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Abstract

The canonical function game is a game of length ω1 introduced by W.
Hugh Woodin which falls inside a class of games known as Neeman games.
Using large cardinals, we show that it is possible to force that the game
is not determined. We also discuss the relationship between this result
and Σ2

2 absoluteness, cardinality spectra and Π2 maximality for H(ω2)
relative to the Continuum Hypothesis.

MSC2000: 03E60; 03E50, 03D60

The canonical function game, introduced by W.H. Woodin, is a game of
perfect information of length ω1 between two players, whom we call Dominating
and Undominated. In each round α, Undominated plays a countable ordinal
u(α), and then Dominating plays σα, a wellordering of α of ordertype greater
than u(α) (if α ≥ ω; when α is finite we require only that σα is a wellordering
of α; the first ω moves are irrelevant to the outcome of the game). After all ω1

rounds have been played, Dominating wins the run of the game if and only if
there exists a club C ⊂ ω1 such that σα = σβ ∩ (α× α) for all α < β in C.

Given an ordinal γ ∈ [ω1, ω2), a canonical function for γ is a function
f : ω1 → ω1 for which there exists a bijection π : ω1 → γ such that the set
{α < ω1 | f(α) = o.t.(π[α])} contains a club subset of ω1. Any two canonical
functions for the same ordinal agree on a club. Futhermore, if γ < γ′ are or-
dinals in [ω1, ω2), f is a canonical function for γ and f ′ is a canonical function
for γ′, then f ′ > f on a club. If 〈(u(α), σα) : α < ω1〉 is a run of the canonical
function game and C ⊂ ω1 is a club witnessing that Dominating wins this run
of the game, then Σ = ∪{σα : α ∈ C} is a wellordering of ω1, and the func-
tion f : ω1 → ω1 defined by letting f(α) be the ordertype of σα is a canonical
function for the ordertype of Σ.

∗The research in this paper was conducted while the author was a guest of the Fields
Institute, and the writing was completed with the support of a FAPESP fellowship (Grant #
02/11551-3) at the University of São Paulo.
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We let Bounding denote the statement that every function from ω1 to ω1 is
dominated by a canonical function on a club. If Bounding fails, then Undomi-
nated has a simple winning strategy in the canonical function game: he plays so
that u : ω1 → ω1 is any function which is not dominated by a canonical function
on a a club. Deiser and Donder [1] have shown Bounding to be equiconsistent
with a strongly inaccessible limit of measurable cardinals.

In this paper we will show that the canonical function game is consistently
undetermined, assuming the consistency of a strongly inaccessible limit of mea-
surable cardinals. Part of the significance of this result is its relation to a class
of games known as Neeman games. There are only countably many Neeman
games, one for each n-ary formula φ (for some integer n) in the expanded lan-
guage with one unary predicate. Given such a pair n, φ, the Neeman game
Gφ is a game of length ω1 where players I and II collaborate to build a func-
tion a : ω1 → {0, 1}, with I picking a(0), II picking a(1) and so on, with I
picking a(γ) for each limit ordinal γ. After a has been constructed, I wins if
and only if there exists a club C ⊂ ω1 such that for all α1 < · · · < αn in C,
〈H(ω1), a,∈〉 |= φ(α1, . . . , αn). For a given integer n, an n-ary Neeman game
is the Neeman game corresponding to some n-ary formula. The canonical func-
tion game can easily be recast as a binary Neeman game, with Dominating as I
and Undominated as II (the fact that the players play in the opposite order in
the two games is not important). In contrast to the main result of this paper,
Neeman has shown that the existence of an iterable model with indiscernible
Woodin cardinals implies that all unary Neeman games are determined [6].

If B is a set of reals, we define the B-Neeman game GB,φ, where φ is an n-ary
formula in the expanded language with two unary predicates, by saying that I
wins if and only if there exists a club C ⊂ ω1 such that for all α1 < · · · < αn in
C, 〈H(ω1), a, B,∈〉 |= φ(α1, . . . , αn). Woodin has connected the determinacy of
Neeman games to the question of Σ2

2-absoluteness with the following result.

Theorem 0.1. (Woodin) Suppose that these exists a proper class of supercom-
pact cardinals. Let Γ denote the set of all universally Baire sets of reals. The
following are equivalent.

