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Abstract

We develop technology for investigation of natural forcing extensions
of the model L(R) which satisfy such statements as “there is an ultra-
filter” or “there is a total selector for the Vitali equivalence relation”.
The technology reduces many questions about ZF implications between
consequences of the Axiom of Choice to natural ZFC forcing problems.

1 Introduction

In this paper, we develop technology for obtaining a certain type of consistency
results in Choice-less set theory, showing that various consequences of the Axiom
of Choice are independent of each other. We will consider consequences of a
certain syntactical form.

Definition 1.1. A Σ2
1 sentence Φ is tame if it is of the form

∃A ⊆ ωω ((∀~x ∈ (ωω)<ω ∃~y ∈ A<ω φ(~x, ~y)) ∧ (∀~x ∈ A<ω ψ(~x))),

where φ, ψ are formulas which contain only numerical quantifiers and do not
refer to A, but may refer to a fixed analytic subset of ωω as a predicate. The
formula ψ is called the resolvent of the sentence Φ. A resolvent is a formula
which is the resolvent of some tame sentence. A witness to a tame sentence of
the above form is a set A ⊆ ωω for which

(∀~x ∈ (ωω)<ω ∃~y ∈ A<ω φ(~x, ~y)) ∧ (∀~x ∈ A<ω ψ(~x))

holds.

∗2000 AMS subject classification 03E17, 03E40. Keywords : Axioms of Choice, ultrafilters
equivalence relations.
†Partially supported by NSF grant DMS-1201494.
‡Partially supported by NSF grant DMS-1161078.
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The tame Σ2
1 sentences form a syntactical class familiar from the general treat-

ment of cardinal invariants in [19, Section 6.1]. It is clear that many conse-
quences of Axiom of Choice are of this form:

Example 1.2. The following statements are tame consequences of the Axiom
of Choice:

1. there is a nonprincipal ultrafilter on ω. The resolvent formula is “
⋂

rng(~x)
is infinite”;

2. there is an infinite maximal almost disjoint family of subsets of ω. The
resolvent formula is “x0 ∩ x1 is finite”;

3. there is a maximal selector on a fixed analytic equivalence relation;

4. there is a Hamel basis for the space of real numbers;

5. there is an ω1 sequence of distinct reals;

6. there is an injection from [ω1]ω to ω1 × P(ω);

7. a fixed analytic hypergraph of finite arity has countable chromatic number.

A typical tame Σ2
1 sentence with resolvent ψ can be associated with a natural

partial order Pψ of countable approximations. Given a resolvent ψ, a ψ-set is
a set a ⊆ ωω such that ∀~x ∈ a<ωψ(~x) holds. We let Pψ be the partial order of
countable ψ-sets, ordered by reverse inclusion. Then Pψ is σ-closed and adds a
ψ-set A ⊆ ωω as a union of the generic filter. For many naturally arising tame
sentences Φ it is the case that Pψ forces the generic set A to be a witness for Φ.
We will say that A ⊆ ωω is a generic witness for Φ if it is obtained from a filter
on Pψ which is generic over L(R). Generic witnesses typically exhibit additional
properties which can no longer be provably obtained in ZFC. For instance, a
generic ultrafilter forced with countable approximations is a Ramsey ultrafilter,
and a generic injection from ω1 to 2ω is a surjection. Note also that the poset
Pψ depends only on the resolvent of the tame Σ2

1 sentence.
In the presence of large cardinals, it becomes natural to investigate the

model L(R)[A] to see how large a fragment of the Axiom of Choice holds in it.
The present paper provides technology for doing this. We show that questions
about the theory of the model L(R)[A] frequently reduce to rather interesting
ZFC forcing problems. As a result, we prove a variety of consistency results
regarding non-implications between tame consequences of the Axiom of Choice,
which are always verified by canonical models of the form L(R)[A].

Throughout the paper, the letters LC denote a suitable large cardinal as-
sumption; in all cases a proper class of Woodin cardinals is more than sufficient.
In some cases - the consistency of an E0-selector without a nonprincipal ultrafil-
ter on ω, for instance - a single strongly inaccessible cardinal is known to suffice,
but we have not pursued this systematically.

The first model we look at is the traditional canonical model with a non-
principal ultrafilter on ω. Todorcevic has shown that in the presence of large
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cardinals, every Ramsey ultrafilter is generic over L(R) for the partial order
P(ω)/Fin (see [5] and [10], for instance). The third conclusion of the following
theorem is due to Simon Thomas (personal communication). The various parts
of Theorem 1.3 are proved in Section 3.

Theorem 1.3. (ZFC+LC) Let U be a Ramsey utrafilter on ω. In the model
L(R)[U ],

1. there are no infinite MAD families;

2. the quotient space 2ω/E0 is linearly orderable, but the quotients 2ω/E2 and
(2ω)ω/F2 are not linearly orderable;

3. there are no Hamel bases for R and no transcendence bases for C;

4. there is no injection from [ω1]ω to ω1 × P(ω).

The model L(R)[U ] contains no total selectors for nonsmooth Borel equivalence
relations. Thus, it is interesting to look at models in which such selectors, gener-
ically added by countable approximations, exist. Pinned equivalence relations
are defined in Definition 4.1 below. Theorem 1.4 is proved in Section 4.

Theorem 1.4. (ZFC+LC) Let E be a pinned Borel equivalence relation on a
Polish space X, and let S ⊆ X be a generic total selector for E. In the model
L(R)[S],

1. there are no ω1 sequences of reals;

2. there are no infinite MAD families;

3. there are no nonatomic measures on ω;

4. there are no Hamel bases for R.

Since the models in the previous theorems do not contain any infinite MAD
families, we also study a model with a MAD family. It turns out to be difficult
to manage ordinary generic MAD families forced by countable approximations
and we need to resort to a notion of improved MAD family as in Definition 5.1.
Theorem 1.5 is proved in Section 5.

Theorem 1.5. (ZFC+LC) Let A be a generic improved maximal almost disjoint
family. In the model L(R)[A],

1. there are no ω1 sequences of reals;

2. there are no nonatomic measures on ω;

3. there are no total selectors for E0.
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The terminology used in the paper follows the set theoretic standard of [8].
A hypergraph on a set X is a set Z ⊆ Xn for some n ≤ ω. A coloring of
a hypergraph Z ⊆ Xn is a map c : X → Y whose fibers do not contain any
members of Z. The hypergraph has countable chromatic number if there is a
coloring c : X → ω. In the nomenclature of equivalence relations, we follow [6].
Thus, E0 is the relation on 2ω connecting x, y if the set {n ∈ ω : x(n) 6= y(n)}
is finite; E1 is the relation on (2ω)ω defined by the same formula; and =+ is
the equivalence relation on (2ω)ω connecting x, y if rng(x) = rng(y). A selector
for an equivalence relation E on X is a set which meets every equivalence class
in at most one point; a selector is total if it meets every equivalence class in
exactly one point. The E quotient space is the set of all E-equivalence classes. In
several places we consider the set of finite binary strings 2<ω with coordinatewise
binary addition as a group, which naturally acts on 2ω by coordinatewise binary
addition, and the action extends to an action on subsets of 2ω as well.

2 Independence

The key to the technology is the following definition.

Definition 2.1. Let Φ0,Φ1 be tame Σ2
1 sentences with respective resolvents

ψ0, ψ1. Let A0 and A1 be subsets of ωω. We say that A1 is (Φ0,Φ1)-independent
of A0 if there exists an infinite cardinal κ such that for every poset Q collapsing
κ to ℵ0, and for all Q-names τ0, τ1 for witnesses to Φ0 and Φ1 respectively
extending A0 and A1 (that is, agreeing on (ωω)V with A0 and A1 respectively)
there exist n ∈ ω and (in some generic extension) V -filters Gi ⊆ Q (i ∈ n) such
that

∀~x ∈
⋃
i

τ0/Gi ψ0(~x)

holds and
∀~x ∈

⋃
i∈n

τ1/Gi ψ1(~x)

fails.
We say that witnesses for Φ1 are Φ0-independent of A0 if every witness

A1 for Φ1 is (Φ0,Φ1)-independent of A0. Similarly, we say that witnesses for
Φ1 are independent of witnesses for Φ0 if every witness A1 for Φ1 is (Φ0,Φ1)-
independent of every witness A0 for Φ0.

