ follows similarly from Corollary
4.8 and Theorem 4.6. a

Alternately, we can derive the existence of A-iterable conditions from
determinacy. The proof from determinacy requires the following fact: if
AD holds and Z is a set of ordinals, then there is an inner model of ZFC
containing the ordinals with Z as a member in which some countable ordinal
is a measurable cardinal. Note that a tree of finite sequences of ordinals can
easily be coded as a set of ordinals (see [25], for instance).

The following unpublished theorem of Woodin is more than sufficient,
but in the spirit of completeness we will not use it, since its proof is well
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beyond the scope of this chapter. Given a model M and a set X, HODM
X

is the class of hereditarily ordinal definable sets (using X as a parameter),
as computed in M . It is a standard fact that this model satisfies ZFC.

4.10 Theorem. (AD) Suppose that Z is a set of ordinals. Then there
exists a real x such that for all reals z with x ∈ L[Z, z], ω

L[Z,z]
2 is a Woodin

cardinal in HODL[Z,z]
{Z} .

The following theorem is sufficient for our purposes.

4.11 Theorem. (AD) For every subset Z of L, there is an inner model N
of ZFC containing {Z} and the ordinals such that some countable ordinal
is measurable in N .

Proof. For each increasing function f : ω → ω1, let s(f) be the supremum
of the range of f , and let F (f) be the filter on s(f) consisting of all subsets
of s(f) which contain all but finitely many members of the range of f . For
each such f , let N(f) be the inner model L[Z,F (f)]. We will find an f such
that the restriction of F (f) to N(f) is a countably complete ultrafilter in
N(f), i.e., such that

(+) for every function g from s(f) to ω in N(f), g is constant on a set in
F (f).

Note the following facts.

1. If f0 and f1 are functions from ω to ω1 whose ranges are the same
modulo a finite set, then F (f0) = F (f1) and so not only are the models
N(f0) and N(f1) the same, but their canonical wellorderings are the
same also.

2. Using the canonical wellordering of each N(f), there is a function G
choosing for each increasing f : ω → ω1 a function G(f) : s(f) → ω
failing condition (+) above, if one exists.

The key consequence of AD is the partition property ω1 → (ω1)ω
ωω (see

[8] or pages 391-396 of [13]), which says that for every function from the set
of increasing ω-sequences from ω1 to ωω (the set of functions from ω to ω)
there is an uncountable E ⊆ ω1 such that the function is constant on the
set of increasing ω-sequences from E.

Now, for each increasing f : ω → ω1, let P (f) be the constant function 0
if F (f) satisfies conditions (+) in N(f). If f fails condition (+) in N(f),
then let P (f)(0) be 1 and let P (f)(n+1) = G(f)(f(n)) for all n ∈ ω. Let E
be an uncountable subset of ω1 such that P (f) is the same for all increasing
f : ω → E. We show that the constant value is the constant function 0. If
the constant value corresponds to a failure of (+), then there is an i : ω → ω
such that for all increasing f : ω → E, for all n ∈ ω, G(f)(f(n)) = i(n).
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Then i must be constant, since if n ∈ ω is such that i(n) 6= i(0), then
if f is an increasing function from ω to E and g : ω → E is defined by
letting g(m) = f(m + n), then G(f) 6= G(g), contradicting the fact that
F (f) = F (g). But if i is constant, then for every increasing f : ω → E,
G(f) is constant on a set in F (f), contradicting the failure of (+). a
4.12 Theorem. Suppose that the Axiom of Determinacy holds in L(R),
and let A be a set of reals in L(R). Then there exists a condition 〈(M, I), a〉
in Pmax such that

• A ∩M ∈ M ,

• 〈H(ω1)M , A ∩M〉 ≺ 〈H(ω1), A〉,
• (M, I) is A-iterable.

• if M+ is any forcing extension of M and J is a normal precipitous
ideal on ωM+

1 in M+ then A ∩M+ ∈ M+ and (M+, J) is A-iterable,
and if j : (M+, J) → (M∗, J∗) is any iteration of (M+, J), then

〈H(ω1)M∗
, A ∩M∗〉 ≺ 〈H(ω1), A〉.

Proof. Work in L(R). If there is an A ⊆ R which is a counterexample to
the statement of the theorem, then we may assume that there exists such
an A which is ∆∼2

1. This follows from the Solovay Basis Theorem (see [8]),
which says (in ZF) that every nonempty Σ∼2

1 collection of sets of reals has
a member which is ∆∼2

1. We give a quick sketch of the proof. Note first of
all that for any ordinal α the transitive collapse any elementary submodel
of Lα(R) containing R is a set of the form Lβ(R) for some ordinal β ≤ α.
Now, if α is any ordinal, there exist (in L(R)) an elementary submodel X of
Lα(R) containing R and a surjection π : R→ X, so if α is the least ordinal
such that a member of a given Σ∼2

1 set exists in Lα+1(R) then there is a
surjection (in L(R)) from R onto Lα+1(R), and a formula φ and a real x
such that some member of the set is defined over Lα(R) by φ from x. By
the minimality of α, that member has Σ∼2

1 and Π∼2
1 definitions using x and

incorporating φ.
Towards a contradiction, fix a ∆∼2

1 counterexample A. By [22], the point-
class Σ2

1 has the scale property in L(R), which means that every subset of
R×R which is ∆∼

2
1 in L(R) is the projection of a tree in L(R) on the product

of ω and some ordinal, and can be uniformized by a function which is ∆∼
2
1 in

L(R). (We refer the reader to [8, 13, 24] for a discussion of scales and their
corresponding trees. Briefly, if B ⊆ R × R is the projection of a tree T on
ω × ω × γ (for some ordinal γ) then for each real x such that there exists
a y with (x, y) in B, we can recursively define functions f(x) : ω → ω and
g(x) : ω → γ as follows: if (m,α) is the lexicographically least pair in ω× γ
such that there exist a real y and a function a : ω → γ such that
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• y extends f(x)¹n and y(n) = m,

• a extends g(x)¹n and a(n) = α,

• (x, y, a) is a path through T ,

then f(x)(n) = m and g(x)(n) = α. Then f uniformizes B, and if T is the
tree corresponding to a Σ∼

2
1 scale on B, then f is ∆∼2

1.) Now, ∆∼2
1 is closed

under complements, projections and countable unions, so there exists a ∆∼2
1

set B ⊆ R× R such that whenever F : R→ R is a function uniformizing B
and N is a transitive model N of ZF closed under F ,

〈H(ω1)N , A ∩N,∈〉 ≺ 〈H(ω1), A,∈〉.

Fix such B and F , both ∆∼2
1. Let S, S∗, T, T ∗ be trees (on ω × γ, for some

ordinal γ) in L(R) projecting to A, the complement of A, F and the com-
plement of F respectively. Note that any transitive model of ZF with T as
a member is closed under F .

Now by Theorem 4.11, we may fix a transitive model N of ZFC and a
countable ordinal γ such that N contains the ordinals, S, S∗, T and T ∗

are elements of N and γ is a measurable cardinal in N . Since N ⊆ L(R)
and L(R) satisfies AD, ωV

1 is a limit of strongly inaccessible cardinals in
N . Let δ be any strongly inaccessible cardinal in N between γ and ωV

1 .
Recall (Remark 2.6) that if we choose an N -generic filter G for the forcing
consisting of Col(ω, <γ) followed by the standard c.c.c. iteration to make
Martin’s Axiom hold, as defined in N , then if we let I be the normal ideal
generated by an ideal in N dual to a fixed normal measure on γ in N , I is
a precipitous ideal in N [G] and (Nδ[G], I) is iterable, by Lemmas 1.4 and
1.5. It suffices now to fix a forcing extension M+ of Nδ[G] in which there
exists a normal precipitous ideal J on ωM+

1 and to show that the second
part of the conclusion of the theorem holds for M+ and J . Let N+ be the
corresponding forcing extension of N [G]. Since S ∈ N+, A∩M+ ∈ M+. Fix
an iteration j : (M+, J) → (M∗, J∗). By Lemma 1.5 there is an iteration
j∗ : (N+, J) → (N∗, J∗) such that j∗¹M+ = j. Now, p[S] ⊆ p[j∗(S)] and
p[S∗] ⊆ p[j∗(S∗)], and further, by absoluteness p[j∗(S)] ∩ p[j∗(S∗)] = ∅, so
p[S] = p[j∗(S)]. Similarly, p[T ] = p[j∗(T )]. Then N∗ is closed under F , so
we have that

〈H(ω1)M∗
, A ∩M∗,∈〉 ≺ 〈H(ω1), A,∈〉.

Furthermore, j(A ∩M+) = p[j∗(S)] ∩M∗, so j(A ∩M+) = A ∩M∗. This
shows that A is not in fact a counterexample to the statement of the theo-
rem. a

Suppose that A is a set of reals and x is a real coding a condition p in
Pmax by some recursive coding, and let B be the set of reals coding members
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of A× {x}. Then if (M, I) is a B-iterable pair such that

〈H(ω1)M , B ∩M,∈〉 ≺ 〈H(ω1), B,∈〉,

then (M, I) is A-iterable and p ∈ H(ω1)M . Therefore, the existence, for
each A ⊆ R in L(R), of an A-iterable pair (M, I) such that

〈H(ω1)M , A ∩M,∈〉 ≺ 〈H(ω1), A,∈〉

implies that for each A ⊆ R in L(R) the set of 〈(M, I), a〉 in Pmax such that
(M, I) is A-iterable and 〈H(ω1)M , A ∩M,∈〉 ≺ 〈H(ω1), A,∈〉 is dense.

5. The basic analysis

With the existence of A-iterable conditions (for all sets of reals A in L(R)) in
hand, we can now prove the most important fact about the Pmax extension,
that every subset of ω1 in the extension is the image of a member of the
generic filter under the iteration of that member induced by the generic
filter.

Formally, if G ⊂ Pmax is a set of pairwise compatible conditions, then
since the elementary embedding witnessing the order on a pair of Pmax

conditions has critical point the ω1 of the smaller model, for each pair
〈(M, I), a〉, 〈(N, J), b〉 in G, a ∩ γ = b ∩ γ, where γ = min{ωM

1 , ωN
1 }. For

any such G, we let

AG =
⋃
{a | ∃(M, I) 〈(M, I), a〉 ∈ G}.

By Lemma 2.7, for any such G, for any member 〈(M, I), a〉 of G there is
a unique iteration of (M, I) sending a to AG. Using this fact, we define
P(ω1)G to be the collection of all E such that there exists a condition
〈(M, I), a〉 ∈ G and a set e ∈ P(ω1)M such that j(e) = E, where j is the
unique iteration of (M, I) sending a to AG. Likewise, we define IG to be
the collection of all E such that there exists a condition 〈(M, I), a〉 ∈ G and
a set e ∈ I such that j(e) = E, where j is the unique iteration of (M, I)
sending a to AG.

We state the following theorem from the point of view of the ground
model (so in particular, the universe V in the statement of the theorem
does not satisfy AC). We have seen that large cardinals and determinacy
each apply that the hypothesis of the theorem is satisfied in L(R), but as
we shall see, it can hold in other models as well.

5.1 Theorem. (ZF) Assume that for every A ⊆ R there exists a Pmax

condition 〈(M, I), a〉 such that (M, I) is A-iterable and

〈H(ω1)M , A ∩M,∈〉 ≺ 〈H(ω1), A,∈〉.
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Suppose that G ⊂ Pmax is a V -generic filter. Then in V [G] the following
hold.