• For each B ∈ Γ, ZFC + 3G implies in Ω-logic that all B-Neeman games
are determined.

• For each B ∈ Γ and for every unary Σ2
2 formula φ, ZFC + 3G implies

exactly one of φ(B) and ¬φ(B) in Ω-logic.

Here 3G (called generic Diamond) is the statement that for each Σ2 sentence
φ for H(ω2), φ holds if and only if Coll(ω1,R) forces φ; this is a strong form
of 3. We refer the reader to [9] for the definitions of Ω-logic and universally
Baire sets of reals, which are not used in this paper (though we note that if
T implies φ in Ω-logic, then T + ¬φ cannot be forced to hold in a rank initial
segment of the universe). Again, the main results in this paper imply that some
hypothesis beyond ZFC is required to imply the determinacy of all Neeman
games in Ω-logic. Since 3 implies that Bounding fails, the canonical function
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game is not a counterexample to 3G implying the determinacy of all Neeman
games in Ω-logic, however.

The canonical function game and Theorem 0.1 were presented by Woodin
in his talk Beyond Σ2

1 absoluteness, given June 2, 2002 at the Association for
Symbolic Logic Annual Meeting at the University of Nevada, Las Vegas (see
also [10]). Theorem 1.1 and Corollary 1.4 of this paper answer two questions
asked in that talk.

1 Indeterminacy of the canonical function game

Theorem 1.1. Dominating does not have a winning strategy in the canonical
function game.

Proof. Fix a strategy τ for Dominating. We will construct two plays of the
canonical function game such that each is a play by τ and yet Dominating loses
at least one of the two plays.

Our two runs of the game will be conducted on boards labelled a and b, and
we will use Dominating(a), Undominated(a), ua and σa

α to describe one run,
and Dominating(b), Undominated(b), ub and σb

α to describe the other.
Let A be a stationary, co-stationary subset of ω1. For each round α, having

built both plays up to round α, if α is in A then we let ua(α) = 0 and let σa
α

be the move given by τ for the partial play defined so far on board a. Then we
let ub(α) = o.t.(σa

α) + 1, and let σb
α be the move given by τ to the partial play

given so far on board b. If α is not in A, then we reverse the roles of a and b.
That is, we let ub(α) = 0 and let σb

α be the move given by τ for the partial play
defined so far on board b, then we let ua(α) = o.t.(σb

α) + 1 and we let σa
α be the

move given by τ to the partial play given so far on board a.
The essential point is that, having completely constructed both plays in this

manner,
{α < ω1 | o.t.(σa

α) > o.t.(σb
α)}

and
{α < ω1 | o.t.(σa

α) < o.t.(σb
α)}

are both stationary subsets of ω1. Now, if C and D are club subsets of ω1 such
that

∀α, β ∈ C α < β ⇒ σa
α = σa

β¹α
and

∀α, β ∈ D α < β ⇒ σb
α = σb

β¹α,
then by taking the intersection of C andD we may assume that C = D. Further,

Σa =
⋃
{σa

α | α ∈ C}

and
Σb =

⋃
{σb

α | α ∈ C}
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both define wellorderings of ω1. Now, if o.t.(Σa) < o.t.(Σb), then for club
many α ∈ C, o.t.(Σa¹α) < o.t.(Σb¹α). However, this is false, since for each
α ∈ C, Σa¹α = σa

α, and Σb¹α = σb
α. The relations o.t.(Σa) > o.t.(Σb) and

o.t.(Σa) = o.t.(Σb) are similarly contradictory.

Next we will see that is it consistent that Undominated fails to have a winning
strategy. First we will show that if there exists a measurable cardinal, then for
any strategy τ for Undominated there is a semi-proper forcing adding a run of
the canonical function game where Dominating wins and Undominated plays by
τ . This implies in particular that Martin’s Maximum [3] plus the existence of a
measurable cardinal implies that the canonical function game is undetermined.
Furthermore, we will see that the indeterminacy of the canonical function game
can be forced from a strongly inaccessible limit of measurable cardinals.