The definition of independence may appear awkward, but many of its in-
stances are interesting ZFC problems which typically can be answered in ZFC.
The answers can be applied to evaluate the theory of various Choice-less generic
extensions of the model L(R) via the following central theorem.

Theorem 2.2. (ZFC) Assume that there exist proper class many Woodin car-
dinals. Suppose that Φ0,Φ1 are tame Σ2

1 sentences with respective resolvents
ψ0, ψ1. Let A0 ⊆ ωω be a Pψ0

-generic witness to Φ0. If, in V [A0], witnesses for
Φ1 are Φ0-independent of A0, then L(R)[A0] |= ¬Φ1.
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Proof. Work in the model V [A0]. Suppose towards a contradiction that L(R)[A0]
does contain a witness A1 ⊆ ωω for Φ1. In such a case, there must be a name
η ∈ L(R) such that A1 = η/A0. The name η is coded by a set Bη ⊆ ωω in L(R),
and some Pψ0

-condition contained in A0 forces that η is a witness for Φ1.
By the assumptions, A1 is independent of A0, as witnessed by some infinite

cardinal κ. Let δ be a Woodin cardinal greater than κ and |P |, and let Q<δ be
the countably based stationary tower at δ which, collapses κ to ℵ0 (see [11], for
instance). Let τ0 and τ1 be Q<δ-names for j(A0) and j(A1) respectively, where
j is the generic elementary embedding derived from forcing with Q<δ. In some
generic extension V [A0][G], there exist V -generic filters Gi ⊆ Q<δ (i ∈ n) such
that ∀~x ∈

⋃
i τ0/Gi ψ0(~x) holds while ∀~x ∈

⋃
i τ1/Gi ψ1(~x) fails.

By results (due to Woodin) in Chapter 3 of [11] (especially Exercise 3.3.18),
there exists in V [A0] a tree T on ω × γ, for some ordinal γ, such that

• p[T ] = Bη;

• j(T ) = T whenever j is an elementary embedding derived from forcing
with Q<δ;

• the model 〈L(R),∈ p[T ]〉 of V [A0] is elementarily equivalent to the same
structure computed in V [A0][G].

It follows that, in V [A0][G],
⋃
i τ/Gi is a ψ0-set forcing in Pψ0

that, for each
i ∈ n, τ1/Gi is a subset of the realization of the Pψ0 -name coded by p[T ].
However, this contradicts the choice of the filters Gi (i ∈ n).

3 Adding a Ramsey ultrafilter

The most commonly encountered model of the form L(R)[A] is the one obtained
by forcing an ultrafilter with countably generated approximations. It is not
difficult to see that the poset used is equivalent to the quotient algebra P(ω)
modulo finite. In [7] it is shown (assuming large cardinals) that every function
in L(R)[U ] from the ordinals to L(R) is in fact in L(R). In [4] the authors
show that L(R)[U ] satisfies the perfect set theorem for all sets of reals. It is also
known that a number of compact groups have the automatic continuity property
there (see [17]). On the other hand, any nonprincipal ultrafilter immediately
yields nonmeasurable sets and sets without the Baire property, so such sets will
exist in L(R)[U ]. To illustrate the extent of our ignorance about the properties
of the model, we state a bold open question:

Question 3.1. Does the model L(R)[U ] collapse any cardinalities of L(R)? I.e.
if X,Y ∈ L(R) are sets such that there is no injection of X to Y in L(R), does
the same hold in L(R)[U ]?

The question is particularly acute for the quotient spaces of countable Borel
equivalence relations, as the usual techniques for discerning them in L(R) cannot
work in L(R)[U ] due to the existence of a nonmeasurable set there.
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In order to apply the technology outlined above to the study of the model
L(R)[U ], we first need information about how ultrafilters are preserved under
multiple generic extensions.

Theorem 3.2. Let U be a nonprincipal ultrafilter. Suppose that n ∈ ω and for
each i ∈ n,

1. Pi is a poset in V , Ki ⊆ Pi is a generic filter over V , and U still generates
an ultrafilter in V [Ki];

2. Qi ∈ V [Ki] is a poset and τi ∈ V [Ki] is a Qi-name for an ultrafilter
extending U .

Whenever Hi ⊆ Q for i ∈ n are filters mutually generic over V [Ki : i ∈ n],⋃
i τ/Hi generates a nonprincipal filter.

Proof. By a genericity argument, it will be enough for every m ∈ ω, every tuple
〈qi : i ∈ n〉 ∈

∏
iQi and every tuple 〈ηi : i ∈ n〉 of Q-names in the respective

models V [Ki] such that qi 
 ηi ∈ τi, to find a number k > m and conditions
q′i ≤ qi so that q′i 
 ǩ ∈ ηi for each i ∈ n. To do this, for each i ∈ n let
ai = {k ∈ ω : ∃r ≤ qi r 
 k ∈ ηi} ⊆ ω. The set ai is in the model V [Ki] and
must belong to the ultrafilter U , since it is forced to be a superset of ηi, ηi ∈ τ
and τ is an ultrafilter extending U . Thus, the set

⋂
i ai must contain an element

k greater than m. Pick conditions q′i ≤ qi witnessing the fact that k ∈ ai; this
completes the proof.

The crudest features of the model L(R)[U ] can now be easily derived from
Theorem 2.2.

Theorem 3.3. (ZFC+LC) Let U be a Ramsey ultrafilter. In the model L(R)[U ],

1. there is no infinite MAD family;

2. there is no ω1 sequence of distinct reals.

As noted above, (2) is a special case of results from [7]: L(R)[U ] and L(R)
in fact have the same functions from the ordinals to L(R). We include a simple
proof of (2) as we will use the same idea later.

Proof. To prove (1), we will show that infinite MAD families are independent
of ultrafilters and then quote Theorem 2.2. The key feature of MAD families is
they are not preserved by mutually generic extensions the way ultrafilters are.

Claim 3.4. If A ⊆ P(ω) is an infinite MAD family, Q is any poset collapsing
2c, τ is a Q-name for a MAD family extending A, and Gi ⊆ Q for i ∈ 2 are
mutually generic filters over V , the set τ/G0 ∪ τ/G1 is not an AD family.
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Proof. Let U be a nonprincipal ultrafilter on ω with empty intersection with A,
let P be the usual c.c.c. poset adding a set ẋgen ⊆ ω which has finite intersection
with every set not in U . The poset P regularly embeds into Q and ẋgen becomes
a Q-name under a fixed embedding. There is a Q-name ẏ such that Q 
 ẏ∩ ẋgen
is infinite and ẏ ∈ τ . Note that by the choice of the ultrafilter U , ẏ is forced not
to be in V .

Let G0, G1 ⊆ Q be mutually generic filters. It will be enough to show that
ẏ/G0 ∈ τ/G0 has infinite intersection with ẏ/G1 ∈ τ/G1. To show this, go back
to V and suppose that q0, q1 ∈ Q are conditions and n ∈ ω is a number. By a
genericity argument, it is enough to find q′0 ≤ q0, q′1 ≤ q1 and m > n such that
q′0, q

′
1 both force m̌ ∈ ẏ. For this, consider the sets

a0 = {m ∈ ω : ∃q ≤ q0 q 
 m̌ ∈ ẏ}

and
a1 = {m ∈ ω : ∃q ≤ q1 q 
 m̌ ∈ ẏ}.

Since ẏ is forced to have an infinite intersection with the set ẋgen which has a
finite intersection with every set not in U , both sets a0 and a1 must be in U and
so there is a number m > n in their intersection. The proposition follows.

(1) now follows from Theorem 2.2, and Theorem 3.2 in the case V [K0] =
V [K1] = V .

The main point in (2) is that injections from ω1 to 2ω do not survive almost
any simultaneous generic extensions at all.

Claim 3.5. If Q0, Q1 are posets collapsing 2c and τ0, τ1 are respectively Q0, Q1-
names for a injections from ω1 to 2ω, then there are conditions q0 ∈ Q0 and
q1 ∈ Q1 such that for any pair G0 ⊆ Q0, G1 ⊆ Q1 of filters separately generic
over V and containing the conditions q0, q1 respectively, the set τ0/G0 ∪ τ1/G1

is not a function.