(a) P(ω1) = P(ω1)G.

(b) NSω1 = IG.

(c) δ∼
1
2 = ω2.

(d) NSω1 is saturated.

Before proving Theorem 5.1, we prove another iteration lemma in terms
of games in order to separate out some commonly needed details.

Suppose that p is a Pmax condition, let J be a normal ideal on ω1 and
let B be a subset of ω1. Let Gω1(p, J,B) be the game where Players I
and II collaborate to build a descending ω1-sequence of Pmax conditions
pα = 〈(Mα, Iα), aα〉 below p, where in round α < ω1, I chooses pα if α 6∈ B,
and II chooses pα if α ∈ B. At the end of the game, II wins if, letting
A =

⋃{aα : α < ω1} and letting jα : (Mα, Iα) → (M∗
α, I∗α) (for each α < ω1)

be the iteration of (Mα, Iα) sending aα to A, jα(Iα) = J ∩ M∗
α holds for

each α < ω1.

5.2 Lemma. (ZFC◦) Suppose that x† exists for every real x. Let p be a
condition in Pmax, let J be a normal ideal on ω1 and let B be a subset of
ω1. Then II has a winning strategy in Gω1(p, J,B) if and only if B 6∈ J .

Proof. The interesting direction is showing that II has a winning strategy if
B 6∈ J , and for this direction it suffices to consider the case where B consists
entirely of limit ordinals (we have no use for the other direction and leave
its proof to the reader). The strategy for II uses the usual trick. Partition
B into J-positive sets {Bα

i : α < ω1, i < ω}, and as the pα are chosen, let
{Eα

i : i < ω} enumerate P(ω1)Mα \ Iα for each α.
Fix a ladder sytem {hα : α ∈ B} (so each hα is an increasing function

from ω to α with cofinal range). Having constructed our sequence of pα’s
up to some limit stage β in B, let

(〈(Nβ
i , Jβ

i ) : i < ω〉, a∗β)

be the limit sequence corresponding to the descending sequence

〈phβ(i) : i < ω〉,

and for each i < ω let j′iβ be the unique iteration of (Mhβ(i), Ihβ(i)) sending
ahβ(i) to a∗β . Since the dagger of each real exists, we may fix a Pmax pre-
condition (Mβ , Iβ) with

(〈(Nβ
i , Jβ

i ) : i < ω〉, a∗β) ∈ H(ω1)Mβ .
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As in Lemma 3.4 (more precisely, using Lemma 3.5), we let j′β be an iteration
of 〈(Nβ

i , Jβ
i ) : i < ω〉 in Mβ such that

j′β(Jβ
i ) = Iβ ∩ j′β(Nβ

i )

for each i < ω, with the extra stipulation that if

ω
Nβ

0
1 ∈ Bγ

k

for some γ < β and k < ω, then, letting i′ be the least element i of ω such
that hβ(i) ≥ γ,

j′i′β(jγhβ(i′)(E
γ
k ))

is in the normal filter corresponding to the first step of this iteration of
〈(Nβ

i , Jβ
i ) : i < ω〉 (note that j′i′β(jγhβ(i′)(E

γ
k )) is Jβ

i′ -positive by the agree-
ment of ideals imposed by the Pmax order). Then, letting aβ = j′β(a∗β), we
have that

ω
Nβ

0
1 ∈ jγβ(Eγ

k ).

Since for each i < ω and α < ω1 the set of β ∈ Bα
i such that ω

Nβ
0

1 = β is
J-positive, by playing in this manner Player II ensures that the image of
each Eα

i is J-positive. a

We separate out the following standard argument as well.

5.3 Lemma. Suppose that x† exists for every real x, and let G ⊂ Pmax be
an L(R)-generic filter. Let p0 = 〈(M, I), a〉 be a Pmax condition in G, and
suppose that P ∈ M is a set of Pmax conditions such that p ≥ p0 for every
p ∈ P . Let j be the unique iteration of (M, I) sending a to AG. Then every
member of j(P ) is in G.

Proof. Let 〈Mα, Gβ , j∗αδ : β < α ≤ δ ≤ ω1〉 be the iteration corresponding
to j, and fix q = 〈(N0, J0), b0〉 in j(P ). Fix α0 < ω1 such that q ∈ j∗0α0

(P ),
and let jq (in Mα0) be the iteration of (N0, J0) sending b0 to j∗0α0

(a). By
the genericity of G there is a condition p1 = 〈(N1, J1), b1〉 in G such that
p1 ≤ p0 and α0 < ωN1

1 . Then 〈Mα, Gβ , j∗αδ : β < α ≤ δ ≤ ωN1
1 〉 is in M

ω
N1
1

and is the unique iteration of (M, I) sending a to b1. Since

jq(J0) = j∗0α0
(I) ∩ jq(N0)

and
j∗
0ω

N1
1

(I) = J1 ∩M
ω

N1
1

,

j∗
α0ω

N1
1

(jq) witnesses that q ≥ p1. a
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Proof of Theorem 5.1. (a) Let τ be a Pmax-name in L(R) for a subset of
ω1, and let A be the set of reals coding (under some fixed recursive coding)
the set of triples (p, α, i) such that p ∈ Pmax, α < ω1, i ∈ 2 and, if i = 1
then p ° α̌ ∈ τ , otherwise p ° α̌ 6∈ τ. Let p = 〈(N, J), d〉 be any condition in
Pmax and let (M, I) be an A-iterable pre-condition such that

• p ∈ H(ω1)M ,

• 〈H(ω1)M , A ∩M,∈〉 ≺ 〈H(ω1), A,∈〉.
Applying Lemma 5.2 in M , there exists a descending sequence of Pmax

conditions pα = 〈(Nα, Jα), dα〉 (α < ωM
1 ) such that

(1) p0 = p,

(2) each pα+1 decides the sentence “α̌ ∈ τ ,”

(3) letting D =
⋃{dα : α < ωM

1 }, for each α < ω1, jα(Jα) = I ∩ jα(Nα),
where jα is the unique iteration of (Nα, Jα) sending dα to D.

Note that conditions (1) and (2) are easily satisfied, using the fact that
〈H(ω1)M , A∩M,∈〉 ≺ 〈H(ω1), A,∈〉, and we may apply Lemma 5.2 (letting
B be the set of countable limit ordinals) inside M to meet Condition (3)
since in M the dagger of each real exists.

Now, letting D be as in Condition (3) above, 〈(M, I), D〉 is a Pmax con-
dition below each pα. Let e be the subset of ωM

1 in M such that for each
α < ω1, α ∈ e ⇔ pα+1 ° α̌ ∈ τ .

Suppose that p′ = 〈(M, I), D〉 ∈ G, and let

〈Mα, Gβ , j∗αδ : β < α ≤ δ ≤ ω1〉

be the unique iteration of (M, I) sending D to AG. We want to see that
j∗0ω1

(e) = τG. Let 〈qα : α < ω1〉 = j∗0ω1
(〈pα : α < ωM

1 〉). By the elementar-
ity of j∗0α∗ and the A-iterability of (M, I), for each γ < ω1, qγ+1 ° γ̌ ∈ τ if
γ ∈ j0α∗(e) and qγ+1 ° γ̌ 6∈ τ if γ 6∈ j0α∗(e). By Lemma 5.3, each qγ is in
G, so j∗(e) = τG.

(b) The fact that IG = NSω1 follows almost immediately. If E ∈ IG,
then there is a condition 〈(M, I), a〉 in G, an e ∈ I and an iteration j of
(M, I) sending e to E. Then E is disjoint from the critical sequence of
this iteration and therefore nonstationary. On the other hand, if E is a
nonstationary subset of ω1 in V [G], then there is a club C disjoint from E
and a condition 〈(M, I), a〉 in G, sets e, c ∈ P(ω1)M and an iteration j of
(M, I) sending e and c to E and C respectively. Then c must be a club
subset of ωM

1 in M , so e ∈ I, which means that E is in IG.
(c) That δ∼

1
2 = ω2 also follows almost immediately, using Corollary 1.8 and

the standard fact that if x# exists for every real x, then δ∼
1
2 is equivalent

to u2, the second uniform indiscernible (the least ordinal above ω1 which
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is an indiscernible of every real) (see [34, 37]). So, showing that δ∼
1
2 = ω2

then amounts to showing that for every γ < ω2 there is a real x such that
the least x-indiscernible above ω1 is greater than γ. Working in V [G], fix
γ ∈ [ω1, ω2) and a wellordering π of ω1 of length γ. By the first part of this
theorem, we may fix a condition 〈(M, I), a〉 ∈ G and an e ∈ P(ω1 × ω1)M

such that j(e) = π, where j is the iteration of (M, I) sending a to AG. Then
γ is in j(M), and so is less than the least indiscernible above ω1 of any real
coding (M, I), by Corollary 1.8.

(d) To show that NSω1 is saturated in V [G], we show that for any set
D ⊆ P(ω1)\NSω1 which is dense under the subset order, there is a subset D′

of D of cardinality ℵ1 whose diagonal union contains a club. So, following
the proof of the first part of this theorem, let τ be a name for such a set
D. Let A be the set of reals coding (by a fixed recursive coding) the set of
pairs (p, e) such that p = 〈(M, I), a〉 is a condition in Pmax, e ∈ P(ω1)M \ I
and p forces that j(ě) ∈ τ , where j is the unique iteration of (M, I) sending
a to AG.

Let p = 〈(N, J), b〉 be any condition in Pmax and let (M, I) be an A-
iterable pre-condition such that

• p ∈ H(ω1)M ,

• 〈H(ω1)M , A ∩M,∈〉 ≺ 〈H(ω1), A,∈〉.
Fix a partition {Bα

i : α < ω1, i < ω} in M of pairwise disjoint I-positive
sets whose diagonal union is I-large. Fix also a function g : ωM

1 × ω → ωM
1

in M such that g(α, i) ≥ α for all (α, i) ∈ dom(g).
Working in M , we are going to build a descending sequence of Pmax

conditions pα = 〈(Nα, Jα), bα〉 (with the order on conditions witnessed by
a commuting family of embeddings jαβ), enumerations {eα

i : i < ω} in M
of each set P(ω1)Nα \ Jα and sets dα (α ≤ β ≤ ωM

1 ) such that

(4) p0 = p,

(5) each dα ∈ P(ω1)Nα+1 \ Jα+1 and, if α = g(β, i) for some β ≤ α and
i < ω, then dα ⊆ jβ(α+1)(e

β
i ) and (pα+1, dα) is coded by a real in A,

(6) for each (β, i) ∈ dom(g), Bα
i \ j(g(β,i)+1)ωM

1
(dg(β,i)) is nonstationary.

Conditions (5) and (6) together imply that our sequence will satisfy Con-
dition (3) from part (a) of this proof. Furthermore, Conditions (4) and (5)
here are easily achieved, by the assumptions on τ . In particular, for each
α < ωM

1 , by the assumptions on τ there exists a pair (p∗, d∗) such that
p∗ ≤ pα and Condition (5) holds with p∗ in the role of pα+1 and d∗ in the
role of dα, and we let (pα+1, dα) be any such pair. Condition (6) implies
that the diagonal union of the sets j(g(β,i)+1)ωM

1
(dg(β,i)) will be I-large.