Given a strategy τ for Undominated in the canonical function game, let Pτ

be the forcing which adds a run of the game where Undominated plays by τ .
The conditions in Pτ are countable partial runs of the game where Undominated
plays by τ and Dominating was the last to play. The order is extension. Note
that Pτ is countably closed. If p is a condition in Pτ , we let l(p) denote the
length of p, and we let τ(p) be the response to p given by τ .

Given a cardinal κ, let Qκ be the set of pairs (c, h) such that

• c is a closed, bounded subset of ω1,

• h is an injective function from max(c) to κ.

Still fixing τ and κ, let PQτ
κ be the partial order consisting of triples (p,c,h)

such that

• p = 〈(u(α), σα) : α < l(p)〉 ∈ Pτ ,

• (c, h) ∈ Qκ,

• l(p) > max(c),

• for all α, β ∈ c, α < β implies that σα = σβ¹α,

• for all α, β ∈ max(c), if α 6= β then (α, β) ∈ σmax(c) ⇔ h(α) < h(β).

We say that (p, c, h) ≥ (p′, c′, h′) if p′ extends p, c′ end-extends c and h ⊂ h′.
Suppose that κ is a cardinal and τ is a strategy for Undominated. Given

that PQτ
κ preserves ω1, which we will show in the case when κ is measurable, it

follows by genericity that PQτ
κ adds a run of the canonical function game where

Undominated plays by τ and Dominating wins.
Let µ be a normal measure on κ. Fix a regular cardinal θ > 2κ and let

X ≺ H(θ) be countable with µ, τ ∈ X. A condition p∗ ∈ Pτ is X-generic if for
all α ∈ X ∩ ω1, p∗¹α is in X, and each dense subset of Pτ in X has some p∗¹α
(α ∈ X∩ω1) as a member. Likewise, a triple (p∗, c∗, h∗) ∈ Pτ ×Qκ is X-generic
if for each α ∈ X ∩ ω1,

(p∗¹(α+ 1), c∗ ∩ (α+ 1), h∗¹α) ∈ PQτ
κ ∩X,
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and each dense open subset of PQτ
κ in X contains (p∗¹(α+1), c∗∩(α+1), h∗¹α)

for some α ∈ X ∩ ω1. Note that we do not require that (p∗, c∗, h∗) ∈ PQτ
κ (i.e.,

we define genericity even for triples which are not conditions in PQτ
κ).

Still fixing X and µ, let AX
µ =

⋂
(X ∩ µ). It is a standard fact that if

E ⊂ AX
µ , then

XE = {f(a) | f : [κ]<ω → H(θ) ∧ f ∈ X ∧ a ∈ [E]<ω}

is an elementary submodel of H(θ) containing X and end-extending X below κ
(see, for instance, [4]). Whenever E is countable, we will call any such model
XE a µ-extension of X.

Lemma 1.2. Let µ be a normal measure on a cardinal κ and let τ be a strategy
for Undominated in the canonical function game. Fix a regular cardinal θ > 2κ

and let X ≺ H(θ) be countable with µ, τ ∈ X. Let δ = X ∩ ω1. Let p∗ be an
X-generic condition in Pτ . Then for every µ-extension Y of X and for every
pair (c, h) ∈ Y ∩Qκ such that

(p∗¹(max(c) + 1), c, h) ∈ PQτ
κ

there exists a pair (c∗, h∗) ∈ Qκ such that c∗ end-extends c, h ⊂ h∗ and
(p∗, c∗, h∗) is Y -generic.

Furthermore, if o.t.(Y ∩ κ) > τ(p∗), then (c∗, h∗) can be chosen so that

((p∗)_(τ(p∗),
⋃
{σα : α ∈ c∗}), c∗ ∪ {δ}, h∗) ∈ PQτ

κ.

Proof. Fix µ, κ, τ, θ,X, δ and p∗ as given. Let E ⊂ AX
µ be countable and let

Y = XE . Fix (c, h) as in the statement of the lemma. We will build c∗ and
h∗ by approximations ck, hk in Y . Let c0 = c and h0 = h. Let Dk (k < ω)
enumerate the dense subsets of PQτ

κ in Y . Given ck and hk, we will find ck+1

and hk+1 in Y extending ck and hk such that

(p∗¹(max(ck+1) + 1), ck+1, hk+1) ∈ Dk.