Proof. Note that the set of the ground model reals is forced to be countable
and so it is possible to find an ordinal α ∈ 2c, a number n ∈ ω, and conditions
q00 , q

1
0 ∈ Q0 such that q00 
 τ0(α)(n) = 0 and q10 
 τ0(α)(n) = 1. Let q1 ∈ Q1 be

a condition deciding the value of τ1(α)(n); say that the value is forced to be 1.
The conditions q0 = q00 ∈ Q0 and q1 ∈ Q1 obviously work as desired.

Theorem 3.2 in the case V [K0] = V [K1] = V now implies that ω1 sequences of
distinct reals are independent of ultrafilters. (2) then follows immediately from
Theorem 2.2.

A great deal of more sophisticated information about the model L(R)[U ] can
be extracted from the evaluation of chromatic numbers of Borel hypergraphs.
This will be done using the following general theorem:

Theorem 3.6. (ZFC+LC) Suppose that X is a Polish space, n ≤ ω, and
Z ⊆ Xn is a Borel hypergraph. Suppose that there exist a poset P and a P -
name ẋ for an element of X such that
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1. P preserves Ramsey ultrafilters;

2. for every p ∈ P , there exist in some generic extension (separately) V -
generic filters Ki ⊆ P (i ∈ n) containing the condition p, such that
〈ẋ/Ki : i ∈ n〉 ∈ Z is a sequence of distinct points.

Let U be a Ramsey ultrafilter on ω. Then in L(R)[U ], the hypergraph Z has
uncountable chromatic number.

Proof. We will show that the colorings of the hypergraph Z by ω colors are
independent of Ramsey ultrafilters and then use Theorem 2.2. Suppose that
U is a Ramsey ultrafilter, Q is a forcing collapsing 2|P |, τ is a Q-name for an
ultrafilter extending U , and σ is a Q-name for a coloring of the graph Z with
colors in ω. Since P regularly embeds into Q, ẋ becomes a Q-name via some
fixed embedding of P .

Suppose that q ∈ Q is an arbitrary condition. Strengthening q if necessary,
we may assume that q decides the value σ(ẋ) to be some specific number m ∈ ω.
Let p ∈ P be a condition stronger than the projection of q into P . Use (2) to
find filters Ki ⊆ P for i ∈ n separately generic over V (in a generic extension
V [Ki : i ∈ n] of V ) such that p ∈ Ki and 〈ẋ/Ki : i ∈ n〉 ∈ Z is a sequence of
distinct points. Let Hi ⊆ Q/Ki for i ∈ n be mutually generic filters over the
model V [Ki : i ∈ n] containing the condition q/Ki. Let Gi = Ki ∗ Hi ⊆ Q.
These are generic filters over V ; we claim that they work as desired.

First of all, it is clear that
⋃
i σ/Gi is not a coloring of the hypergraph Z: its

domain contains the points ẋ/Ki for i ∈ n which form a Z-edge, but they are still
assigned the same color. Second, the set

⋃
i τ/Gi generates a nonprincipal filter.

To see this, go to the model V [Ki : i ∈ n], note that U generates an ultrafilter in
the models V [Ki] (i ∈ n) by (1), and use Proposition 3.2 on V [Ki : i ∈ n].

The first observation about chromatic numbers in the model L(R)[U ] is that
many simple graphs have uncountable chromatic number in L(R) and countable
one in L(R)[U ]. The simplest example is the graph Z on 2ω connecting binary
sequences x, y if they differ in exactly one entry.

Observation 3.7. (ZF+DC) If there is a nonprincipal ultrafilter on ω then the
graph Z has chromatic number 2.

Proof. This is well known. Let U be a nonprincipal ultrafilter on ω. For every
x ∈ 2ω and every n ∈ ω let x[n] be the parity of the number

|{m ∈ n : x(m) = 1}|.

Let f(x) = 0 if the set {n ∈ ω : x[n] = 0} is in U , and f(x) = 1 otherwise. It is
not difficult to see that no two elements of 2ω connected by a graph edge have
the same f -value.

Many other Borel graphs remain uncountably chromatic in the model L(R)[U ]
though. This leads to a number of interesting results. Previous proofs of the
following theorem appear in [3, 12].
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Theorem 3.8. (ZFC+LC) In L(R)[U ], there is no total selector on E0.

Proof. Let Z be the graph on 2ω connecting points x, y if they are E0-related
and distinct. It is easy to observe in ZF+DC that if there is an E0 selector then
the graph Z has countable chromatic number. Thus, it is enough to show that
the graph Z has uncountable chromatic number in L(R)[U ], and for this it is
enough to produce a suitable partial ordering P and use Theorem 3.6.

Let P be the quotient partial ordering of Borel subsets of 2ω positive with
respect to the σ-ideal I generated by Borel E0-selectors, with the inclusion
ordering. Let ẋgen ∈ 2ω be the P -name for its canonical generic point. The
poset has been studied for example in [19, Section 4.7.1], where its combinatorial
form is provided and several properties isolated.

Claim 3.9. Every Ramsey ultrafilter generates an ultrafilter in the P -extension.

Proof. The poset P is proper and bounding by the results of [19, Section 4.7.1].
It does not add independent real by [16, Proposition 4.5]. The ideal I is Π1

1

on Σ1
1 (i.e., for every analytic set A ⊆ 2ω × 2ω, the set of y ∈ 2ω for which

{x ∈ 2ω : (y, x) ∈ A} ∈ I is coanalytic). The claim abstractly follows from these
properties by [19, Theorem 3.4.1].

Claim 3.10. For every condition p ∈ P , in some forcing extension there are
filters K0,K1 ⊆ P separately generic over V , containing the condition p such
that ẋgen/K0 Z ẋgen/K1.

Proof. Let p ∈ P be a condition. There must be a nonempty finite binary string
s ∈ 2<ω such that (s · p) ∩ p /∈ I since p \

⋃
{s · p : s ∈ 2<ω \ {∅}} is an Borel

E0-selector and therefore in the ideal I. Note that the map q 7→ s · q is an
automorphism of the partial ordering P . Thus, if K0 ⊆ P is a filter generic over
V , containing the condition (s · p)∩ p, then the filter K1 = s ·K0 is also a filter
generic over V and it contains the condition p. Also, ẋgen/K0 = s · ẋgen/K1

and so the two generic points obtained from the two filters are E0-related and
distinct as required.

A reference to Theorem 3.6 now concludes the proof.

As noted above, the following corollary of Theorem 3.8 is due to Simon
Thomas.

Corollary 3.11. (ZFC+LC) There is no Hamel basis for R or a transcendental
basis for C in the model L(R)[U ].

Proof. This is easiest to show using the following observations of independent
interest:

Observation 3.12. (ZF+DC) The following are equivalent:

1. there is a nonsmooth hyperfinite Borel equivalence relation with a total
selector;
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2. every hyperfinite Borel equivalence relation has a total selector.

Proof. Only (1)→(2) requires a proof. Suppose that E is a nonsmooth hyper-
finite Borel equivalence relation on a Polish space X with a total selector S.
Since there is a Borel relation on X which orders each E-equivalence class in
ordertype embeddable into Z [6, Theorem 7.2.4(iv)], one can use the selector S
to produce a function f : X → ω which is injective on every E-class. Now, let
F be any hyperfinite equivalence relation on a Polish space Y . There is a Borel
injective function h : Y → X which reduces F to E. Now let T be the set of
y ∈ Y for which f(h(y)) is the smallest number in f ◦ h′′[y]F , and observe that
T is a selector for F .

Observation 3.13. (Simon Thomas)(ZF+DC) If there is a Hamel basis for R
or a transcendental basis for C, then there is a total E0 selector.

Proof. To treat the case of Hamel basis, we will show that the existence of
a Hamel basis implies existence of a total selector for the Vitali equivalence
relation on R; this will complete the proof by Observation 3.12. Let B ⊆ R be
such a basis; rescaling, we may assume that the number 1 belongs to B. For
every nonzero r ∈ R there is a unique finite linear combination of reals in B\{1}
with nonzero rational coefficients whose result belongs to the Vitali class of r.
The set of results of these unique linear combinations for r ∈ R forms a total
selector for the Vitali equivalence relation.