Condition (6) is achieved in almost exactly the same way as Condition (3)
in the first part of the proof (but not exactly the same way; unfortunately
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we cannot quote Lemma 5.2). Fix a ladder system {hα : α < ω1 limit}
in M . Having constructed our sequence of pα’s up to some limit stage
β, let (〈(Nβ

i , Jβ
i ) : i < ω〉, b∗β) be the limit sequence corresponding to the

descending sequence 〈phβ(i) : i < ω〉, and again for each i < ω let j′iβ be the
unique iteration of (Nhβ(i), Jhβ(i)) sending bhβ(i) to b∗β . Fix a pre-condition
(Nβ , Jβ) in M with

(〈Nβ
i : i < ω〉, b∗β) ∈ H(ω1)Nβ .

As in Lemma 3.4, we let j′β be an iteration of 〈(Nβ
i , Jβ

i ) : i < ω〉 in Nβ such
that

j′β(Jβ
i ) = Jβ ∩ j′β(Nβ

i )

for each i < ω, with the extra stipulation that if

ω
Nβ

0
1 ∈ Bγ

k

for some γ < β and k < ω with g(γ, k) < β, then, letting i′ be the least
i ∈ ω such that hβ(i) ≥ g(γ, k),

j′i′β(j(g(γ,k)+1)hβ(i′)(dg(γ,k)))

is in the filter corresponding to the first step of this iteration of the sequence
〈(Nβ

i , Jβ
i ) : i < ω〉, ensuring (once we let bβ = j′β(b∗β)) that

ω
Nβ

0
1 ∈ j(g(γ,k)+1)β(dg(γ,k)).

Then since {ωNβ
0

1 : β < ω1 limit} is a club subset of ωM
1 , Condition (6) is

satisfied.
Now, letting B =

⋃{bα : α < ωM
1 }, 〈(M, I), B〉 is a Pmax condition below

each pα. For each α < ω1 and i < ω, let d′αi = j(g(α,i)+1)ωM
1

(dg(α,i)). Then
the diagonal union of

A = {d′αi : α < ωM
1 , i < ω}

contains an I-large subset of ωM
1 in M .

Suppose that 〈(M, I), B〉 ∈ G, and let 〈Mα, Gβ , j∗αδ : β < α ≤ δ ≤ ω1〉 be
the unique iteration of (M, I) sending B to AG. Then the diagonal union
of j∗0ω1

(A) contains the critical sequence of j∗0ω1
, which is a club. We want

to see that j∗0ω1
(A) ⊆ τG.

Let 〈qα : α < ω1〉 = j∗0ω1
(〈pα : α < ωM

1 〉). By Lemma 5.3, each qα is in
G. Since (M, I) is A-iterable, each member of j∗(A) is forced to be in τG

by some qα, so j∗(A) ⊆ τG. a
5.4 Remark. It is shown in [16] that, under the hypothesis of Theorem 5.1,
Todorcevic’s Open Coloring Axiom [35] holds in the Pmax extension. The
proof in that paper can be greatly simplified by using Lemmas 5.2 and 5.3
to separate out the standard details.
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6. ψAC and the Axiom of Choice

We have not yet shown that the Pmax extension of L(R) satisfies the Axiom
of Choice. We shall do this by showing (assuming that AD holds in L(R))
that the following axiom holds there.

We let o.t.(X) denote the ordertype of a linear order X.

6.1 Definition. ψAC is the statement that for every pair A,B of stationary,
co-stationary subsets of ω1, there exists a bijection π between ω1 and some
ordinal γ such that the set {α < ω1 | α ∈ A ⇔ o.t.(π[α]) ∈ B} contains a
club.

Using a partition {Aα : α < ω1} of ω1 into stationary sets, ψAC allows
us to define an injection from 2ω1 into ω2. Since the Pmax extension of
L(R) satisfies the sentence “V = L(P(ω1)),” this is enough to see that AC
holds there. Let B∗ be any stationary, co-stationary subset of ω1. For
each X ⊆ ω1, let AX =

⋃{Aα : α ∈ X}, and let γX be the ordinal
given by ψAC , where AX is in the role of A, and B∗ is in the role of B.
Let X0 and X1 be distinct subsets of ω1, and let E be the (stationary)
symmetric difference of AX0 and AX1 . Supposing towards a contradiction
that γX0 = γX1 , let π0 and π1 be bijections and C0 and C1 club subsets of
ω1 witnessing ψAC for the pairs AX0 , B

∗ and AX1 , B
∗ respectively. Then

there is a club subset D of ω1 such that o.t.(π0[α]) = o.t.(π1[α]) for all
α ∈ D. Then E ∩ C0 ∩ C1 ∩ D is nonempty, which gives a contradiction,
since α ∈ AX0 ⇔ o.t.(π0[α]) ∈ B ⇔ o.t.(π1[α]) ∈ B ⇔ α ∈ AX1 for all
α ∈ C0 ∩ C1 ∩ D. Therefore, ψAC implies that 2ω1 = ω2. In fact, it also
implies that 2ω = 2ω1 , but we will not take the time to show this (it follows
from a result of Shelah proved in Section 3.2 of [37]); we already know from
Theorem 5.1 that the Continuum Hypothesis fails in the Pmax extension
(assuming AD in L(R)).

That ψAC holds in the Pmax extension follows from part (a) of Theorem
5.1 and the following lemma.

6.2 Lemma. (ZFC◦) Suppose that (M, I) is a pre-condition in Pmax, and
let A,B ∈ M be I-positive subsets of ωM

1 whose complements in ωM
1 are also

I-positive. Let J be a normal ideal on ω1. Then there exist an iteration
j : (M, I) → (M∗, I∗) of (M, I) of length ω1, an ordinal γ < ω2, and a
bijection π : ω1 → γ such that I∗ = J ∩M∗ and

{α < ω1 | α ∈ j(A) ⇔ o.t.(π[α]) ∈ j(B)}

contains a club.

Proof. Let x be a real coding (M, I). Using Fact 1.9, it suffices to construct
an iteration 〈Mα, Gβ , jαδ : β < α ≤ δ ≤ ω1〉 such that for every α which is
a limit of countable x-indiscernibles, j0α(A) ∈ Gα if and only if j0α∗(B) ∈
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Gα∗ , where α∗ is the least x-indiscernible above α. Note that by the proof
of Lemma 1.7, ω

Mγ

1 = γ for each x-indiscernible γ, so in particular, each
such γ is on the critical sequence.

We construct our iteration using the the winning strategy for Player I in
G(ω1 \ E) from Lemma 2.9, where E is the set of countable ordinals of the
form α∗ as above, where α is a limit of x-indiscernibles. This ensures that
j0ω1(I) = J∩Mω1 . To complete the construction, we recursively choose each
Gα∗ (α∗ ∈ E) in such a way that j0α∗(B) ∈ Gα∗ if and only if j0α(A) ∈ Gα.
Fact 1.9 implies that any iteration satisfying these conditions satisfies the
conclusion of the lemma. a

Stated in the fashion of Theorem 5.1, we have shown the following.

6.3 Theorem. (ZF) Assume that for every A ⊆ R there exists a Pmax

condition 〈(M, I), a〉 such that (M, I) is A-iterable and

〈H(ω1)M , A ∩M,∈〉 ≺ 〈H(ω1), A,∈〉.
Suppose that G ⊂ Pmax is a V -generic filter. Then ψAC holds in V [G].

6.4 Remark. Suppose that A, B are stationary, co-stationary subsets of
ω1, π : ω1 → γ is a bijection (for some γ < ω2) and the set

{α < ω | α ∈ A ⇔ o.t.(π[α]) ∈ B}
contains a club subset of ω1. Then for any normal ideal I on ω1, A is
the Boolean value in the partial order P(ω1)/I that γ ∈ j(B), where j is
the induced embedding. It follows that if (M, I) is any iterable pair with
M a countable transitive model of ZFC◦+ ψAC and B is any stationary,
costationary subset of ωM

1 in M , then the image of B under any iteration
of (M, I) determines the entire iteration. This in turn implies that one
can replace MAℵ1 with ψAC in the definition of Pmax without significantly
changing the corresponding analysis; in some cases the analysis is easier
with ψAC .

7. Maximality and minimality

In this section we will show that if certain large cardinals exist in V then the
Pmax extension of the inner model L(R) is maximal, in that all forceable Π2

sentences for H(ω2) hold there, and that it is minimal, in that every subset
of ω1 added by the generic filter for Pmax generates the entire extension.
We will also show that a certain form of this maximality characterizes the
Pmax extension.

The following theorem is an immediate consequence of part (a) of Theo-
rem 5.1, and it implies in particular that MAℵ1 holds in the Pmax extension.
Corollary 7.7 below is the maximal version of this fact.
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7.1 Theorem. Assume that for every A ⊆ R there exists a Pmax condition
〈(M, I), a〉 such that (M, I) is A-iterable and

〈H(ω1)M , A ∩M,∈〉 ≺ 〈H(ω1), A,∈〉.

Let ψ be a binary formula without unbounded quantifiers in a language with
one additional unary predicate. Suppose that it is a theorem of ZFC +
“NSω1 is precipitous” that for every X ∈ H(ω2) there is a partial order
preserving stationary subsets of ω1 and the precipitousness of NSω1 and
forcing the formula ∃Y ψ(X, Y ) to hold in the structure 〈H(ω2), NSω1 ,∈〉 of
the forcing extension. Then ∀X∃Y ψ(X, Y ) holds in the Pmax extension of
V .

To show that the Pmax extension is Π2-maximal, we will use the follow-
ing theorem of Woodin (see [7, 5, 28, 37]; Foreman, Magidor and Shelah
originally proved the theorem from the existence of supercompact cardinal
[6]). An ideal I on ω1 is presaturated if for any A ∈ P(ω1) \ I and any
sequence 〈Ai : i < ω〉 of maximal antichains in P(ω1) \ I there exists a
B ∈ P(A) \ I such that there are at most ℵ1 many X ∈ ⋃{Ai : i < ω} such
that X ∩ B 6∈ I. It is straightforward to check that normal presaturated
ideals on ω1 are precipitous.

7.2 Theorem. If δ is a Woodin cardinal, then every condition in the partial
order Col(ω1, <δ) forces that NSω1 is presaturated.

Using this we can prove the following theorem.

7.3 Theorem. Suppose that δ is a limit of Woodin cardinals, and let κ >
δ be a measurable cardinal. Let A be a set of reals in L(R). Let p =
〈(M, I), a〉 be a condition in Pmax, and let ψ be a binary formula without
unbounded quantifiers in the language with two additional unary predicates,
such that ∀X∃Y ψ(X, Y ) holds in 〈H(ω2), NSω1 , A,∈〉. Let x be an element
of H(ω2)M . Then there exists a Pmax condition q = 〈(N, J), b〉 such that

• q ≤ p,

• (N, J) is A-iterable,

• if j : (M, I) → (M∗, I∗) is the unique iteration of (M, I) sending a to
b, then

〈H(ω2)N , J, A ∩N,∈〉 |= ∃y ψ(j(x), y).

Proof. By Theorem 4.5, since there exist infinitely many Woodin cardi-
nals below a measurable cardinal, all sets of reals in L(R) are <δ-weakly
homogeneously Suslin. Let γ be the least Woodin cardinal, let γ′ be the
least strongly inaccessible cardinal greater than γ, and let θ be a regu-
lar cardinal greater than κ. Let X be a countable elementary submodel
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of H(θ) with γ, γ′, A, p ∈ X. Applying Lemma 2.8, there is an iteration
j : (M, I) → (M∗, I∗) of (M, I) in X of length ω1 such that I∗ = NSω1∩M∗.
Then there is a y ∈ H(ω2) ∩X such that

〈H(ω2), NSω1 , A,∈〉 |= ψ(j(x), y).