The key point is that since Y end-extendsX below κ, p∗ is Y -generic for Pτ . The
set of conditions p in Pτ for which there is some pair (c′, h′) ∈ Qκ extending
(ck, hk) such that (p, c′, h′) ∈ Dk (and such that the length of p is equal to
max(c′) + 1) is dense below p∗¹(max(ck) + 1) and is a member of Y , so some
initial segment of p∗ in Y satisfies this condition, enabling the choice of the
desired pair (ck+1, hk+1).
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The last part of the conclusion of the lemma follows from the fact that for
each γ ∈ κ, the set of (p′, c′, h′) ∈ PQτ

κ with γ ∈ range(h′) is dense, which in
turn implies that h∗[δ] = Y ∩κ. To see that this set is dense, fix (p̄, c̄, h̄) ∈ PQτ

κ

and γ < κ such that γ 6∈ range(h̄). Let β = l(p̄) + ω and extend p̄ to a partial
play p′ = 〈u(α), σα : α ≤ β〉 according to τ such that the following hold.

• σβ¹max(c̄) = σmax(c̄).

• for all α < max(c̄), (α,max(c̄)) ∈ σβ ⇔ h′(α) < γ.

• (max(c̄) + 1)× (β \ (max(c̄) + 1)) ⊂ σβ .

Then if c′ = c̄ ∪ {β} and h′ is any suitable extension of h̄ ∪ {(max(c̄), γ)} (for
example, for each α ∈ β \ (max(c̄) + 1) we could let h′(α) be

sup(range(h̄)) + γ + ζα,

where ζα is the rank of α in the wellordering σβ), then (p′, c′, h′) ≤ (p̄, c̄, h̄) in
PQτ

κ and γ ∈ range(h′).
Theorem 1.3. If κ is a measurable cardinal, and τ is a strategy for Undomi-
nated, then there is a semi-proper forcing adding a run of the game for which
Undominated plays by τ and Dominating wins.

Proof. The forcing is PQτ
κ. We need to see only that this forcing is semi-proper.

Let (p, c, h) be a condition in PQτ
κ, let θ be a regular cardinal greater than 2κ

and let X be a countable elementary submodel of H(θ) with τ, κ and (p, c, h)
in X. Let p∗ be an X-generic condition in Pτ . Let µ be a normal measure on κ
in X and let Y be a µ-extension of X such that o.t.(Y ∩ κ) > τ(p∗). Then by
Lemma 1.2 there is a pair c∗, h∗ such that (p∗, c∗, h∗) ≤ (p, c, h) and (p∗, c∗, h∗)
is a Y -generic condition in PQτ

κ.

Corollary 1.4. Martin’s Maximum plus the existence of a measurable cardinal
implies that Undominated does not have a winning strategy in the canonical
function game.

Given a cardinal κ, let Rκ denote the countable support product of all the
partial orders PQτ

κ where τ is a strategy for Undominated. The proof of Lemma
1.2 shows that if κ is a measurable cardinal then Rκ is semi-proper (first take an
X-generic for the countable support product of all the Pτ ’s, then end-extend to
a Y such that o.t.(Y ∩κ) is greater than all the τ(p)’s, and choose the rest of the
generic filter as before; there are several suitable alternate definitions of Rκ).
Now suppose that λ is a strongly inaccessible limit of measurable cardinals, and
let P = 〈Pα,Q∼ α : α < λ〉 be an RCS iteration (see [2]) such that each Qα is
forced to be Rκ for κ the least measurable cardinal in the extension by Pα. If
ρ is a P-name for a strategy for Undominated in the canonical function game,
then in the P-extension (in which λ = ω2) there is a γ < λ such that G ∩ Pγ

(where G ⊂ P is the generic filter) decides ρ on all positions in V [G∩Pγ ]. Then
Qγ added a complete run of the game where Undominated played by ρ and lost.
Putting all of this together, we have the following.
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Theorem 1.5. If there exists a strongly inaccessible limit of measurable car-
dinals then there is a semi-proper forcing making the canonical function game
undetermined.

2 . . . and the Continuum Hypothesis

Although the forcing PQτ
κ is (ω,∞)-distributive, we do not know whether the

indeterminacy of the canonical function game is consistent with CH. This ques-
tion raises some interesting issues. The principle below has been known for some
time; the name we give for it is new.