To treat the case of a transcendental basis for C, first write K for the al-
gebraic closure of Q in C. Let E be the equivalence relation on C connecting
x and y if x − y ∈ K. Note that this is a nonsmooth hyperfinite equivalence
relation as it is an orbit equivalence of a continuous action of the abelian group
〈K,+〉 on C. We will show that the existence of a transcendental basis implies
the existence of an E-selector. Assume that B ⊆ C is a transcendental basis.
For every r ∈ C there is an inclusion smallest set br ⊆ R such that r belongs to
the algebraic closure of br. In some fixed enumeration of terms for the agebraic
closure, there must be a first term which, when applied to br, yields an element
cr of [rE ]. As before, the definition of cr does not depend on r itself but only
on its E-class, and therefore the set {cr : r ∈ R} is an E-selector as desired.

The proof is now concluded by reference to Theorem 3.8.

Woodin (Lemma 17 of [18]) has shown that, assuming ZF + DC + AD, there
is no injection from [ω1]ω to ω1×P(ω). His proof uses the following consequence
of AD : for any function f : [ω1]ω → P(ω), there is a club C ⊆ ω1 such that
f is constant on [C]ω. The arguments of [7] adapt to show that this partition
property persists to L(R)[U ]. The following theorem gives a different proof of
the noninjectivity of [ω1]ω into ω1 × P(ω) in L(R)[U ].

Theorem 3.14. (ZF + LC) In L(R)[U ] there is no injection from [ω1]ω to
ω1 × P(ω).
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Proof. Applying Theorem 2.2, it suffices to pass to a forcing extension V [G] of
V satisfying CH and having the same reals as V , and showing that, in V [G],
injections from [ω1]ω to ω1×P(ω) are Φ0-independent of U , where Φ0 is a tame
sentence corresponding to the existence of a nonpricipal ultrafilter on ω. Let
Q0 be Namba forcing, and let Q be a partial order making 2|Q0| countable. Let
τ0 be a Q-name for an ultrafilter extending U , and let τ1 be a Q-name for an
injection from [ω1]ω to ω1 × P(ω). Let σ be a Q-name for the the Nambda
generic element of [(ω2)V [G]]ω, using some regular embedding π of Q0 into Q
(we identify σ with the corresponding Q0-name in the last paragraph of the
proof). Let Q̇1 be a Q0-name such that Q0 ∗ Q̇1 is isomorphic to Q, via a map
extending π.

Suppose first that there is a condition q ∈ Q which forces τ1(σ) = (α̌, ř) for
some ordinal α and some r ⊆ ω in the V [G]. In this case, consider mutually
generic filters H0, H1 below q. Injectivity of τ1/G0∪τ1/G1 then fails at the pair
(α, r) since σ/G0 6= σ/G1, and τ0/G0 ∪ τ0/G1 is a filter by mutual genericity.

Suppose now that there is no such q. Then all conditions in Q force that
the value τ(σ) will be a pair (α, r) for some r not in V [G]. In such a case,
let K be a Namba generic filter over V [G]. Since forcing with Namba forcing
over a model of CH adds no reals, U is an ultrafilter in V [G][K]. Let H0 and
H1 be mutually V [G][K]-generic filters for Q̇1/K. Mutual genericity gives that
τ0/(K,H0) ∪ τ0/(K,H1) generates a filter, and that τ1/(K,H0) ∪ τ1/(K,H1) is
not a function, since it takes two different values at σ/K.

An interesting approach to discerning between Borel equivalence relations
in the model L(R)[U ] is to discuss the linear orderability of their associated
quotient spaces. In L(R), the quotient space 2ω/E0 fails to be linearly order-
able, and so the linear orderability of the quotient space fails for every Borel
nonsmooth equivalence relation in L(R). In the model L(R)[U ], the situation is
more nuanced:

Observation 3.15. (ZF+DC) If there is a nonprincipal ultrafilter on ω then the
class of equivalence relations for which the quotient space is linearly orderable
is closed under countable increasing unions.

Proof. Let U be a nonprincipal ultrafilter on ω. Let E =
⋃
nEn be an increasing

union of equivalence relations on a Polish spaceX, and suppose that the quotient
space of the relations En is linearly orderable for each n ∈ ω. Let ≤n be a linear
preordering on X such that the induced equivalence relation is exactly En. The
sequence of linear orders can be found as we assume DC. Let ≤ be a preordering
on X defined by x ≤ y if {n ∈ ω : x ≤n y} ∈ U . It is not difficult to verify that
≤ induces a linear ordering of E-classes.

For example, for equivalence relations such as E0 and E1 the quotient space is
linearly orderable in L(R)[U ] while no such linear orderings exist in L(R).

To show that various quotient spaces cannot be linearly ordered in the model
L(R)[U ], we will start with the summable equivalence relation E2. Recall that
this is an equivalence relation on 2ω connecting binary sequences x, y ∈ 2ω if∑
{ 1
n+1 : x(n) 6= y(n)} <∞.

11



Theorem 3.16. (ZFC+LC) In L(R)[U ], the E2 quotient space cannot be lin-
early ordered.

Theorem 3.16 follows from the more general Theorem 3.18 below. Let Z2 be
the set of x, y ∈ 2ω for which x E2 1− y.

Observation 3.17. (ZF) If the E2 quotient space is linearly orderable then the
graph Z2 has chromatic number two.

Proof. Let ≤ be a linear order on the E2 quotient space. Define the coloring c
on 2ω by letting c(x) = 0 if for every y ∈ 2ω such that x Z2 y, [y]E2

< [x]E2

holds; and c(x) = 1 otherwise. It is not difficult to see that c is a coloring of
Z2.

Now we will show the following.

Theorem 3.18. (ZFC+LC) In L(R)[U ], the chromatic number of Z2 is un-
countable.

Proof. Let ω =
⋃
n In be a partition of ω into successive intervals. Write Xn =

2In for every n ∈ ω and let X =
∏
nXn; the space X is naturally identified

with 2ω via the bijection π : x 7→
⋃
x from X to 2ω. Let dn be the metric on

Xn given by dn(u, v) =
∑
{ 1
m+1 : u(m) 6= v(m)}. Let µn be the normalized

counting measure on Xn multiplied by (n+ 1)2. The concentration of measure
computations on pages 42 and 138 of [9] show that the sequence 〈In : n ∈ ω〉 can
be chosen in such a way that for every n > 0 and every a, b ⊆ Xn of µn-mass
at least 1 there are binary strings u ∈ a and v ∈ b such that dn(u, v) ≤ 2−n.

Let pini be the tree of all finite sequences t such that for all n ∈ dom(t),
t(n) ∈ Xn. Finally, let P be the poset all all trees p ⊆ pini such that the
numbers {µ|s|({u ∈ X|s| : sau ∈ p}) : s ∈ p} converge to ∞ (i.e., such that, for
a each real number r and each node s0 ∈ p, there is an extesion s1 ∈ p of s0
such that, for all extensions s ∈ p of s1, µ|s|({u ∈ X|s| : sau ∈ p}) > r). The
ordering is that of inclusion.

The forcing P is of the fat tree kind studied for example in [1, Section 7.3.B]
or [19, Section 4.4.3]. It adds a generic point ẋgen ∈ 2ω which is the union of
the trunks of the trees in the generic filter. The following two claims are key.

Claim 3.19. The poset P preserves Ramsey ultrafilters.

Proof. The forcing properties of posets similar to P are investigated in [19,
Section 4.4.3]. [19, Theorem 4.4.8] shows that P is proper, bounding, and does
not add independent reals. The associated σ-ideal is Π1

1 on Σ1
1 by [19, Theorem

3.8.9]. Posets with these properties preserve Ramsey ultrafilters by [19, Theorem
3.4.1].

Claim 3.20. For every condition p ∈ P , in some forcing extension there are
filters K0,K1 ⊆ P which are separately generic over the ground model, with
p ∈ K0 ∩K1 and (ẋgen/K0) E2 (1− ẋgen/K1).