Let M be the transitive collapse of X ∩H(γ′) and, letting γ∗ be the image
of γ under this collapse, let g be M -generic for Col(ω1, <γ∗)M . By Theorem
7.2, NS

M [g]
ω1 is precipitous in M [g]. Let h be M [g]-generic for the standard

forcing to make MAℵ1 hold. Then by Theorem 4.9, (M [g][h], NS
M [g][h]
ω1 ) is

A-iterable. Letting b = j(a) completes the proof of the theorem. a

7.4 Definition. Given a cardinal κ, a set of reals A is κ-universally Baire
if there exist trees S and T (contained in ω × Z for some set Z) such that
p[S] = A and S and T project to complements in all extensions by forcing
constructions of cardinality less than κ.

Theorem 4.6 shows that for any cardinal κ, κ-weakly homogeneously
Suslin sets of reals are κ-universally Baire.

If κ is a cardinal, A is a κ-universally Baire set of reals and V [G] is an
extension of V by a forcing construction of cardinality less than κ, then we
let A(G) be the union of all sets of the form (p[S])V [G], where S is a tree
in V whose projection in V is contained in A. (The notation AG is often
used here, but we are already using that for something else.) Note that for
any pair of trees S and T in V witnessing that A is κ-universally Baire (i.e.,
such that p[S] = A and S and T project to complements in all extensions
by forcing constructions of cardinality less than κ), (p[S])V [G] = A(G).

The following theorem (due to Woodin) is proved in [19]. The set R#

was introduced in [31]. All we need to know here is that R# is a set of reals
coding the theory of L(R) in the language with constants for each real and
ω many ordinal indiscernibles, and that if R# exists then each set of reals in
L(R) is definable in L(R) from a real and a finite set of these indiscernibles.

7.5 Theorem. Suppose that δ is a limit of Woodin cardinals below a mea-
surable cardinal. Then R# is <δ-weakly homogeneous, and if M is any forc-
ing extension of V by a forcing construction in Vδ then (R#)V = (R#)M∩V .

This gives the following strengthening of Theorem 0.2.

7.6 Theorem. Suppose that δ is a limit of Woodin cardinals below a mea-
surable cardinal, and let A be a set of reals in L(R). Then if G is a V -generic
filter contained in a partial order in Vδ, then in V [G] there is an elementary
embedding from L(A,RV ) to L(A(G),RV [G]) sending A to A(G).

By Theorems 5.1 and 7.6, Theorem 7.3 has the following corollary.
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7.7 Corollary. Suppose that δ is a limit of Woodin cardinals such that
there exists a measurable cardinal above δ, and let A be a set of reals in
L(R). Suppose that φ is a Π2 sentence in the language with two additional
unary predicates and P is a partial order in Vδ which forces that φ holds
in the structure 〈H(ω2), NSω1 , A(G),∈〉 (where A(G) is defined relative to
P ). Then φ holds in the structure 〈H(ω2), NSω1 , A,∈〉 when computed in
the Pmax extension of L(R) (of V ).

Theorem 7.12 below is a sort of converse to Corollary 7.7. First we will
show that every new subset of ω1 in the Pmax extension generates the entire
generic filter (Theorem 7.11).

Note that the conclusion of the following lemma corresponds to Condition
5 in the definition of Pmax.

7.8 Lemma. Suppose that the dagger of each real exists. Let 〈(M ′, I ′), a′〉
be a Pmax condition and let e be an element of P(ω1)M ′

. Then there ex-
ist a Pmax pre-condition (N, J) with (M ′, I ′) ∈ H(ω1)N and an iteration
j : (M ′, I ′) → (M∗, I∗) in N such that

• j(ωM ′
1 ) = ωN

1 ,

• I∗ = J∗ ∩M∗,

and either

1. for some x ∈ P(ω)N , j(e) ∈ L[x], or

2. for some x ∈ P(ω)N , ωN
1 = ω

L[j(e),x]
1 .

Proof. Fix a limit sequence (〈(Mi, Ii) : i < ω〉, a) corresponding to any
descending ω-sequence in Pmax starting with 〈(M ′, I ′), a′〉, and let (N, J)
be a Pmax pre-condition with {(M ′, I ′), (〈(Mi, Ii) : i < ω〉, a)} ∈ H(ω1)N .
Let j′ be the iteration of (M ′, I ′) sending a′ to a. Now one of two things must
hold. Either there exist i < ω, γ < ωMi

2 and a bijection f : ωM0
1 → γ in Mi

such that {α < ωM0
1 : o.t.(f [α]) ∈ j′(e)} and {α < ωM0

1 : o.t.(f [α]) 6∈ j′(e)}
are both Ii-positive subsets of ωM0

1 in Mi, or there are no such i, γ, f .
If there is no such triple, then the image of j′(e) is the same under every

iteration of 〈(Mi, Ii) : i < ω〉 of length ωN
1 . Let x be a real in N coding

〈(Mi, Ii) : i < ω〉. There exist iterations of 〈(Mi, Ii) : i < ω〉 of length ωN
1 in

forcing extensions of L[x] by the partial order Col(ω, <ωN
1 ), and since this

partial order is homogeneous, this fixed image of j′(e) exists in L[x]. Letting
j be any suitable (for example, using a strategy for Player I in G(ω1) as in
Theorem 3.5) such iteration in N of length ωN

1 , then, j(j′) is an iteration
of (M ′, I ′) satisfying the first conclusion of the lemma.

If there is such a triple, note that there is a real y in Mi+1 such that γ
is definable in Mi+1 (absolutely, in fact) from ωM0

1 and y (for instance, we
could let y be the sharp of any real whose least indiscernible above ωM0

1 is
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greater than γ). In particular, we may fix a ternary formula φ such that γ
is the unique ordinal such that φ(γ, y, ωM0

1 ) holds in L[y]. Let

A = {α < ωM0
1 : o.t.(f [α]) ∈ j′(e)}.

Then A is the Boolean value of the statement that γ is in the image of
j′(e). Let x be a real in N coding (〈(Mi, Ii) : i < ω〉, a). Then just as in
the proof of Lemma 1.7, the indiscernibles of x are on the critical sequence
of any iteration of 〈(Mi, Ii) : i < ω〉. Fix a set B ⊆ ωN

1 in N such that
ωN

1 = ω
L[B]
1 . Working in N , build an iteration j (with partial iterations

jαβ (α ≤ β ≤ ωN
1 ) and normal filters Gα (α < ωN

1 )) of 〈(Mi, Ii) : i < ω〉,
using a winning strategy for Player I in the game G(ωN

1 \E) from Theorem
3.5, where E is the set of countable x-indiscernibles which are not limits
of x-indiscernibles (note that x# ∈ N , as (N, J) is iterable, so N contains
the sharps for all its reals). When j0α(ωM0

1 ) is in E, we put j0α(A) in the
normal filter Gα if and only if η ∈ B, where j0α(ωM0

1 ) is the ηth successor x-
indiscernible. Having completed the construction of our iteration, we have
that B is constructible from j(j′(e)), y and x#: B is the set of η < ωN

1 such
that, letting ιη be the η-th successor x-indiscernible, the unique ordinal γ∗

satisfying φ(γ∗, y, ιη) in L[y] is in j(j′(e)). Then j(j′) is an iteration of
(M ′, I ′) satisfying the second conclusion of the lemma. a

For the rest of this section we fix the following notation: if B is a subset
of ω1, we let FB be the set of conditions 〈(M, I), b〉 in Pmax such that
there exists an iteration j : (M, I) → (M∗, I∗) such that j(b) = B and
I∗ = NSω1 ∩M∗.

Woodin defines the following axiom.

7.9 Definition. Axiom (∗) is the statement that AD holds in L(R) and
L(P(ω1)) is a Pmax extension of L(R).

The proofs of Theorems 7.11 and 7.12 use the following lemma.

7.10 Lemma. Assume that axiom (∗) holds, and let B be a subset of ω1

such that there exists a real z such that ω1 = ω
L[z,B]
1 . Then the set FB is a

filter.

Proof. Fix an L(R)-generic filter G ⊂ Pmax such that L(P(ω1)) = L(R)[G].
Fix a real x such that ω1 = ω

L[x,AG]
1 . As in the proof of Lemma 2.7, let

{aα : α < ω1} be the almost disjoint family of subsets of ω constructed
in L[x,AG] by recursively taking aα to be the first real in the L[x,AG]
constructibility order almost disjoint from each aβ (β < α). Now let y ⊆ ω
be such that for all α < ω, aα ∩ y is infinite if and only if α ∈ B. Let

p0 = 〈(M0, I0), b0〉 and p1 = 〈(M1, I1), b1〉
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be members of FB , as witnessed by iterations j0 and j1 respectively, and let
C0 and C1 be the respective critical sequences of j0 and j1. Let 〈(N, J), a〉
be a member of G with x, y, z, p0, p1 ∈ H(ω1)N and sets c0 and c1 in P(ω1)N

such that, for j the unique iteration of (N, J) sending a to AG, j(c0) = C0

and j(c1) = C1. Then c0 = C0 ∩ ωN
1 , c1 = C1 ∩ ωN

1 , and c0 and c1 are both
club subsets of ωN

1 . Since ω
L[z,B]
1 = ω1, ω

L[z,b0]
1 = ωM0

1 and ω
L[z,b1]
1 = ωM1

1 .
Since x ∈ N , {aα : α < ωN

1 } is in N (it satisfies the same definition in N
relative to x and a that {aα : α < ω1} satisfies relative to x and AG). Since
y ∈ N , B ∩ ωN

1 ∈ N , and the unique iterations

j∗0 : (M0, I0) → (M∗
0 , I∗0 )

and
j∗1 : (M1, I1) → (M∗

1 , I∗1 )

sending b0 to B∩ωN
1 and b1 to B∩ωN

1 respectively are in N , and furthermore
j(B ∩ωN

1 ) = B. Once we see that I∗0 = J ∩M∗
0 and I∗1 = J ∩M∗

1 we will be
done. The two proofs are the same. For (M0, I0), if E ∈ J ∩M∗

0 , then since
E ∈ J , j(E) ∈ NS

L(R)[G]
ω1 . Now, j(j∗) is an iteration of (M0, I0) sending

b0 to B, and so it is equal to j0. Then j(E) is the image of E under the
tail of the iteration j0 starting with (M∗

0 , I∗0 ). So j(E) ∈ j0(M0), and since
j0(I0) = NS

L(R)[G]
ω1 ∩ j0(M0), j(E) ∈ j0(I0), and so E ∈ I∗0 . a

Note that if G ⊂ Pmax is an L(R)-generic filter, then F(AG) is a filter
containing G, and so by the genericity of G, F(AG) = G.

Now we show that any new subset of ω1 added by forcing with Pmax

generates the entire extension.

7.11 Theorem. Suppose that (∗) holds. Then for every B ∈ P(ω1) \L(R),
FB is an L(R)-generic filter for Pmax, and L(P(ω1)) = L(R)[FB ].

