Ordering finite sets

Paul Larson

February 8, 2017

This note extracts combinatorial facts from Leo Harrington's construction of models of size \aleph_1 for counterexamples to Vaught's Conjecture, and the fact (essentially due to Hjorth) that his construction cannot be used to produce models of cardinality \aleph_2 .

Definition 0.1. Given a set X, a subset C of $[X]^{<\omega}$ is \subseteq -cofinal if every member of $[X]^{<\omega}$ is contained in a member of C.

Definition 0.2. We say that a wellordered sequence $\langle a_{\alpha} : \alpha < \beta \rangle$ is \subseteq -nondecreasing if there is no pair $\alpha < \delta$ below β such that $a_{\delta} \subseteq a_{\alpha}$.

Definition 0.3. Given $n \in \omega$ and a wellordered sequence $\overline{a} = \langle a_{\alpha} : \alpha < \beta \rangle$ of finite sets, we say that \overline{a} is *n*-good if it is \subseteq -nondecreasing and if for each $\gamma < \beta$, for all $s \in [\gamma + 1]^{n+1}$ there is a $t \in [\gamma + 1]^n$ such that each member of $\{a_{\alpha} : \alpha \in s\}$ is contained in a member of $\{a_{\alpha} : \alpha \in t\}$. A witness *s* to a wellordering not being *n*-good is an *n*-bad set

Clearly, $s \in [\gamma + 1]^{n+1}$ could equivalently be replaced with $s \in [\gamma]^{<\omega}$ in the definition of *n*-good. Another equivalent definition is the following : a wellordered \subseteq -nondecreasing sequence $\overline{a} = \langle a_{\alpha} : \alpha < \beta \rangle$ of finite sets is *n*-good if for each $s \in [\beta]^{n+1}$ such that the sets a_{α} ($\alpha \in s$) are pairwise \subseteq -incomparable, there is a $\gamma < \max(s)$ such that $|\{\alpha \in s \cap \max(s) : a_{\alpha} \subseteq a_{\gamma}\}| \geq 2$.

If $m < n \in \omega$ and \overline{a} is *m*-good, then it is *n*-good. Note that *n*-bad sets have size n + 1.

Proposition 0.1. There exists a \subseteq -nondecreasing sequence $\overline{a} = \langle a_{\alpha} : \alpha < \aleph_{\omega} \rangle$ such that

- for each $n \in \omega$ and each nonzero $\beta < \omega_{n+1}$, $\{a_{\alpha} : \alpha < \omega_n \cdot \beta\}$ is a \subseteq -cofinal subset of $[\gamma]^{<\omega}$, where $\gamma = \omega_n + \beta 1$ if $\beta < \omega$, and $\gamma = \omega_n + \beta$ otherwise;
- for each $n \in \omega$, $\overline{a} \upharpoonright (\omega_n + \omega_{n-1} + \cdots + \omega)$ is (n+1)-good.

Proof. For each $n \in \omega$, let a_n be n. Given $n \in \omega$ and nonzero $\beta < \omega_{n+1}$, we show how to extend from $\langle a_{\alpha} : \alpha < \omega_n \cdot \beta \rangle$ to $\langle a_{\alpha} : \alpha < \omega_n \cdot (\beta + 1) \rangle$, assuming that

- $\{a_{\alpha} : \alpha < \omega_n\}$ is a \subseteq -cofinal subset of $[\omega_n]^{<\omega}$;
- for some ordinal γ, {a_α : α < ω_n · β} is a ⊆-cofinal ⊆-nondecreasing subset of [γ]^{<ω} (necessarily of cardinality ℵ_n).

Fix a bijection $f_{\gamma} : \omega_n \to \gamma$, and for each $\alpha < \omega_n$, let $a_{(\omega_n \cdot \beta) + \alpha} = f[a_{\alpha}] \cup \{\gamma\}$. Then $\{a_{\alpha} : \alpha < \omega_n \cdot (\beta + 1)\}$ is a \subseteq -cofinal \subseteq -nondecreasing subset of $[\gamma + 1]^{<\omega}$.

The first conclusion of the claim can now be verified by induction. For the second, observe first that $\overline{a} \upharpoonright \omega$ is 1-good. Next, observe that if $\langle a_{\alpha} : \alpha < \omega_n \cdot \beta \rangle$ and $\langle a_{\alpha} : \alpha < \omega_n \cdot (\beta + 1) \rangle$ are as in the

construction above, and $\delta \leq \omega_n$ and $m, p \in \omega$ are such that $\langle a_{\alpha} : \alpha < \delta \rangle$ is *m*-good and $\langle a_{\alpha} : \alpha < \omega_n \cdot \beta \rangle$ is *p*-good, then $\langle a_{\alpha} : \alpha < (\omega_n \cdot \beta) + \delta \rangle$ is $\max\{m + 1, p\}$ -good, since any putative (m + 1)-bad set not contained in $\omega_n \cdot \beta$ can contain at most one element of $\omega_n \cdot \beta$, as $\{a_{\alpha} : \alpha < \omega_n \cdot \beta\}$ is \subseteq -directed. Arguing by induction, it follows from this that for each $n \in \omega$, $\overline{a} \upharpoonright \omega_n$ is (n + 1)-good, and moreover, that the second conclusion of the claim holds.

The following proposition shows why the proof of Proposition 0.1 doesn't show that initial segments of the form

$$\overline{a} \upharpoonright (\omega_n + \omega_{n-1} + \dots + \omega + 1)$$

are (n+1)-good.

Proposition 0.2. There is no 1-good sequence of length $\omega + 1$.

The condition of \subseteq -cofinality does not appear to be needed for the corresponding impossibility result, which can be proved by induction on $n \in \omega$.

Proposition 0.3. Every \subseteq -nondecreasing wellow dered sequence of finite sets of length $\omega_n + \omega_{n-1} + \cdots + 1$ has an (n + 1)-bad set.

Proof. We have seen this already for n = 0, so assume it for a given $n \in \omega$. Let

$$\langle a_{\alpha} : \alpha < \omega_n + \omega_{n-1} + \dots + 1 \rangle$$

be a \subseteq -nondecreasing sequence of finite sets. Let $s \subseteq [\omega_n, \omega_n + \omega_{n-1} + \cdots + 1)$ be an *n*-bad set for $\overline{b} = \langle a_\alpha : \omega_n \leq \alpha < \omega_n + \omega_{n-1} + \cdots + 1 \rangle$, and let $\eta < \omega_n$ be such that a_η is not contained in any member of \overline{b} . Then $\{\eta\} \cup s$ is an (n+1)-bad set. \Box