12



Proof. Let V [H] be a forcing extension in which P(P(ω))V is a countable set.
The usual fusion arguments for the forcing P as in [1, Section 7.3.B] show that
in V [H], there is a condition p′ ⊆ p in PV [H] such that all its branches yield P -
generic filters over the ground model. Let s0 ∈ p′ be a node such that all nodes
of p′ extending s0 have the set of immediate successors in p′ of submeasure at
least 1. For simplicity of notation assme that s0 = 0. By induction on n ∈ ω
build nodes sn, tn ∈ p′ so that

• t0 = s0 = 0, tn+1 is an immediate successor of tn and sn+1 is an immediate
successor of sn;

• writing un, vn ∈ Xn for the binary strings such that san un = sn+1 and
tan vn = tn+1, it is the case that dn(un, 1− vn) ≤ 2−n.

Once this is done, let K0 ⊆ P be the filter associated with
⋃
n sn and let K1 be

the filter associated with
⋃
n tn. These are branches through the tree p′, so the

filters K0,K1 are generic over the ground model. The second item immediately
implies that (ẋgen/K0) E2 (1− ẋgen/K1) as desired.

The induction step of the construction above is obtained as follows. Suppose
that tn, sn ∈ p′ have been found. Let

a = {u ∈ Xn : san u ∈ p′}

and
b = {v ∈ Xn : tan (1− v) ∈ p′}.

Then, µn(a), µ(b) are both numbers greater than 1, and therefore there are

u ∈ a and v ∈ b such that dn(u, v) ≤ 2−n. Setting sn+1 = san u and tan+1(1− v)
completes the induction step.

Now, in view of Theorem 3.6, colorings of the graph Z2 with countably many
colors are independent of Ramsey ultrafilters. In view of Theorem 2.2, the graph
Z2 has uncountable chromatic number in L(R)[U ].

Remark 3.21. Theorem 3.18 shows that in L(R)[U ], every nonprincipal ul-
trafilter on ω intersects the summability ideal (the set of x ⊆ ω for which∑
{ 1
n+1 : n ∈ x} is finite). Blass has conjectured (for instance, in a lecture in

Gainesville in February 2016) that the set of nonprincipal ultrafilters on ω in
L(R)[U ] is generated from U by isomorphism (i.e., permutations of ω) and the
sum operation

Y ⊕ 〈Wi : i ∈ ω〉 = {π[A] : A ⊆ ω×ω ∧ {i ∈ ω | {j ∈ ω : (i, j) ∈ A} ∈Wi} ∈ Y }

where Y and each Wi are taken to be nonprincipal ultrafilters on ω and π is a
bijection from ω × ω to ω. A related conjecture appears at the top of page 38
in [2].

Our next example is the equivalence relation =+ on (2ω)ω.

13



Theorem 3.22. (ZFC+LC) In L(R)[U ], the =+ quotient space cannot be lin-
early ordered.

Proof. Consider the graph Z on X = (2ω)ω connecting x, y if

{x(n) : n ∈ ω} = {1− y(n) : n ∈ ω}

and x =+ y fails.

Observation 3.23. (ZF) If the =+ quotient space is linearly orderable then the
graph Z has chromatic number two.

Proof. Let ≤ be a linear order on the =+ quotient space. Define the coloring
c on X by letting c(x) = 0 if for every y ∈ X such that x Z y, [y]=+ < [x]=+

holds; and c(x) = 1 otherwise. It is not difficult to see that c is a coloring of
Z.

Thus, it will be enough to use Theorem 3.6 to show that the chromatic
number of the graph Z is uncountable in L(R)[U ]. For this, we need to find
a suitable partial order. Let P be the countable support product of ω1 many
Sacks reals, yielding an ω1-sequence ẋgen . The following two claims are key:

Claim 3.24. Any Ramsey ultrafilter generates an ultrafilter in the P -extension.

Proof. The product of countably many copies Sacks forcing does not add an
independent real by [13]. It is also well-known to be proper, bounding and
definable, and so by [19, Theorem 3.4.1] every Ramsey ultrafilter generates a
Ramsey ultrafilter in the countable product extension. Every subset of ω in the
uncountable product extension comes from a countable product extension by a
properness argument, proving the claim.

Claim 3.25. For every condition p ∈ P , in some generic extension there are
V -generic filters K0,K1 ⊆ P containing the condition p, such that

rng(ẋgen/K1) = {1− z : z ∈ rng(ẋgen/K0)}.

Proof. First note that the involution z 7→ 1 − z on 2ω generates an automor-
phism on the Sacks poset, sending every condition s (viewed as an uncount-
able Borel set) to the set 1 − s of complements of points in s. Any involution
π : ω1 → ω1 generates an automorphism of the poset P , sending any condition
p to a condition π(p) whose domain is π′′dom(p) and for every α ∈ dom(p),
π(p)(π(α)) = 1− p(α). Finally, note that for this automorphism, if K ⊆ P is a
generic filter then rng(ẋgen/π

′′K) = {1− z : z ∈ rng(ẋgen/K)}.
Now, suppose p ∈ P is a condition. Write a = dom(p) ⊆ ω1; this is a

countable set. Let π be any involution of ω1 such that a ∩ π′′a = 0. The
conditions p and π(p) are then compatible, with a lower bound q. Let K0 ⊆ P
be a filter generic over V , containing the condition q. Let K1 = π′′K0 and check
that the filters K0,K1 work as desired.
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Note that the poset P does not literally add an element of the =+-quotient
space but only a code for an =+-class in a Coll(ω, ω1) extension. This does
not change anything in the proof of Theorem 3.6 and we can conclude that the
colorings of the graph Z with countably many colors are independent of Ramsey
ultrafilters. By Theorem 2.2, it follows that in the model L(R)[U ] the graph Z
has uncountable chromatic number and so the quotient space cannot be linearly
ordered.

We conclude this section with a natural question. [14] showed that there is
a simple Borel graph which is of uncountable chromatic number in L(R) and
minimal in the sense that it can be continuously homomorphically embedded
into any other uncountably chromatic graph in L(R). Does this situation repeat
in L(R)[U ]?

Question 3.26. Is there a Borel graph Z0 such that it has an uncountable
chromatic number in L(R)[U ], and it can be continuously homomorphically
embedded into every other Borel graph of uncountable chromatic number in
L(R)[U ]?

4 Adding selectors to equivalence relations

In this section, we investigate the model L(R)[S] where S ⊆ X is a total selector
on a fixed equivalence relation E on a Polish space X, which is added generically
by countable approximations. To prevent all of the Axiom of Choice from
creeping into the model, we will restrict our attention to a class isolated by
Kanovei:

Definition 4.1. An analytic equivalence relation E on a Polish space X is
pinned if for mutually generic filters G,H, every E-equivalence class represented
in both V [G] and V [H] is represented in V .

The restriction on the complexity of the equivalence relation E is necessary.
The standard example of an unpinned equivalence relation is =+ (as shown, for
instance, by Claim 3.25). We make the following simple observations:

Observation 4.2. (ZF) If there is an injection from the =+ quotient space into
2ω, then there is an injection from ω1 into 2ω.

Proof. The classical Cantor diagonalization argument shows that a selector for
=+ induces a choice function c on cocountable subsets of 2ω (other than 2ω

itself). Starting with a nonempty countable set of reals y, such a function c
induces an ω1-sequence of distinct elements defined by setting xα to be

c(2ω \ (y ∪ {xβ : β < α}).

Observation 4.3. (ZF+DC) If S ⊆ (2ω)ω is a generic total =+-selector, then
the model L(R)[S] satisfies the Axiom of Choice and the Continuum Hypothesis.
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Proof. The assumption of DC gives that L(R)[S]∩ 2ω is contained in L(R). We
will show that L(R)[S] contains an ω1-sequence 〈xα : α < ω〉 such that each
element of 2ω agrees mod-finite with some xα. This gives the desired result.