Proof. By Lemma 7.8, there is a real z such that L[z,B] correctly computes
ω1. By Lemma 7.10, FB is a filter. Now, let 〈(M, I), a〉 be a condition in
G such that z ∈ M and for some b ∈ P(ω1)M , j(b) = B, for j the unique
iteration of (M, I) sending a to AG. As in Lemma 2.10, the mapping π send-
ing each condition 〈(N, J), c〉 below 〈(M, I), a〉 to the condition 〈(N, J), b∗〉,
where b∗ is the image of b by the iteration of (M, I) sending a to c, is an
isomorphism. The image of G under π, FB , is then an L(R)-generic filter
in Pmax. Furthermore, π is in L(R), so G is in L(R)[FB ]. a
7.12 Theorem. Suppose AD holds in L(R), and that for every Π2 sentence
φ in the language with two additional unary predicates, if A ∈ P(R)∩L(R)
and

〈H(ω2), A,NSω1 ,∈〉L(R)Pmax |= φ

then
〈H(ω2), A, NSω1 ,∈〉 |= φ.
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Then for every B ∈ P(ω1) \ L(R), FB is an L(R)-generic filter and

H(ω2) = H(ω2)L(R)[FB ].

Proof. Let P denote P(ω1)\
⋃{L[x] : x ∈ R} (under ADL(R) this is the same

as P(ω1) \ L(R), but we want to make the relevant syntax more explicit).
The sentence asserting that FB is a filter for every B ∈ P is Π2 in H(ω2) with
parameters for NSω1 and the set of Pmax conditions, and by Lemma 7.10,
this sentence holds in the Pmax extension of L(R). If X ∈ L(R) is a dense
subset of Pmax, then the statement that FB∩X is nonempty for every B ∈ P
is Π2 in H(ω2) with parameters for NSω1 , X and the set of Pmax conditions,
and this sentence holds in the Pmax extension of L(R) by Theorem 7.11.
Thus, for every B ∈ P, FB is L(R)-generic. Finally, the following statement
is Π2 in H(ω2) with parameters for NSω1 and the set of Pmax conditions,
and holds in the Pmax extension: for every E ⊆ ω1 and for every B ∈ P
there is a Pmax condition 〈(M, I), b〉 and an iteration j : (M, I) → (M∗, I∗)
such that E ∈ P(ω1)M∗

, j(b) = B and I∗ = NSω1 ∩ M∗. Fixing a set
B ∈ P, then, since {x,B} ∈ L(R)[FB ], H(ω2) ⊆ H(ω2)L(R)[FB ]. a

Theorem 7.11 gives us another way to characterize the Pmax extension
of L(R), this time without mention of Pmax. For the definition below, we
fix the following notation. If g is a filter contained in Col(ω, <ω1), then for
each α < ω1 we let

Sg
α = {β | ∃p ∈ g p(0, β) = α}

and, for each τ ⊆ ω1 × Col(ω, <ω1), we let

Ig(τ) = {α | ∃p ∈ g (α, p) ∈ τ}.

7.13 Definition. Axiom (∗∗) is the statement that x# exists for every real
number x and if X is a nonempty subset of P(ω1) which is definable from
real and ordinal parameters then there exists a real x and a set

τ ⊆ ω1 × Col(ω,<ω1)

such that τ ∈ L[x] and such that for all filters g ⊂ Col(ω, <ω1), if g is
L[x]-generic and if for each α < ω1, Sg

α is stationary, then Ig(τ) ∈ X.

The converse of the following theorem also holds (see Sections 5.7 and
5.8 of [37]), though its proof is beyond the scope of this chapter.

7.14 Theorem. Axiom (∗) implies that Axiom (∗∗) holds in L(P(ω1)).

Proof. First note that AD implies that the sharp of every real exists. Now
let G be an L(R)-generic filter such that L(P(ω1)) = L(R)[G], and fix a
set X as in the statement of Axiom (∗∗). Let p = 〈(M, I), a〉 be a condition
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in G such that for some b ∈ P(ω1)M , p forces that j(b) ∈ X, for j the
unique iteration of (M, I) sending a to AG. Let x be a real such that
〈(M, I), a〉 ∈ H(ω1)L[x]. Now, if g ⊂ Col(ω,<ω1) is L[x]-generic, then as in
the proof of Lemma 2.8, in L[x][g] there is an iteration

{Mα, Gβ , jαδ : β < α ≤ δ ≤ ω1}

of (M, I) such that for each β < ω1 and each set e ∈ P(ω1)Mβ \ j0β(I)
there is an α < ω1 such that Sg

α \ jβω1(e) is nonstationary. Let σ be an
Col(ω,<ω1)-name in L[x] for the embedding j0ω1 corresponding to such an
iteration, and let τ be the set of pairs (α, p) ∈ ω1 × Col(ω,<ω1) such that
p ° α̌ ∈ σ(b̌). Now suppose that g ⊂ Col(ω,<ω1) is L[x]-generic and that
each Sg

α is stationary. Then σg is an iteration of (M, I), and since there
exists a real z such that

ω
L[z,σg(a)]
1 = ω1,

σg(a) is not in L(R). Then Theorem 7.11 implies that Gσg(a) (as in the
statement of that theorem) is an L(R)-generic filter for Pmax. Since each
Sg

α is stationary, σg witnesses that 〈(M, I), a〉 is in Gσg(a), which means that
σg(b) is in X. Since σg(b) = Ig(τ), we are done. a

Theorem 7.14 has the following immediate corollary. By a perfect subtree
of 2<ω1 we mean a tree of height ω1 such that every node is extended
by a pair of incompatible nodes, and such that every countable increasing
sequence has a node extending it.

7.15 Corollary. Suppose that AD holds in L(R) and let G ⊂ Pmax be an
L(R)-generic filter. Let φ be a unary formula with parameters for elements
of L(R) and suppose that there exists a subset of ω1 in L(R)[G] \ L(R)
satisfying φ. Then there is a perfect subtree T of 2<ω1 such that every
subset of ω1 corresponding to a path through T satisfies φ.

Given an ordinal β, Martin’s Maximum+β (MM+β , derived from [6]) is
the statement that whenever P is a partial order such that forcing with P
preserves stationary subsets of ω1, 〈Dα : α < ω1〉 is a sequence of dense
subsets of P and 〈τα : α < β〉 is a sequence of P -names for stationary
subsets of ω1, there is a filter G ⊂ P such that G∩Dα is nonempty for each
α < ω1 and {γ < ω1 | ∃p ∈ G p ° γ̌ ∈ τα} is stationary for each α < β.

It is shown in [15] that MM+ω does not imply (∗), if the existence of
a supercompact limit of supercompact cardinals is consistent with ZFC.
The question of whether MM+ω1 implies (∗) remains open. We mention
the following two test cases, consequences of (∗) which have not been shown
from large cardinals to be provably forceable by a semi-proper partial order.
We omit the proofs, as they appear in full in [37] (Theorem 7.16 appears in
[37] as Theorem 5.74(5) and Theorem 7.19 appears as Theorem 6.124).
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7.16 Theorem. Suppose that (∗∗) holds. Then for every A ⊆ ω1 which is
not constructible from a real, there exist a real x and an L[x]-generic filter
g ⊂ Col(ω,<ω1) such that L[x][g] = L[x,A].

The statement of Theorem 7.19 requires the following definitions.

7.17 Definition. A tree T ⊆ {0, 1}<ω1 is weakly special if for all countable
X ≺ 〈H(ω2), T,∈〉, if b : ω1 ∩ X → {0, 1} is a cofinal branch of TX not
in MX , then there is a bijection π : ω → ωMX

1 definable in the structure
〈MX , TX , b,∈〉, where 〈MX , TX ,∈〉 is the transitive collapse of X.

7.18 Definition. Φ+
♦ is the statement that for each A ⊆ ω1 there exists a

B ⊆ ω1 such that, letting TB = {0, 1}<ω1 ∩ L[B],

• A ∈ L[B],

• TB is weakly special,

• every branch of TB is in L[B].

7.19 Theorem. Axiom (∗) implies Φ+
♦ .

One consequence of Theorem 7.19 is that there are no weak Kurepa trees
(subtrees of {0, 1}<ω1 of cardinality ℵ1 with ℵ2 many cofinal branches) in
any Pmax extension.

8. Larger models

The forcing construction Pmax can be applied to larger models than L(R),
if they satisfy (ostensibly) stronger forms of determinacy.

8.1 Definition. A set of reals A is ∞-Borel if there exists a set of ordinals
S, an ordinal α and a binary formula φ such that

A = {y ∈ R | Lα[S, y] |= φ(S, y)}.

The ordinal Θ is defined to be the least ordinal which is not a surjective
image of R. The notion of continuity in the definition below refers to the
discrete topology on λ, not the interval topology. Dependent Choice (DC)
is a weak form of the Axiom of Choice saying that every tree of height ω
with no terminal nodes has a cofinal branch; DCR (Dependent Choice for
reals) is the restriction of DC to trees on the reals.

8.2 Definition. (ZF + DCR) AD+ is the conjunction of the following two
statements.

• Every set of reals is ∞-Borel.
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• If λ < Θ and π : λω → ωω is a continuous function, then π−1(A) is
determined for every A ⊆ ωω.

It is an open question whether AD implies AD+, though it is known that
AD+ holds in all models of AD of the form L(A,R), where A is a set of
reals (some of the details of the argument showing this appear in [8]).

The following consequences of AD+ are enough to prove that Pmax con-
ditions exist in suitable generality.

8.3 Theorem. (ZF + DCR) If AD+ holds and V = L(P(R)) then

• the pointclass Σ2
1 has the scale property,

• every Σ2
1 set of reals is the projection of a tree in HOD,

• every true Σ1-sentence is witnessed by a ∆∼
2
1 set of reals.

Adapting the proof of Theorem 4.12, then, we have the following.

8.4 Theorem. Suppose that Γ ⊆ P(R) is a pointclass closed under contin-
uous preimages and that L(Γ,R) |= DCR+AD+. Then for every set of reals
A in L(Γ,R) there is a Pmax precondition (M, I) such that

• A ∩M ∈ M ,

• 〈H(ω1)M , A ∩M,∈〉 ≺ 〈H(ω1), A,∈〉,
• (M, I) is A-iterable.

The corresponding parts of the proof of Theorem 5.1 then go through to
give the following.

8.5 Theorem. Suppose that Γ ⊆ P(R) is a pointclass closed under contin-
uous preimages such that L(Γ,R) |= DCR + AD+. Suppose that G ⊂ Pmax

is L(Γ,R)-generic. Then the following hold in L(Γ,R)[G]:

• P(ω1) = P(ω1)G,

• IG is the nonstationary ideal,

• δ∼
1
2 = ω2,

• IG is saturated.

If there is no surjection in L(Γ,R) from R × Ord onto Γ, then Γ is not
wellordered in the Pmax extension of L(Γ,R). Producing a model of Choice
then requires the following step, which appears with proof in [37] as Theorem
9.36. The statement ω2-DC says that <ω2-closed trees of height ω2 with no
terminal nodes have cofinal branches.
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8.6 Theorem. Suppose that Γ ⊆ P(R) is a pointclass closed under contin-
uous preimages such that L(Γ,R) |= DCR+AD+ +“Θ is regular”. Suppose
that G ⊂ Pmax is L(Γ,R)-generic. Then L(Γ,R)[G] |= ω2-DC.