2.1 Definition. ♣c (Club for clubs) is the statement that there exist aα (α a
countable limit ordinal) such that each aα is a cofinal subset of α of ordertype
ω and such that for every club subset C of ω1 there is an α < ω1 such that
aα ⊂ C.

Call a pair X,Y of countable elementary submodels of H(ω2) good if either
X ∩ ω1 6= Y ∩ ω1 or for all club subsets of ω1 C ∈ X and D ∈ Y ,

C ∩D ∩X ∩ ω1 6= ∅.

We let (+) denote the statement that there exists a stationary set S of
countable elementary submodels of H(ω2) such that every pair from S is good.

Theorem 2.2. ♣c ⇒ (+).

Proof. Let 〈aα : α < ω1 limit〉 witness ♣c, and let S be the set of countable
X ≺ H(ω2) such that for every club D ⊂ ω1 in X, a(X∩ω1) \D is bounded in
X ∩ ω1. Any pair of members of S is good. If S is not stationary, then there
exists a continuous, increasing chain 〈Xα : α < ω1〉 of countable elementary
submodels of H(ω2) not in S. Let 〈Dα : α < ω1〉 enumerate the club subsets of
ω1 in ∪{Xα : α < ω1}, and let D = 4{Dα : α < ω1〉. Let E ⊂ ω be the club
consisting of all β < ω1 such that {Dα : α < β} lists the club subsets of ω1 in
Xβ . Now let β be such that aβ ⊂ D ∩E. Then for each α < β, a(X∩ω1) \Dα is
bounded in X ∩ ω1, so Xβ ∈ S, giving a contradiction.

Theorem 2.3. The statement (+) implies that Undominated has a winning
strategy in the canonical function game.

Proof. Let S witness (+). The strategy for Undominated is, in round β, if

p = 〈(u(α), σα) : α < β〉

is the play so far and there exist an X ∈ S and a complete run of the game
p∗ = 〈(u′(α), σ′α) : α < ω1〉 in X such that

• X ∩ ω1 = β,

• p = p∗¹β,
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• Dominating wins the run p∗,

then choose such a pair X, p∗ and let u(β) = o.t.(σ′β) + 1. If there is no such
pair X, p∗, then let u(β) = 0. Now suppose that

p̄ = 〈(u(α), σα) : α < ω1〉

is a complete run of the game where Undominated has played by this strategy
and Dominating has won. Then there is a Y ∈ S with p̄ ∈ Y . Let β = Y ∩ ω1.
By the rules of the strategy for Undominated and the properties of the pair Y, p̄,
there exist an X ∈ S and a complete run of the game p∗ = 〈(u′(α), σ′α) : α < ω1〉
in X such that

• X ∩ ω1 = β

• p∗¹β = p̄¹β

• Dominating wins the run p∗,

• u(β) = o.t.(σ′β) + 1.

Let C ∈ Y and D ∈ X be club subsets of ω1 witnessing respectively that p̄ and
p∗ are winning plays for Dominating. Since X and Y are both in S, C ∩D ∩ β
must be cofinal in β. Then

σβ = ∪{σα : α ∈ C ∩D ∩ β} = σ′β ,

contradicting the fact that o.t.(σβ) > u(β) > o.t.(σ′β).

So ♣c implies that the canonical function game is determined. In [5], it
was shown that Bounding is consistent with the Continuum Hypothesis. An
important point of the proof of this fact is that the standard forcing to make
Bounding hold is α-semi-proper, for each countable ordinal α, as defined below.
Recall that if P is a partial order, θ is a regular cardinal greater than 2|P | and
X is a countable elementary submodel of H(θ) with P ∈ X, then a condition
p ∈ P is (X,P )-semi-generic if p°τ ∈ (X̌ ∩ ω1) for each P -name τ in X for a
countable ordinal.

2.4 Definition. Given a countable ordinal α, a partial order P is α-semi-proper
if, whenever p ∈ P , θ is a regular cardinal greater than 2|P |, ≤θ is a wellordering
of H(θ) and Xβ (β < α) are countable elementary submodels of 〈H(θ),≤θ,∈〉
with each 〈Xγ : γ < β〉 ∈ Xβ and p, P ∈ X0, there exists a p′ ≤ p in P which is
(Xβ , P )-semi-generic for each β < α.