Let P be the poset of partial countable =+-selectors. Let 〈ẋα : α < ω1〉 be a
sequence of P -names for the sets xα from the proof of Observation 4.2, defined
using the generic =+-selector and letting y be the set of eventually constant
functions in 2ω. Let p be a condition in P , and let z be an element of 2ω. We
want to see that p has an extension forcing the value of some ẋα to be equal
to z mod-finite. Since L(R) does not contain an injection from ω1 to 2ω, there
is a least α such that the value of ẋα has not been decided. For each β < α,
let xβ be the value of ẋβ as decided by p. If z agrees mod-finite with some
ẋβ , then we are done. Otherwise, since p has not chosen an element of the
=+-class corresponding to y ∪ {xβ : β < α}, we may extend p to a condition p′

whose choice for this class is an enumeration 〈wn : n ∈ ω〉 whose diagonalization
{(n, 1− wn(n)) : n ∈ ω} is equal to z.

As in the previous section, the most important tool for the study of the model
L(R)[S] is a proposition showing how the selectors survive multiple forcing ex-
tensions.

Theorem 4.4. Suppose that E is a pinned analytic equivalence relation on a
Polish space X, S ⊆ X is a total E-selector, Q is a poset and τ is a Q-name for
an E-selector extending S. Whenever n ≤ ω and Gi ⊆ Q are pairwise mutually
generic filters over V for each i ∈ n, then

⋃
i τ/Gi is an E-selector.

Proof. This is essentially immediate from the definition of a pinned equivalence
relation, since there is no single E-equivalence class from which the different
selectors τ/Gi could pick distinct elements.

The crudest features of the model L(R)[S] immediately follow:

Corollary 4.5. (ZFC+LC) Let E be a pinned equivalence relation on a Polish
space X and S ⊆ X a generic total E-selector. In the model L(R)[S],

1. there are no infinite MAD families;

2. there are no injective ω1-sequences of reals.

Proof. For (1), use Claim 3.4 and Theorem 2.2. For (2), use Claim 3.5 and
Theorem 2.2.

As in the previous section, the finer properties of the model L(R)[S] follow
from the investigation of the chromatic numbers of Borel hypergraphs there.
This time, chromatic numbers of many graphs will be countable, and to make
progress we need to reach for hypergraphs of higher finite dimension.

Theorem 4.6. (ZFC+LC) Suppose that

1. E is a pinned Borel equivalence relation on a Polish space X;
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2. n ∈ ω is a natural number, Y is a Polish space and Z ⊆ Y n is a Borel
hypergraph;

3. there exist a poset P and a P -name ẏ for an element of Y such that for
every condition p ∈ P , in some generic extension there are filters Ki ⊆ P
for i ∈ n containing p, pairwise mutually generic over V , and such that
〈ẏ/Ki : i ∈ n〉 ∈ Z.

Then in the model L(R)[S], where S is the generic selector for E, the chromatic
number of Z is uncountable.

Proof. We prove that colorings of Z with countably many colors are independent
of total E-selectors and apply Theorem 2.2. Thus, let S ⊆ X be a total E-
selector, Q a poset collapsing 2|P | to ℵ0, σ a Q-name for a total E-selector
extending S, and τ a Q-name for a map from Y to ω which is a coloring of
the hypergraph Z. Note that P is regularly embedded into Q and therefore ẏ
becomes a Q-name via this fixed embedding. Let q ∈ Q be a condition deciding
the value of τ(ẏ) to be some specific number m ∈ ω. Let p ∈ P be a condition
below the projection of q into P . Use the assumptions to find, in some generic
extension, filters Ki ⊆ P for i ∈ n containing p, pairwise mutually generic
over V , and such that 〈ẏ/Ki : i ∈ n〉 ∈ Z. Let Hi ⊆ Q/Ki be filters mutually
generic over the model V [Ki : i ∈ n], each containing the condition q. Write
Gi = Ki ∗ Hi ⊆ Q for i ∈ n, and note that these filters are pairwise generic
over the ground model and contain the condition Q. We claim that they work
as desired.

First of all, the map
⋃
i∈n τ/Gi is not a partial coloring of the hypergraph Z,

since its m-th color contains the edge 〈ẏ/Gi : i ∈ n〉. Second, the set
⋃
i∈n σ/Gi

is a partial E-selector by Proposition 4.4. This completes the proof.

Theorem 4.7. (ZFC+LC) There are no nonatomic finitely additive probability
measures on ω in the model L(R)[S].

Proof. Consider the hypergraph Z on (P(ω))10 consisting of tuples ~y such that
every number in ω (with finitely many exceptions) belongs to at least one of the
sets ~y(i) for i ∈ 3 and at most two of the sets ~y(i) for 3 ≤ i < 10.

Observation 4.8. (ZF+DC) If there is a nonatomic probability measure on ω
then the hypergraph Z has chromatic number two.

Proof. Let µ be the measure and consider the coloring c assigning a set a ⊆ ω
color 0 if µ(a) < 1/3 and color 1 otherwise. No edge in the hypergraph Z can
contain only points of color 0 since the first three sets on the edge have co-finite
union which has to have µ-mass 1. At the same time, no edge on the hypergraph
Z can contain only points of color 1 since the last seven sets on the edge would
contradict the Fubini theorem between µ and the evenly distributed probability
measure on the set 10\3. Alternately, note that in this situation we would have
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the contradictory equation

µ(y3 ∪ · · · ∪ y9) =

9∑
i=3

µ(yi)−
∑
{µ(yi ∩ yj) : 3 ≤ i < j ≤ 9}.

Thus, it is enough to show that the hypergraph Z has uncountable chromatic
number in the model L(R)[S]. To this end, consider the poset P = 2<ω ordered
by reverse extension and let ẏ be the P -name for the set of all n ∈ ω such
that for some condition p in the generic filter, p(n) = 1. Let p ∈ P be an
arbitrary condition. Pass to a generic extension in which cV is countable; we
will produce filters Ki ⊆ P for i ∈ 10 such that 〈ẏ/Ki : i ∈ 10〉 ∈ Z and then
apply Theorem 4.6. Let Dk : (k ∈ ω) be an enumeration of the open dense
subsets of P × P from the ground model. Let π : ω → ω3 be a surjection. By
induction on n ∈ ω build numbers mn ∈ ω and maps qn : 10×mn → 2 so that

1. m0 = dom(p) and q0(i, j) = p(j) for every i ∈ 10;

2. m0 ≤ m1 ≤ m2 ≤ . . . and q0 ⊆ q1 ⊆ q2 ⊆ . . . ;

3. for every k ∈ mn+1 \mn, q(i, k) = 1 for at least on i ∈ 3 and at most two
i ∈ 10 \ 3;

4. if π(n) = 〈k, i, j〉 for some k ∈ ω and i 6= j ∈ 10, then qn+1 restricted to
the i-th and j-th column belongs to Dk.

The induction process is immediate. In the end, for every i ∈ 10 let Ki ⊆ P be
the filter generated by the maps qn(i, ·) for n ∈ ω and observe that these filters
work as required.

Theorem 4.9. (ZFC+LC) There are no Hamel bases for R in the model L(R)[S].

Proof. Consider the hypergraph Z on R3 consisting of triples 〈y0, y1, y2〉 of pair-
wise distinct real numbers such that y0 + y1 + q = y2 for some rational number
q ∈ Q.

Observation 4.10. (ZF+DC) If a Hamel basis for R exists then the hypergraph
Z has countable chromatic number.

Proof. Let B be a Hamel basis; rescaling, we may assume that it contains
number 1. Each number y ∈ R is equal to unique expression of the form

q +
∑
i∈n

qiri,

where q is a rational number, each qi is a nonzero rational number, and

r0 < r1 < · · · < rn−1
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are irrational numbers. Let f be a function on R defined by setting f(y) to be

〈q, q0, p0, q1, p1, . . . , pn−2, qn−1〉

where q and each qi are copied from the unique decomposition of y, and each
pi is the least rational number (in some fixed enumeration) between the corre-
sponding reals ri and ri+1. The linear independence of B over Q gives that no
edge in the graph can consist of three numbers with the same value of f .

Thus, it is enough to show that the hypergraph Z has uncountable chromatic
number in the model L(R)[S]. Towards this, we will find a suitable poset P and
apply Theorem 4.6. Let P be the poset of nonempty open subsets of R, ordered
by inclusion; this is the Cohen poset with its associated name for a generic point
ẏ ∈ R. The following claim is immediate:

Claim 4.11. If y0, y1 ∈ R are mutually generic points for P and q ∈ Q is a
rational number, then the triple y0, y1, y0 + y1 + q is pairwise mutually generic
for P .