The axiom ADR is the statement that all two player games of perfect in-
formation of length ω where the players play real numbers are determined.
This statement easily implies DCR and in the context of DC is properly
stronger than AD+. Theorem 8.7 below lists some properties of the Pmax

extension of a model of ADR plus “Θ is regular.” Many of the corresponding
proofs proceed by finding a Pmax condition satisfying axiom (∗) and satisfy-
ing the conclusion of Theorem 8.4 for a suitable set A. We emphasize that
part (1) of the conclusion of Theorem 8.7 says that in the Pmax extension
of L(Γ,R), L(P(ω1)) is a Pmax extension of L(R), not (merely) L(Γ,R).

Martin’s Maximum++(c) is the restriction of Martin’s Maximum++ to
partial orders of cardinality the continuum (which it implies is ℵ2). The
statement ♦ω(ω2) says that there is a sequence

{Aγ : γ < ω2 ∧ cf(γ) = ω}

such that each Aγ is a subset of γ and such that for every B ⊆ ω2, the
set of α < ω2 of countable cofinality such that B ∩ α = Aα is stationary.
Woodin shows in Section 5.2 of [37] that ♦ω(ω2) follows from Martin’s Max-
imum. Part (4) of the conclusion of Theorem 8.7 is due to Dan Seabold [26].
Chang’s Conjecture is the statement that for each function F : [ω2]<ω → ω2

there exists an X ⊆ ω2 of ordertype ω1 such that F [[X]<ω] ⊆ X (i.e., that
the set of subsets of ω2 of ordertype ω1 is stationary, in the sense of [19]). It
is an open question whether Chang’s Conjecture holds in the Pmax exten-
sion of L(R) whenever L(R) satisfies AD. This question has been resolved
(negatively) for Qmax (see Remark 10.7).

Parts (5), (6) and (7) of Theorem 8.7 show that Pmax can be used to
produce consistency results at ω2 as well as at ω1. We let NSω

ω2
denote the

nonstationary ideal on ω2 concentrating on the ordinals of cofinality ω. The
ideal NSω

ω2
is weakly presaturated if for every S ∈ P(ω2) \NSω

ω2
and every

function f : S → ω2 there exist a ordinal γ < ω3 and a bijection π : ω2 → γ
such that

{α ∈ S | f(α) < o.t.(π[α])} 6∈ NSω
ω2

.

A normal ideal I on ω2 is semi-saturated if whenever U is a set generic
V -normal ultrafilter on ω2 contained in P(ω2) \ I, Ult(V,U) is wellfounded.

Sections 9.6 and 9.7 of [37] contain stronger consistency results than parts
(4), (5) and (6) of Theorem 8.7, but merely stating these facts would take
us too far afield.

8.7 Theorem. Suppose that Γ ⊆ P(R) is a pointclass closed under con-
tinuous preimages such that L(Γ,R) |= ADR + “Θ is regular.” Suppose that
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G ⊂ Pmax is L(Γ,R)-generic, and let

H ⊆ Col(ω3,H(ω3))L(Γ,R)[G]

be an L(Γ,R)[G]-generic filter. Then the following hold in L(Γ,R)[G][H]:

1. Axiom (∗),
2. Martin’s Maximum++(c),

3. ♦ω(ω2),

4. Chang’s Conjecture

5. NSω
ω2

is precipitous,

6. NSω
ω2

is weakly presaturated,

7. there is a normal semi-saturated ideal on ω2 containing NSω
ω2

.

9. Ω-logic

In this section we will briefly describe the relationship between Pmax and
Woodin’s Ω-logic as presented in [37] (our presentation of Ω-logic, however,
will follow the one in [42]). Let T be a set of sentences and let φ be a
sentence, both in the language of set theory. Then T |=Ω φ (φ is ΩT -valid)
if for every forcing construction P and every ordinal α, if V P

α |= T then
V P

α |= φ. We will define below the conjectured proof-theoretic complement
to this model-theoretic notion.

A set of reals A is universally Baire if it is κ-universally Baire for all
cardinals κ (see Definition 7.4). Woodin has shown that if δ is a limit of
Woodin cardinals, then a set of reals is δ-universally Baire if and only if
it is <δ-weakly homogeneously Suslin (a proof is given in [19]). Given a
universally Baire set of reals A, a transitive model N of ZFC is said to be
A-closed if, whenever P is a partial order in N and G ⊂ P is V -generic (not
just N -generic), then N [G] ∩ A(G) is in N [G]. Lemmas 9.2 and 9.3 give
useful reformulations of A-closure, and are relatively easy to prove. The
proof of Lemma 9.2 uses the following fact, which will show up again in the
proof of Theorem 9.4 and in Section 10.1. For a proof of Theorem 9.1, see
page 516 of [9] or the appendix of [19].

9.1 Theorem. (McAloon) If P is a partial order and forcing with P makes
P countable, then P is forcing-equivalent to Col(ω, |P|).

Theorem 9.1 implies that that every partial order P regularly embeds
into Col(ω, |P|), which is forcing-equivalent to P× Col(ω, |P|).
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9.2 Lemma. Given a universally Baire set of reals A, a model M of ZFC
is A-closed if and only if for all ordinals γ ∈ M , the set of pairs (τ, p) ∈
H(|γ|+)M such that τ is a Col(ω, γ)-name in M for a real, p is a condition
in Col(ω, γ) and p forces in V that the realization of τ is in A(G) is in M .

Lemma 9.3 shows that for countable models, it is not necessary to con-
sider V -generic filters. The point is that, even without assuming the exis-
tence of large cardinals, if

• A is a universally Baire set of reals,

• M is a countable transitive model of ZFC,

• P is a partial order in M ,

• p is a condition in P , and

• τ is a P -name in M for a real number

then p forces in V that τG is in A(G) if and only if there exists (in V ) a
collection {Di : i < ω} of dense subsets of P such that τg ∈ A for every
M -generic filter g ⊂ P containing p and intersecting each Di.

9.3 Lemma. Let A be a universally Baire set of reals and let M be a count-
able transitive model of ZFC. Then M is A-closed if and only if for each
partial order P in M there exists (in V ) a collection {Di : i < ω} of dense
subsets of P such that M [G] ∩ A ∈ M [G] for every M -generic filter g ⊂ P
intersecting each Di.

Note that if A is the set of reals coding wellorderings of ω (under some
fixed recursive coding), then (expanding to the class of ω-models of ZFC)
A-closure is equivalent to wellfoundedness.

Let T be a theory containing ZFC and let φ be a sentence, both in the
language of set theory. Then T `Ω φ (T implies φ in Ω-logic) if there exists
a set of reals A such that

• L(A,R) |= DCR + AD+,

• every set of reals in L(A,R) is universally Baire,

• for every countable A-closed model M and every ordinal α ∈ M , if
V M

α satisfies T then V M
α satisfies φ.

A sentence φ is ΩZFC-consistent if ZFC 6`Ω ¬φ. The first two conditions
above ensure that the set of reals A is sufficiently canonical, and hold of all
universally Baire sets of reals in the presence of a proper class of Woodin
cardinals. The third condition says that A serves as a sort of proof of φ,
in the sense that φ holds in all models which are closed under a certain
function corresponding to A.
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The following theorem shows that statements which can be forced to
hold (along with ZFC) in suitable initial segments of the universe are ΩZFC-
consistent. Note that the proof shows the stronger fact that for every uni-
versally Baire set of reals A, all forceable statements hold in models N which
are A-closed in the stronger sense that N [G] ∩ A ∈ N [G] for all N -generic
filters G.

9.4 Theorem. Suppose that A is a universally Baire set of reals and that
κ is a strongly inaccessible cardinal. Then any forcing extension (in V ) of
any transitive collapse of any elementary submodel of Vκ containing A is
A-closed.

Proof. First note that A is universally Baire in Vκ. To see this, note that
for any partial order P in Vκ, if S and T are trees witnessing the universal
Baireness of A for P , then by taking a P -name τ in Vκ for all the reals of
the P -extension and then taking an elementary submodel (of a sufficiently
large H(θ)) of size less than κ containing {S, T} ∪ τ , the images of S and
T under the transitive collapse of this elementary submodel are in Vκ and
witness the universal Baireness of A for P .

Now let X be an elementary submodel of Vκ with A as an element, and
let M be the transitive collapse of X. Let P be a partial order in X, let
P̄ be the image of P under the transitive collapse of X, and let g ⊂ P̄ be
an M -generic filter. Let τ be a P -name in X for a partial order, and let τ̄
be the image of τ under the transitive collapse of X. We want to see that
whenever h ⊆ τ̄g is a V -generic filter, then M [g][h] ∩ A(g, h) is in M [g][h].
Let γ ∈ X ∩ κ be a cardinal greater than |P ∗ τ | and let S and T be trees
in X witnessing the universal Baireness of A for Col(ω, γ). Then S and T
project to complements in any forcing extension of V by either P ∗ τ or τ̄g.

Let σ be a τ̄g-name in M [g] for a real. Let S̄ and T̄ be the images of S
and T under the transitive collapse of X. Let h ⊆ τ̄g be V -generic. Then
σh is in exactly one of (p[S])V [h] and (p[T ])V [h], and by the elementarity of
the collapsing map, σh is in exactly one of (p[S̄])M [g][h] and (p[T̄ ])M [g][h].
Since (p[S̄])M [g][h] ⊆ (p[S])V [h] and (p[T̄ ])M [g][h] ⊆ (p[T ])V [h], and since
A(h) = (p[S])V [h], σh is in A(h) if and only it is in (p[S̄])M [g][h]. Putting all
of this together, we have that

M [g][h] ∩A(h) = (p[S̄])M [g][h],

which shows that M [g] is A-closed. a
Woodin has shown that the axiom (∗) is ΩZFC-consistent.

9.5 Theorem. Suppose that there exists a proper class of Woodin cardi-
nals and that there is an inaccessible cardinal which is a limit of Woodin
cardinals. Then the theory

ZFC + (∗)
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is ΩZFC-consistent.

The proof of Theorem 9.5 requires one to force (∗) over larger models than
L(R), in particular, models of the form L(S,R), where for some strongly
inaccessible limit of Woodin cardinals κ, S is a <κ-weakly homogeneous tree.
A proof that such models can satisfy AD+ appears in [19]. Note that it is not
known whether there are large cardinals whose existence implies that one
can force over V to make (∗) hold. Woodin has conjectured that (ordertype)
ω2 many Woodin cardinals are sufficient. Of course, if MM++ implies (∗)
(we discussed this question in Section 7) then one supercompact cardinal
is sufficient. Woodin’s Ω-conjecture asserts that if there exist proper class
many Woodin cardinals then for every sentence φ, ∅ |=Ω φ if and only if
∅ `Ω φ.

Recall that for a set x, x† is a set of the same cardinality as x coding a
theory extending ZFC + “there exists a measurable cardinal” with constants
for each member of x and for two classes of indiscernibles (above and below
the measurable cardinal). If there exist proper class many Woodin cardinals,
then the set D of reals coding (under some fixed recursive coding) pairs
(x, i), where x is a real number, i is an integer and i ∈ x† is universally
Baire. Any D-closed model M then has the property that for any set x, x†

exists in any forcing extension of M where x is countable, which since x† is
unique means that x† exists in M already (an easy way to say this uses the
fact that Col(ω, |x|) is homogeneous, though this is not necessarily the most
direct way). Thus for every ordinal α ∈ M , there exist an inner model N of
M containing V M

α (definable in M), an ordinal κ > α which is a measurable
cardinal in N and a set µ which is a κ-complete nonprincipal measure on
κ in N such that all iterates of N by µ are wellfounded. As in Example
1.6, then, if M is a D-closed model and I is a normal precipitous ideal on
ωM

1 in M , then every rank initial segment of M is a rank initial segment
of a model N such that (N, I) is iterable, and so (M, I) is also iterable.
Using this we have that every Π2 sentence for 〈H(ω2), NSω1 ,∈〉 which is
ΩZFC-consistent with the existence of a precipitous ideal on ω1 holds in the
Pmax extension. Using the canonical inner models for Woodin cardinals we
can do more, however. In the next few paragraphs we will sketch the proof
of Theorem 9.6 below.