Theorem 2.5 below is a generalization of a standard fact. Along with the
observation that the one-step forcing in the iteration to make Bounding hold
makes♣c hold, it shows that♣c holds in all currently known models of Bounding
+ CH.

Theorem 2.5. The principle ♣c is preserved by ω-semi-proper forcing.
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Proof. Let P be an ω-semi-proper partial order and let 〈aα : α < ω1 limit〉
witness ♣c. Let p be a condition in P and let τ be a P -name for a club subset
of ω1. We will find a p′ ≤ p and a limit ordinal α < ω1 such that p′ forces that
aα ⊂ τ . Let θ be a regular cardinal greater than 2|P |, let ≤θ be a wellordering
of H(θ) and let 〈Xα : α < ω1〉 be a continuous, increasing chain of countable
elementary submodels of 〈H(θ),≤θ,∈〉 such that p, P ∈ X0 and each Xβ ∈ Xα

for all β < α < ω1. Let D = {Xα ∩ω1 : α < ω1 limit}. Then D is a club subset
of ω1. Let α < ω1 be such that aα ⊂ D. Let 〈βi : i < ω〉 be an increasing
enumeration of aα, and let 〈γi : i < ω〉 be such that each βi = Xγi ∩ ω1. Then
p, P ∈ Xγ0 and each 〈Xγj

: j < i〉 ∈ Xγi
. Therefore, there is a condition p′ ≤ p

in P which is (Xγi , P )-semi-generic for each i < ω. This p′ then forces that
{βi : i < ω} ⊂ τ .

This raises two questions.

2.6 Question. Does CH imply that Undominated has a winning strategy in
the canonical function game?

2.7 Question. Does Bounding + CH imply ♣c?

A negative answer to Question 2.6 would imply a negative answer to Question
2.7, which in turn would require a new proof of the consistency of Bounding +
CH. On the other hand, a positive answer to Question 2.7 would give a positive
answer to the following question of Woodin.

2.8 Question. ([9]) Do there exist Π2 sentences for H(ω2) φ and ψ such that
CH + φ and CH + ψ are both Ω-consistent but CH + φ + ψ is not?

By contrast, Woodin has shown that all Ω-consistent Π2 sentences for H(ω2)
hold in the Pmax extension of L(R), assuming certain large cardinals [9]. Shelah
has shown that CH is consistent with the failure of ♣c ([8], Chapter XVIII).

3 Elementary submodels and absoluteness

Shelah ([8], Chapter XVI) has shown that if there exists a Woodin cardinal,
then there is a semi-proper forcing making the nonstationary ideal on ω1 (NSω1)
saturated. His argument makes use of the following definitions, the first of which
is implicit in [3].

3.1 Definition. A set A ⊂ P(ω1)\NSω1 is semi-proper if for any transitive set
M closed under sequences of length 2ω2 , if X ≺ M is countable with A ∈ X,
then there exists a countable Y ≺M such that

• X ⊂ Y ,

• X ∩ ω1 = Y ∩ ω1,

• Y ∩ ω1 ∈ S for some S ∈ Y ∩ A.
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3.2 Definition. Given a set A ⊂ P(ω1) \ NSω1 , the sealing forcing for A is
the partial order consisting of pairs (f, c) such that f is a function into A with
domain some countable ordinal and c is a closed subset of dom(f)+1 such that
for each α ∈ c there exists a β < α with α ∈ f(β), ordered by extension.

If A ⊂ P(ω1) \ NSω1 is semi-proper in the sense of Definition 3.1, then
the sealing forcing for A is semi-proper in the usual sense. Shelah’s forcing for
making NSω1 saturated consists of an iteration of length some Woodin cardinal
where at limit stages one forces with the countable support product of all semi-
proper sealing forcings as above, and at successor stages with Coll(ω1, 2ω2).

The following definition, taken from [9], is implicit in Shelah’s argument.

3.3 Definition. Suppose thatA ⊂ P(ω1)\NSω1 . Let TA be the set of countable
X ≺ P(H(ω2)) such that for no countable Y ≺ P(H(ω2)) does it hold that

• X ⊂ Y ,

• X ∩ ω1 = Y ∩ ω1,

• Y ∩ ω1 ∈ S for some S ∈ Y ∩ A.