Now, let p ∈ P be an arbitrary condition. Find pairwise generic filters
K0,K1 ⊆ P containing the condition p, find a rational number q ∈ Q such that
y2 = ẏ/K0 + ẏ/K1 + q ∈ p, and let K2 ⊆ P be the filter of all open subsets of R
containing the number y2. It is clear that the filters K0,K1,K2 ⊆ P satisfy the
assumptions of Theorem 4.6 and so the application of the theorem will complete
the proof.

An obvious question may be whether it is possible to discern between the
existence of selectors for various equivalence relations. In general, it is not clear
for which pairs E,F of Borel equivalence relations it is the case that in ZF+DC,
the existence of a total selector for E implies the existence of a total selector
for F . Already the case E = E0 and F = E1 appears to be open. We will prove
one result in this direction concerning trim equivalence relations:

Definition 4.12. An analytic equivalence relation E on a Polish space X is
trim if whenever V [G0], V [G1] are forcing extensions of the ground model such
that V [G0]∩V [G1] = V and x0 ∈ V [G0]∩X and x1 ∈ V [G1]∩X are E-related
points, then there is a point x ∈ V which is E-related to both.

There is a rich supply of trim equivalence relations as exhibited in [20]; one
interesting example (as shown in [20]) is the equivalence relation E on 2Q con-
necting points x, y if {q ∈ Q : x(q) 6= y(q)} is nowhere dense. We refer the
reader to [20] also for a definition of generic turbulence. For our purposes it is
enough to note that that generic turbulence is characterized by being induced
by a continuous action of a Polish group, with dense meager orbits, such that
Claim 4.14 below holds.

Theorem 4.13. Suppose that E is a Borel trim equivalence relation on a Polish
space X and F is an orbit equivalence relation of a generically turbulent group
action on a Polish space Y . The total F -selectors and independent of total
E-selectors.
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Proof. The key forcing consideration is the following. Let Gy Y be the group
action generating the equivalence relation E. Let PY be the Cohen poset of
nonempty open subsets of Y ordered by inclusion, adding a generic element
ẏgen ∈ Ẏ . Let PG be the Cohen poset of nonempty open subsets of G ordered

by inclusion, adding a generic element ġgen ∈ Ẏ . The following is an alternative
characterization of the turbulence of the action Gy Y :

Claim 4.14. PG × PY 
 V [ẏgen ] ∩ V [ġgen · ẏgen ] = V .

Let S be a total E-selector, Q a poset collapsing 2c to ℵ0, let τ be a Q-name
for an E-selector extending S, and let σ be a Q-name for a total F -selector. The
poset PY regularly embeds into the poset Q and so ẏgen becomes a Q-name.
Use Claim 4.14 to find filters K0,K1 ⊆ PY such that V [K0] ∩ V [K1] = V and
ẏgen/K0 F ẏgen/K1. Let H0 ⊆ Q/K0 and H1 ⊆ Q/K1 be filters mutually
generic over the model V [K0,K1] and let G0 = K0 ∗ H0 and G1 = K1 ∗ H1.
It is immediate that G0, G1 ⊆ Q are filters separately generic over V , with
V [G0] ∩ V [G1] = V . We claim that these filters work as required.

First of all, the set σ/G0∪σ/G1 is not an F -selector: σ/G0 contains some el-
ement of the class [ẏgen/G0]F and σ/G1 contains some element of this same class
as well, these two elements belong to the models V [G0] and V [G1] respectively
and so they cannot be equal. If they were equal, they would have to belong to
the ground model, which contradicts the fact that the class [ẏgen/K0]F has no
ground model elements.

On the other hand, the set τ/G0 ∪ τ/G1 is an E-selector: all E-equivalence
classes represented in both V [G0] and V [G1] are represented already in V by
the trimness of the equivalence relation E, and so already the common part S of
τ/G0 and τ/G1 selected an element from this class and the two selectors cannot
disagree on it.

Corollary 4.15. (ZFC+LC) Suppose that E is a Borel trim equivalence relation
on a Polish space X and F is an orbit equivalence relation of a generically
turbulent group action on a Polish space Y . Let S be a generic total E-selector.
Then in L(R)[S], the equivalence relation F has no total selector.

5 Adding MAD families

From Claim 3.4, it appears to be difficult to preserve MAD families with the
multiple generic extensions. We do not know how to handle the model L(R)[A],
where A ⊆ P(ω) is a generic MAD family added with infinitely countable ap-
proximations. We have to resort to adding a more specific type of MAD family,
which curiously enough has connections to the d < a problem (see [15], for
instance).

Definition 5.1. An improved AD family is a pair 〈A,B〉 such that

1. A is an infinite AD family in P(ω);
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2. B is a set consisting of pairs 〈s, a〉 such that s is a partition of ω into finite
sets and a ⊆ A is a countable set;

3. for every pair 〈s, a〉 ∈ B and every finite set b ⊆ A \ a, there are infinitely
many sets c ∈ s such that

⋃
b ∩ c = ∅.

An improved AD family 〈A,B〉 is maximal if A is a MAD family and for every
partition s there is a with 〈s, a〉 ∈ B.

Improved MAD families are naturally added by a poset of countable im-
proved AD families ordered by coordinatewise inclusion (note however that a
maximal pair 〈A,B〉 in this order - allowing A and B to be uncountable - is not
necessarily an improved MAD family, nor does the reverse implication hold). It
is easy to verify that if G is a generic filter on the poset of countable improved
AD families, then the coordinatewise union of conditions in G is an improved
MAD family. Moreover, the second coordinate can be recovered from the first
one by a genericity argument.

Proposition 5.2. If the Continuum Hypothesis holds, then there is an improved
MAD family. If d < a, then there is no improved MAD family.

Proof. If the Continuum Hypothesis holds, it is easy to produce a filter on the
poset of countable improved AD families which meets all the c = ℵ1 open dense
sets necessary to turn its union into an improved MAD family.

Towards the proof of the second sentence, it is enough to show that if 〈A,B〉
is an improved MAD family then |A| ≤ d. To this end, let {sα : α ∈ d} be
a collection of partitions of ω into finite sets such that for every other such
partition t there is α ∈ d such that every element of sα contains an element
of t as a subset. For every ordinal α ∈ d pick a countable set aα ⊆ A such
that 〈sα, aα〉 ∈ B and use (3) in the definition of an improved MAD family to
conclude that A =

⋃
α∈d aα. Thus, |A| ≤ d as desired.

As in the previous sections, we must show how improved MAD families
survive multiple forcing extensions. The following theorem will be sufficient for
all of our purposes. An extension V ′ of V is bounding if each element of ωω ∩V ′
is dominated by an element of ωω ∩ V .

Theorem 5.3. Suppose that

• 〈A,B〉 is an improved MAD family,

• n ∈ ω,

• V [Gi] (i ∈ n) are bounded forcing extensions of V contained in some
common extension V [G],

• Pi ∈ V [Gi] (i ∈ n) are posets

• for each i ∈ n, 〈Ȧi, Ḃi〉 ∈ V [Gi] is a Pi-name for an improved MAD family
extending 〈A,B〉.

21



Then, in some forcing extension, there are filters Hi ⊆ Pi (i ∈ n), each generic
over the respective V [Gi], such that 〈

⋃
i∈n Ȧi/Hi,

⋃
i∈n Ḃi/Hi〉 is an improved

AD family.

Proof. We will start with a key technical claim:

Claim 5.4. For every i ∈ n, in the model V [Gi] the following holds. Whenever
p ∈ Pi is a condition and σj (j ∈ m) are names for elements of Ȧi such that
p 
 σj /∈ V , there exists a k ∈ ω such that for each ` ∈ ω there exists a condition
q ≤ p such that q 


⋃
j∈m σj ∩ [k, `) = ∅.

Proof. Suppose that the claim fails for some i ∈ n, condition p ∈ Pi and names
σj for j ∈ m. Then, in the model V [Gi] there is a partition s of ω into finite
sets such that p 


⋃
j∈m σj ∩ b 6= 0 for every b ∈ s. Since V [Gi] is a bounding

extension of V , there is a partition t ∈ V of ω into finite sets, such that every
c ∈ t contains some element of s as a subset. Since 〈A,B〉 is an improved
MAD family, there is a countable a ⊆ A such that 〈t, a〉 is in B. Since 〈Ȧi, Ḃi〉
is a Pi-name for an improved MAD family extending 〈A,B〉, we now have a
contradiction with condition (3) of Definition 5.1.