We are going to need a number of facts from inner model theory. Un-
fortunately, we do not have a reference for the exact facts that we need
(though [32] is very close), which is why this is just a sketch. For each
set x, let M(x) denote the minimal model (i.e., sound, sufficiently iterable
premouse) of ZFC plus “there exists an ordinal λ which is a limit of Woodin
cardinals such that V #

λ exists.” This theory implies that R# is <λ-weakly
homogeneously Suslin, and so there exist in M(x) trees S and T on ω × λ
witnessing in M(x) that R# and its complement are λ-universally Baire.
Furthermore, from the point of view of V , S and T project to a subset
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of R# and a subset of R \ R#, respectively. The property of M(x) that
we need is the following: if δ is a Woodin cardinal in M(x) below λ, γ is
an ordinal below δ and y is a subset of ω, then there exist a partial order
P (this partial order was discovered by Woodin and is typically called the
extender algebra) of cardinality δ in M(x) and an elementary embedding
j : M(x) → M ′ with critical point greater than γ such that

• y is M ′-generic for j(P ),

• p[j(S)] ⊆ R#,

• p[j(T )] ⊆ R \ R#.

Furthermore, there is a canonical coding of M(x) by a set of integers when
x is itself a set of integers, giving rise to a universally Baire set B consisting
of the pairs (x, i) such that i is part of the code for M(x). A B-closed model
of ZFC then contains M(x) for every set x ∈ M .

Now let φ be a Π2 sentence for H(ω2) (of the form ∃X∀Y ψ(X, Y )) with
predicates for NSω1 and a given set of reals A in L(R). Let z be a real
number coding a given Pmax condition and a real which codes A relative to
R# (see the remarks before Theorem 7.5). Suppose that N is a countable B-
closed model of ZFC satisfying φ and containing z. Let x be a wellordering
of H(ω2)N in N . Then H(ω2)M(x) = H(ω2)N . Let γ be the least strongly
inaccessible cardinal in M(x) above the least Woodin cardinal. Let S and
T be trees in M(x) witnessing the λ-universal Baireness of R# and its
complement, where λ is the least limit of Woodin cardinals in M(x). We
want to see that whenever we make NSω1 precipitous by any forcing in
V

M(x)
γ (getting a generic filter g) and then iterate V

M(x)[g]
γ by NSω1 , we

iterate correctly for R#. Given this, if g is such a generic filter for a forcing
preserving stationary subsets of ω

M(x)
1 then V

M(x)[g]
γ is an A-iterable model

such that ∃Y ψ(X, Y ) holds in H(ω2)V M(x)[g]
γ for all X ∈ H(ω2)V M(x)

γ , and
by a density argument then, φ holds in the Pmax extension.

Towards a contradiction, choose a bad generic filter g and bad iteration
k. Let j : M(x) → M ′ be the embedding in the previous paragraph (with
critical point above γ) such that we can add g and k to M ′ by forcing with
the extender algebra for the image of the least Woodin cardinal in M(x)
above γ. Then M ′[g, k] has a bad iteration of V

M(x)[g]
γ in it, and by Lemma

1.4 this iteration extends to an iteration of M ′[g] (which we will also call
k), which means that

k(R# ∩ V M(x)[g]
γ ) = p[k(j(S))] ∩ k(V M(x)[g]

γ )

and
k((R \ R#) ∩ V M(x)[g]

γ ) = p[k(j(T ))] ∩ k(V M(x)[g]
γ ).



52 I. Forcing over models of determinacy

But j(S) and j(T ) are j(λ)-universally Baire in M ′, so they project to
complements in M ′[g, k]. Furthermore,

p[j(S)] ⊆ R#

and
p[j(T )] ⊆ R \ R#.

Since p[j(S)] ⊆ p[k(j(S))] and p[j(T )] ⊆ p[k(j(T ))], p[j(S)] = p[k(j(S))]
and p[j(T )] = p[k(j(T ))], contradicting that k is a bad iteration. This
argument shows the following.

9.6 Theorem. If there exists a proper class of Woodin cardinals, then
for every set of reals A in L(R), every ΩZFC-consistent Π2 sentence for
〈H(ω2), NSω1 , A,∈〉 holds in the Pmax extension of L(R).

Another strengthening of Theorem 0.2, using the absoluteness of R#, is
the following.

9.7 Theorem. Suppose that there exists a proper class of Woodin cardinals.
Then for every sentence φ, either ZFC `Ω L(R) |= φ or ZFC `Ω L(R) 6|= φ.

Since Pmax is a homogeneous forcing extension of L(R), this gives the
following.

9.8 Theorem. Suppose that there exists a proper class of Woodin cardinals.
Then for every sentence φ, either

ZFC + (∗) `Ω L(P(ω1)) |= φ

or
ZFC + (∗) `Ω L(P(ω1) 6|= φ.

Note that since R# is not in L(R), the Continuum Hypothesis (plus the
existence of R#) implies that L(P(ω1)) is not contained in a forcing exten-
sion of L(R). Moreover, Woodin has shown (see Theorem 10.183 of [37])
that if ψ is any sentence for which Theorem 9.8 holds with ψ in the place
of (∗), then ZFC + ψ implies in Ω-logic that the Continuum Hypothesis is
false.

10. Variations

The Pmax method is fairly flexible, and the partial order Pmax can be varied
in a number of ways. We present here two types of variations. The first
is an example of the utility of Pmax for manipulating ideals on ω1. The
second illustrates a method for producing extensions which are Π2-maximal
for H(ω2) relative to a fixed Σ2 sentence. Several other variations appear
in [37, 43]. Still others appear in [3, 17].
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10.1. Variations for NSω1

An ideal I on ω1 is ℵ1-dense if the Boolean algebra P(ω1)/I has a dense
subset of cardinality ℵ1. In unpublished work, Woodin showed that starting
from a huge cardinal one can force the existence of a normal ℵ1-dense ideal
on ω1. Shelah later showed [27] that, starting from a supercompact cardinal,
one can force that the nonstationary ideal restricted to a fixed stationary
subset of ω1 is ℵ1-dense. The Pmax variation Q∗max discussed here, when
applied to a model of the form L(R) satisfying AD, produces a model of ZFC
in which NSω1 is ℵ1-dense; by unpublished work of Woodin, this shows that
the Axiom of Determinacy and the ℵ1-density of NSω1 are equiconsistent.
To date, Pmax variations are the only known means for producing models
in which NSω1 is ℵ1-dense.

Using the result of Shelah mentioned above, the partial order Qmax below
can be used to obtain the ℵ1-density of NSω1 from a supercompact cardinal
below ω Woodin cardinals below a measurable. This hypothesis is not
optimal, but unlike with Q∗max, we can give all the details here (aside from
one argument, we have already done so).

By Theorem 9.1, the ℵ1-density of a σ-ideal on ω1 is witnessed by a
function from ω1 to H(ω1) of the following form.

10.1 Definition. Given a normal ℵ1-dense ideal I on ω1, YColl(I) is the set
of functions f : ω1 → H(ω1) satisfying the following conditions (where for
each p ∈ Col(ω, ω1) we let Sf

p = {α < ω1 | p ∈ f(α)} ):

• for each α < ω1, f(α) is a filter in Col(ω, 1 + α)

• for each p ∈ Col(ω, ω1), Sf
p 6∈ I,

• for each S ∈ P(ω1)/I, there exists a condition p ∈ Col(ω, ω1) such
that Sf

p \ S ∈ I.

10.2 Definition. The partial order Qmax consists of the set of pairs of the
form 〈(M, I), f〉 satisfying the following conditions:

1. M is a countable transitive model of ZFC◦,

2. I is a normal ℵ1-dense ideal on ωM
1 in M ,

3. (M, I) is iterable,

4. f ∈ (YColl(I))M .

The order on Qmax is as follows: 〈(N, J), g〉 < 〈(M, I), f〉 if M ∈ H(ω1)N

and there exists an iteration j : (M, I) → (M∗, I∗) such that

• j(f) = g,

• j, M∗ ∈ N ,
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• I∗ = M∗ ∩ J .

If 〈(M, I), f〉 is a Qmax condition, then by the normality of I in M , the
image of f under any iteration of (M, I) determines the entire iteration.

The only new argument we need to give in the Qmax analysis is the
following. The corresponding versions for iterating sequences of models and
for building descending ω1-sequences of conditions are essentially the same.

10.3 Lemma. Suppose that J is a normal ℵ1-dense ideal on ω1, and let g
be a function in YColl(J). Suppose that 〈(M, I), f〉 is a condition in Qmax.
Then there is an iteration j : (M, I) → (M∗, I∗) of length ω1 such that

• {α < ω1 | j(f)(α) 6= g(α)} ∈ J ,

• I∗ = M∗ ∩ J .

Proof. Note that the second conclusion follows from the first. Let

〈Mα, Gβ , jαδ : β < α ≤ δ ≤ ω1〉

be any iteration of (M, I) satisfying the condition that whenever β < ω1

is such that j0β(ωM
1 ) = β and g(β) is Mβ-generic for Col(ω, β), then Gβ

is the corresponding filter in P(ω1)Mβ /j0β(I), i.e., for each p ∈ Col(ω, β),
S

j0β(f)
p ∈ Gβ if and only if p ∈ g(β). It is immediate that Gβ is Mβ generic,

and that the choice of Gβ makes j0(β+1)(f)(β) = g(β). It remains to see that
the set of β < ω1 such that g(β) is not Mβ-generic for Col(ω, β) is in J . To
see this, let A be subset of ω1 coding 〈Mα, Gβ , jαδ : β < α ≤ δ ≤ ω1〉 under
some fixed recursive coding. Then for club many η < ω1, j0η(ω1)M = η and
〈Mα, Gβ , jαδ : β < α ≤ δ ≤ η〉 ∈ L[A ∩ η]. Every condition in P(ω1)/J
forces that (letting k be the induced elementary embedding) k(g)(ωV

1 ) is
a V -generic (and thus L[A]-generic) filter in Col(ω, ωV

1 ), which means that
the set of η < ω1 such that g(η) is not L[A ∩ η]-generic is in J . Since
Mη ∈ L[A ∩ η] for club many η, we are done. a

Theorem 4.9 plus the result of Shelah mentioned above gives the follow-
ing.

10.4 Theorem. Suppose that there exists a supercompact cardinal below
infinitely many Woodin cardinals below a measurable cardnal. Then for
every set of reals A in L(R) there exists a Qmax condition 〈(M, I), f〉 such
that

• A ∩M ∈ M ,

• (M, I) is A-iterable,

• 〈H(ω1)M , A ∩M,∈〉 ≺ 〈H(ω1, A,∈〉.
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The proof of the following is essentially the same as for Pmax. The ℵ1-
density of IG follows immediately from P(ω1) = P(ω1)G and the definition
of Qmax (letting IG and P(ω1)G have the definitions here analogous to those
used for Pmax).