So if, A ⊂ P(ω1) \NSω1 is not semi-proper, then TA is a stationary subset
of Pω1(P(H(ω2))). Following [9], if N ⊂ M are transitive models of ZFC with
the same ω1, say that M is a good extension of N if (TA)N is a stationary set
in M for each A ⊂ (P(ω1) \NSω1)

N which is predense and not semi-proper in
N .

Now, suppose that δ is a Woodin cardinal. Let P be any semi-proper iteration
of length δ where at limit stages we take the countable support product of all
semi-proper sealing forcings as above, and at successors to limit stages we pass
to a good extension while collapsing 2ω2 . Then it follows immediately from
Claim XVI 2.8 of [8] or Theorem 2.62 of [9] that P makes NSω1 saturated.
(Using this fact, Theorem 2.5 and the fact (shown in [5]) that ω-semi-properness
is preserved by Revised Countable Support iterations, it is straightforward to
show that the saturation of NSω1 is consistent with ♣c.) The key point here is
that if N ⊂ M are transitive models of ZFC such that M is a good extension
of N and (2ω2)N has cardinality ℵ1 in M , then any semi-proper extension of M
is a good extension of N . So if our iteration uses Coll(ω1, 2ω2) at successors to
limit stages and the forcing Rκ (for κ the least measurable cardinal) defined at
the end of Section 1 at all other successor stages, P forces that NSω1 is saturated
and the canonical function game is undetermined (since the countable support
product of all semi-proper sealing forcings followed by Coll(ω1, 2ω2) doesn’t add
reals, every strategy for Undominated existing after a limit stage of the iteration
is still defined on every position two steps later). In fact, the proof of Lemma
1.2 shows that we can use Rκ at all successor stages to achieve the same effect
(i.e., the Rκ-extension is also good - the proof of this, relative to the version of
Lemma 1.2 for Rκ, is the same as the proof of Lemma 2.63 in [9]).

For a given real number x, let Ix denote the class of indiscernibles for x,
assuming that x# exists. We let Cx denote the class of uncountable cardinals of
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the inner model L[x]. If ω1 is inaccessible to reals then for each real x, Cx ∩ ω1

is a club subset of ω1. Also, standard arguments show that for each real x
and each γ ∈ Cx# , Ix ∩ γ is definable over Lγ [x#] and has ordertype γ, so in
particular Cx# ⊂ Ix.

Woodin [9] has shown that ifNSω1 is saturated and there exists a measurable
cardinal, then every club subset of ω1 contains Ix ∩ ω1 (and thus Cx# ∩ ω1) for
some real number x. It is not hard to see that if

• ω1 is inaccessible to reals,

• every club subset of ω1 contains Cx ∩ ω1 for some real x,

• there is a function f : R→ R such that for all x, y ∈ R,

min(Cx ∩ Cy) < min(Cf(x) ∩ Cf(y)),

then (+) holds, and in fact there is a club set C of countable elementary submod-
els of H(ω2) (those closed under f) such that each pair from C is good. While
the existence of such a club C is consistent (there is one in L, for instance), the
hypotheses of the previous sentence may be contradictory, as far we know. In
any case, we have the following theorem.

Theorem 3.4. Suppose that there exists a Woodin cardinal δ below a measurable
cardinal. Then for every function f : R → R existing in an inner model whose
theory cannot be changed by forcing with a partial order in Vδ+1, there exist
x, y ∈ R, such that

min(Cx ∩ Cy) = min(Cf(x) ∩ Cf(y)).

Woodin has shown that whenever δ is a limit of Woodin cardinals below a
measurable cardinal no forcing construction in Vδ can change the theory of L(R)
(see [4]). Even for the special case of the function f(x) = x#, we know of no
direct proof of Theorem 3.4. Paris [7] has shown that if a and b are reals such
that a ∈ L[b] and a# 6∈ L[b], then there are countable ordinals α and β such
that every α-th a-indiscernible above β is a b-indiscernible. It follows then that
if x, y are reals such that min(Cx∩Cy) = min(Cx# ∩Cy#), then the set of reals
in L[x] ∩ L[y] is closed under sharps.

Theorem 3.4 can be easily generalized in a number of ways, none of which
we have application for at this time.
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