Let V [G][H] be a forcing extension of V [G] in which each ordinal (2|Pi|)V [Gi]

is countable. An inductive application of the claim makes it possible to find
filters Hi ⊆ Pi (i ∈ m), each generic over the corresponding V [Gi], and a
partition ω =

⋃
i∈n,j∈ω aij of ω into finite sets such that

• for every i ∈ ω and every x ∈ Ȧi/Hi, either x ∈ A or x ⊆
⋃
j aij up to

finitely many exceptions;

• for every i ∈ ω and every collection {bk : k ∈ ω} ∈ V [Gi][Hi] of pairwise
disjoint subsets of ω, there are j, k ∈ ω such that bk ⊆ aij .

We claim that these filters work as required. Let

A′ =
⋃
i

τi/Hi

and
B′ =

⋃
i

Ḃi/Hi.

We must argue that 〈A′, B′〉 is an improved AD family.
First, prove that A′ is an almost disjoint family. To this end, suppose that

x, y ∈ A′ are distinct points; we must show that they have finite intersection.
The critical case is when there are numbers i, j, both in n such that x ∈ Ȧi/Gi\A
and y ∈ Ȧj/Gj \A. But then, x ⊆

⋃
k aik and y ⊆

⋃
k ajk with possibly finitely

many exceptions, the sets
⋃
k aik and

⋃
k ajk are disjoint, and so x ∩ y must be

finite.
Second, suppose that 〈s, a〉 ∈ B′ and b ⊆ A′ \ a is a finite set; we must find

infinitely many sets c ∈ s such that
⋃
b∩ c = ∅. Let i ∈ n be an index such that
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〈s, a〉 ∈ Ḃi/Hi. There are infinitely many c ∈ s such that
⋃

(b ∩ Ȧi/Hi) ∩ c = ∅
since 〈Ȧi, Ḃi〉 is forced to be an improved MAD family. By the second item
above, there must be infinitely many c ∈ s such that

⋃
(b ∩ Ȧi/Hi) ∩ c = ∅ and

c ⊆ aij for some j ∈ ω. By the first item above, there must be infinitely many

c ∈ s such that
⋃

(b ∩ Ȧi/Hi) ∩ c = ∅, and, for some j ∈ ω, c ⊆ aij and, for all

x ∈ b \ Ȧi/Hi, x ∩ aij = ∅. This completes the proof.

Theorem 5.5. Injective maps from ω1 to 2ω are independent of improved MAD
families.

Proof. Suppose that 〈A,B〉 is an improved MAD family, Q is a poset which
collapses 2c, and τ and σ are Q-names for an improved MAD family extending
〈A,B〉 and an injection from ω1 to ω respectively. Use Claim 3.5 to find con-
ditions q0, q1 ∈ Q such that for any two filters G0, G1 ⊆ Q generic over V and
containing the respective conditions q0, q1 , the union σ/G0∪σ/G1 is not a map
from ordinals to 2ω. Use Theorem 5.3 to find generic filters G0, G1 ⊆ Q such
that q0 ∈ G0, q1 ∈ G1, and τ/G0∪ τ/G1 is an improved AD family. This proves
the theorem.

Corollary 5.6. (ZFC+LC) In the model L(R)[A,B], where 〈A,B〉 is the generic
improved MAD family, there is no injection from ω1 to 2ω.

More sophisticated information about the model L(R)[A,B] can be obtained
by investigating chromatic numbers of Borel graphs.

Theorem 5.7. (ZFC+LC) Let Z be a Borel hypergraph of finite dimension on
a Polish space X. Then L(R) |= Z has countable chromatic number if and only
if L(R)[A,B] |= Z has countable chromatic number whenever 〈A,B〉 is a generic
improved MAD family.

Proof. The right-to-left implication is immediate as L(R) ⊆ L(R)[A,B] holds.
For the left-to-right implication, fix a natural number d. There is a certain
critical Borel graph Z0 on dω that needs to be investigated. To obtain the
graph Z0, pick sequences zn ∈ dn (n ∈ ω) so that {zn : n ∈ ω} is dense in d<ω,
and let Z0 be the set of 〈xi : i ∈ d〉 ∈ dω for which there exists an n ∈ ω such
that,

• for every i ∈ d, xi(n) = i and xi � n = zn hold, and

• the functions xi � (ω \ n+ 1) for i ∈ d are all the same.

It is known [14, Theorem 16] that in L(R), the graph Z0 has uncountable chro-
matic number and homomorphically continuously embeds into every other Borel
hypergraph of dimension d and uncountable chromatic number. Thus, for the
left-to-right implication it is only necessary to show that the graph Z0 has un-
countable chromatic number in the model L(R)[A,B].

To this end, it will be enough to find a bounding proper poset P and a
P -name ẋ for an element of dω such that for every condition p ∈ P , in some
generic extension there are filters Ki ⊆ P for i ∈ d, separately generic over V ,
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containing the condition p and such that 〈ẋ/Ki : i ∈ d〉 ∈ Z0. Once this is done,
the proof of Theorem 3.6 (with Theorem 5.3 replacing Theorem 3.2) shows that
colorings of Z0 with countably many colors are independent of improved MAD
families. A reference to Theorem 2.2 then concludes the proof.

The construction of the requisite poset P is routine. By recursion on k ∈ ω
choose natural numbers mk ∈ ω such that 0 = m0 ∈ m1 ∈ m2 ∈ . . . and for
every t ∈ dmk there is n ∈ mk+1 such that t ⊆ zn. The poset P consists of all
functions g whose domain is a coinfinite subset of ω and for each k ∈ dom(g),
g(k) ∈ dmk+1\mk . The ordering is that of reverse inclusion. Thus, the poset P is
a variation of the Silver forcing investigated in [1, Definition 7.4.11]. A routine
variation of the arguments given there (on page 368) shows that the poset P is
bounding and proper.

Let ẋ be a P -name for
⋃

rng(
⋃
K), where K is the generic filter. Then ẋ

is a P -name for a point in dω. We claim that the name ẋ has the required
properties. Indeed, whenever p ∈ P is a condition let k = min(ω \dom(p)), and
let n ∈ mk+1\mk be a number such that z =

⋃
l∈k p(l) ⊆ zn. Let ui ∈ dmk+1\mk

for i ∈ d be strings such that zn is an initial segment of z∪ui and ui(n) = i and
u(i)(m) = 0 for all i ∈ d and all n < m < mk+1. Let K ⊆ P be a filter generic
over V containing the condition p and get filters Ki ⊆ P for i ∈ d by adjusting
the conditions in K to return the value ui respectively at k. It is not difficult
to see that the filters Ki ⊆ P for i ∈ d are as required.

Corollary 5.8. (ZFC+LC) If 〈A,B〉 is a generic improved MAD family, then
in L(R)[A,B]

1. the E0 quotient space is not linearly orderable;

2. there is no Hamel basis for R;

3. there is no nonprincipal finitely additive measure on ω.

Proof. For (1), consider the Borel graph Z on 2ω connecting points x, y if x E0

1− y. It is clear that the Z-relation depends only on the E0-classes of x, y, that
modulo E0 every node has degree exactly 1, and so a presence of a linear ordering
on the E0 quotient space would imply that a Z has chromatic number two.
Now, the graph Z has uncountable chromatic number in L(R) (say, by a Baire
category argument), so it has uncountable chromatic number in L(R)[A,B] by
Theorem 5.7 and so the E0 is not linearly orderable there. (2) follows from
Observation 4.10. (3) follows from Observation 4.8 and Theorem 5.7.

We conclude this section with another natural question:

Question 5.9. Is there an ω-dimensional Borel hypergraph which is uncount-
ably chromatic in L(R) and countably chromatic in the model L(R)[A,B]?
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[19] Jindřich Zapletal. Forcing Idealized. Cambridge Tracts in Mathematics
174. Cambridge University Press, Cambridge, 2008.
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