10.5 Theorem. (ZF) Suppose that for every set of reals A there exists a
Qmax condition 〈(M, I), f〉 such that

• A ∩M ∈ M ,

• (M, I) is A-iterable,

• 〈H(ω1)M , A ∩M,∈〉 ≺ 〈H(ω1, A,∈〉.
Then Qmax is ω-closed and homogeneous. Furthermore, if G is an V -generic
filter for Qmax, then the following hold in V [G]:

• P(ω1) = P(ω1)G,

• NSω1 = IG,

• ψAC ,

• δ∼
1
2 = ω2,

• NSω1 is ℵ1-dense.

To obtain the ℵ1-density of NSω1 from the optimal hypothesis, we can
use the partial order Q∗max below. Conditions in Q∗max are similar to the
limit sequences used in the Pmax analysis. The utility of this approach here
is that the existence of Q∗max conditions does not require the existence of a
model with an ℵ1-dense ideal on ω1. The analyses of Q∗max and Qmax are
the same, once we show that Q∗max conditions exist in suitable generality.
Showing this, however, is beyond the scope of this chapter.

10.6 Definition. Q∗max is the set of pairs (〈Mk : k < ω〉, f) such that the
following hold.

1. The set f is a function from ωM0
1 to M0 in M0 such that for all

α < ωM0
1 , f(α) is a filter in Col(ω, 1 + α).

2. Each Mk |= ZFC◦.

3. Each Mk ∈ Mk+1.

4. For all k < ω, ωMk
1 = ωM0

1 .

5. For all k < ω, NS
Mk+1
ω1 ∩Mk = NS

Mk+2
ω1 ∩Mk.

6. The sequence 〈Mk : k < ω〉 is iterable.
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7. For each p ∈ Col(ω, ωM0
1 ), {α < ωM0

1 | p ∈ f(α)} 6∈ NSM1
ω1

.

8. For each k < ω and for each a ⊆ ωM0
1 such that a ∈ Mk \ NS

Mk+1
ω1 ,

there exists a p ∈ Col(ω, ωM0
1 ) such that

{α < ωM0
1 | p ∈ f(α)} ∩ (ωM0

1 \ a) ∈ NSMk+1
ω1

.

The ordering on Q∗max is given by letting

(〈Nk : k < ω〉, g) < (〈Mk : k < ω〉, f)

if 〈Mk : k < ω〉 ∈ H(ω1)N0 and there exists an iteration

j : 〈Mk : k < ω〉 → 〈M∗
k : k < ω〉

in N0 such that

• j(f) = g,

• NS
M∗

k+1
ω1 ∩M∗

k = NSN1
ω1
∩M∗

k for all k < ω.

Condition (5) above says that the models in the sequence need not agree
about stationary sets, but rather, each subset of ωM0

1 in each Mk which is
stationary in Mk+1 is stationary in all further Mj ’s. This extra degree of
freedom is essential in constructing Q∗max conditions without presupposing
the existence of Qmax conditions. Conditions (7) and (8) ensure that if

G ⊂
⋃
{P(ωM0

1 )Mk \NSMk+1
ω1

: k < ω}

is a
⋃{Mk : k < ω}-normal filter, then (letting j be the induced embedding)

j(f)(ωM0
1 ) is a filter in Col(ω, ωM0

1 ) meeting every dense set in each Mk,
and vice-versa: if g is a filter in Col(ω, ωM0

1 ) meeting every dense set in
each Mk, then there is a

⋃{Mk : k < ω}-normal filter G contained in⋃{P(ωM0
1 )Mk \NS

Mk+1
ω1 : k < ω} such that j(f)(ωM0

1 ) = g.

10.7 Remark. If Γ is a pointclass closed under continuous images such
that L(Γ,R) |= ADR + “Θ is regular”, then the Qmax extension of L(Γ,R)
satisfies Chang’s Conjecture. However, for consistency strength reasons one
cannot prove that Chang’s Conjecture holds in the Qmax extension of L(R)
from the assumption that AD holds in L(R) (see page 651 of [37]).

The utility of the Pmax approach for manipulating ideals on ω1 is applied
in other several ways in [37], notably to create a model in which the sat-
uration of NSω1 can be destroyed without adding a subset of ω1. In [?],
a variation of Pmax is used to produce a model in which the saturation of
NSω1 can be destroyed by forcing with a Suslin tree. As far as we know,
these results have not been reproduced by other methods.
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10.2. Conditional variations for Σ2 sentences

As we saw in Section 7, the Pmax extension of L(R) (assuming that there
exists a proper class of Woodin cardinals) satisfies all forceable Π2 sentences
for H(ω2) with parameters for NSω1 and sets of reals in L(R). In some cases,
one can fix a Σ2 sentence for this structure and produce a model satisfying
all Π2 sentences forceably consistent with it (and in some cases one cannot).
If φ is a Σ2 sentence of the form ∃A∀Bψ(A,B), where all quantifiers in ψ
are bounded, the optimal iteration lemma for φ is the following statement:
if

• M is a countable transitive model of ZFC◦,

• I is normal ideal on ωM
1 in M ,

• (M, I) is iterable,

• a ∈ H(ω2)M and H(ω2)M |= ∀bψ(a, b),

• H(ω2) |= ∃A∀Bψ(A,B),

• J is a normal ideal on ω1,

then there exists an iteration j : (M, I) → (M∗, I∗) of length ω1 such that

• I∗ = J ∩M∗,

• H(ω2) |= ∀Bψ(j(a), B).

Roughly, the optimal iteration lemma for φ says that given a countable
transitive iterable model of φ and a fixed witness for φ in this model, in
order to prove that there is an iteration of this model mapping this witness
to a witness for φ is V , we need assume only that φ holds in V . Since this
assumption is necessary, in the cases where the lemma holds, it is optimal.
In [29], the optimal iteration lemma is proved for the following sentences
(the first four of which are defined in [1]; we direct the reader to [29] for the
other two).

• The dominating number (d) is ℵ1.

• The bounding number (b) is ℵ1.

• The cofinality of the meager ideal is ℵ1.

• The cofinality of the null ideal is ℵ1.

• There exists a coherent Suslin tree.

• There exists a free Suslin tree.
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Given a Σ2 sentence φ as above, we can define the Pmax variation Pφ
max

as follows. Since φ may contradict MAℵ1 , we remove the requirement that
the models satisfy MAℵ1 and ensure the uniqueness of iterations directly
(alternately, we can usually replace MAℵ1 with ψAC). The partial order
Pφ

max is defined recursively on the ω1 of the selected model M .

10.8 Definition. The partial order Pφ
max consists of all pairs 〈(M, I), a, X〉

such that

1. M is a countable transitive model of ZFC◦,

2. I ∈ M and in M , I is a normal ideal on ω1,

3. (M, I) is iterable,

4. a ∈ P(ω1)M and H(ω2)M |= ∀bψ(a, b),

5. X ∈ M and X is a set (possibly empty) of pairs (〈(N, J), b, Y 〉, j) such
that

• 〈(N, J), b, Y 〉 ∈ Pφ
max ∩H(ω1)M ,

• j is an iteration of (N, J) of length ωM
1 such that j(J) = I∩j(N)

and j(b) = a,

• j(Y ) ⊆ X,

with the property that for each p ∈ Pφ
max there is at most one j such

that (p, j) ∈ X.

The order on Pφ
max is implicit in the conditions on X:

〈(M, I), a, X〉 < 〈(N, J), b, Y 〉

if there exists a j such that (〈(N, J), b, Y 〉, j) ∈ X.

For φ as above, we have games Gφ
ω and Gφ

ω1
which are strictly analogous

to the games Gω and Gω1 for Pmax.
For Gφ

ω , suppose that 〈(Ni, Ji) : i < ω〉 is an iterable pre-limit sequence
(in the sense of Pmax) and that there exists an a ∈ P(ω1)N0 such that
H(ω2)Ni |= ∀bψ(a, b) for each i < ω. Then given a normal ideal I on ω1

and a set E ⊂ ω1, we define Gφ
ω(〈(Ni, Ji) : i < ω〉, I, E) to be the following

game of length ω1 where Players I and II collaborate to build an iteration
of 〈(Ni, Ji) : i < ω〉 consisting of pre-limit sequences 〈(Nα

i , Jα
i ) : i < ω〉

(α ≤ ω1), normal ultrafilters Gα (α < ω1) and a commuting family of
embeddings jαβ (α ≤ β ≤ ω1), as follows. In each round α, let

Qα =
⋃
{P(ω1)Nα

i \ Jα
i : i < ω}.
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If α ∈ E, then Player I chooses a set A ∈ Qα, and then Player II chooses
a

⋃{Nα
i : i < ω}-normal filter Gα contained in Qα with A ∈ Gα. If α

is not in E, then Player II chooses any
⋃{Nα

i : i < ω}-normal filter Gα

contained in Qα. After all ω1 many rounds have been played, Player I wins
if H(ω2) |= ∀Bψ(j0ω1(a), B) and if Jω1

i = I ∩Nω1
i for each i < ω.

Similarly, given a Pφ
max condition p = 〈(M, I), a, X〉, a normal ideal J on

ω1 and a subset of ω1 E, we let Gφ
ω1

(p, J,E) be game of length ω1 where
players I and II collaborate to build a descending ω1-chain of conditions
pα = 〈(Mα, Iα), aα, Xα〉 (α < ω1) of Pφ

max conditions below p as follows.
In each round α, all pβ (β < α) have been defined. If α is a successor
ordinal (or 0), Player II chooses a condition pα < pα−1 (< p). If α is a limit
ordinal, then Player I picks a condition pα below each pβ (β < α). Then,
letting jαβ (α < β ≤ ω1) be the induced commuting family of embeddings
(and letting j be the embedding witnessing that p0 < p), Player I wins the
game if H(ω2) |= ∀Bψ(j0ω1(j(a)), B), and if for all α < ω1, jαω1(Iα) =
J ∩ jαω1(Mα).

The arguments in [29] show that ♦ implies that Player I has a winning
strategy in each game Gφ

ω(〈(Ni, Ji) : i < ω〉, I, E) and each game Gφ
ω1

(p, J,E)
for each of the sentences listed before Definition 10.8 (typically these argu-
ments are essentially the same as the proof of the corresponding optimal
iteration lemma).

The proof of the following theorem then is a straightforward generaliza-
tion of the arguments we have given for Pmax.

10.9 Theorem. Assume that AD holds in L(R). Let φ be an ΩZFC-consistent
Σ2 sentence for H(ω2). Suppose that the optimal iteration lemma for φ
holds, and that the following sentences are ΩZFC-consistent:

• for all iterable pre-limit sequences 〈(Ni, Ii) : i < ω〉 and for all normal
ideals I on ω1, Player I has a winning strategy in

Gφ
ω(〈(Ni, Ji) : i < ω〉, I, ω1);

• for all Pφ
max conditions p and for all normal ideals J on ω1, Player I

has a winning strategy in Gω1(p, J, ω1).

Let G ⊂ Pφ
max be L(R)-generic. Then in L(R)[G] the following hold:

• φ,

• P(ω1) = P(ω1)G,

• NSω1 = IG,

• NSω1 is saturated.
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Furthermore, for every set of reals A in L(R), L(R)[G] satisfies every Π2-
sentence for the structure 〈H(ω2), NSω1 , A,∈〉 which is ΩZFC-consistent
with φ.

The variation Pφ
max where φ asserts the existence of a coherent Suslin

tree is studied in [14, 18].
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