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Abstract. Using results announced by Stevo Todorcevic we establish that if it is

consistent that there is a supercompact cardinal then it is consistent that every

locally compact perfectly normal space is paracompact. Modulo the large cardinal,
this answers a question of S. Watson. We also solve a problem raised by the second

author, proving that it is consistent with ZFC that every first countable hereditarily

normal countable chain condition space is hereditarily separable. Finally, we show
that if it is consistent that there is a supercompact cardinal, it is consistent that

every locally compact space with a hereditarily normal square is metrizable.

0. Introduction

Only a few of the implications concerning basic properties in general topology
have remained open. One raised by Watson [Wa, Wa2, Wa3] is particularly inter-
esting and is characterized in [Wa3] as his favorite problem:

Is it consistent that every locally compact perfectly normal space is paracompact?

If this implication holds, then locally compact, perfectly normal spaces have a
very simple structure; they are simply the topological sum of σ-compact, perfectly
normal − hence hereditarily Lindelöf and first countable − spaces. In fact, as we
shall see, these pieces may be taken to be hereditarily separable as well.

Continuing the theme of “niceness,” let us note that many of the notorious coun-
terexamples of set-theoretic topology are ruled out: every perfectly normal manifold
is metrizable, every locally compact normal Moore space is metrizable, there are no
Ostaszewski spaces and so forth. Watson [Wa3] remarks, “. . . a consistent theorem
would be amazing. . . . It looks impossible to me.” The reason for this hyperbole
is that, at the time, no known model could embody the required combinatorics.
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In fact, a tantalizing aspect of the problem is that a positive solution follows from
the conjunction of two statements known to follow from well-known but mutually
inconsistent axioms. Specifically,

1) V = L implies locally compact perfectly normal spaces are collectionwise Haus-
dorff.

2) MA + ∼CH implies locally compact perfectly normal collectionwise Hausdorff
spaces are paracompact.

We shall show that, assuming the existence of large cardinals, there is a model
in which both conclusions hold, answering Watson’s question. Precisely,

Theorem 1. If it is consistent there is a supercompact cardinal, it is consistent
that every locally compact perfectly normal space is paracompact.

Variations of the proof of Theorem 1 will also solve two other interesting prob-
lems. In Open Problems in Topology, the second author [Ta3] asked whether it is
consistent that every first countable hereditarily normal countable chain condition
space is hereditarily separable. The attraction again was that this followed from
consequences of MA + ∼CH and V = L. We have:

Theorem 2. It is consistent with ZFC that every first countable hereditarily normal
countable chain condition space is hereditarily separable.

In [LarTo2] an old problem of Katětov [Ka] was solved by establishing the con-
sistency of every compact space with a hereditarily normal square is metrizable. At
the cost of a supercompact cardinal, we extend this to locally compact spaces:

Theorem 3. If it is consistent that there is a supercompact cardinal, it is consistent
that every locally compact space with a hereditarily normal square is metrizable.

1. Notation

Our set-theoretic notation is standard, as in [Ku]. All ω1-trees are presumed to
be normal, in the terminology of [J]. Topological notation is from Engelking [En].
Since we mainly deal with locally compact spaces, it is convenient to assume all
spaces are Hausdorff unless otherwise noted. However, note that the various results
quoted about normality implying collectionwise Hausdorffness do not in fact require
the assumption of Hausdorffness.

If S is a tree and α is an ordinal, we let S(α) denote the αth level of S.

2. Watson’s problem and Theorem 2

The context we shall consider is in the same family as that used to prove the
consistency of the positive solution to Katětov’s problem [LarTo2]. This approach
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will surely find increasing use in set-theoretic topology since it produces strong
“Suslin-type” [KuTa] consequences of MA + ∼CH, e.g. all Aronszajn trees are
special, subspaces of countably tight compact spaces are hereditarily Lindelöf if
and only if they are hereditarily separable, as well as − in the model we produce
here − the important consequence of V = L that all normal first countable spaces
are collectionwise Hausdorff. These models are all obtained by starting with a
model in which there is a coherent Suslin tree. This is a Suslin tree S ⊆ ω<ω1 ,
closed under finite modifications, such that {α ∈ dom(s) ∩ dom(t) : s(α) 6= t(α)}
is finite for all s, t ∈ S. The existence of such a tree follows from ♦ [Lar, SZ] and
holds after adding one Cohen real [SZ]. Once one has such an S, one then forces the
maximal amount of some forcing axiom such as MAω1 or PFA compatible with the
existence of S. Then one forces with S. The details of how to do the penultimate
forcing can be found in [F, Lar, Mi, Mi2]. Here we only need to know that these
are iterations like those to establish MAω1 or PFA, but that certain posets are
omitted. For various propositions φ, the proof that MAω1 or PFA implies φ can be
modified to prove that the weaker version of MAω1 or PFA implies S cannot force
φ to fail. The φ in our case will comprise several propositions that together imply
locally compact perfectly normal collectionwise Hausdorff spaces are paracompact.
In addition, we either start from L (if we do not require large cardinals so as to
obtain as much of PFA as possible) or else a certain Easton model, and observe
that the iteration plus the Suslin forcing will not destroy the fact that normal first
countable ℵ1-collectionwise Hausdorff spaces are collectionwise Hausdorff. The final
step is to show that forcing with S establishes that normal first countable spaces
are ℵ1-collectionwise Hausdorff.

We shall first aim to produce the set theory needed to get that locally compact
perfectly normal collectionwise Hausdorff spaces are paracompact, and then elimi-
nate the collectionwise Hausdorff hypothesis as previously indicated. We shall need
to use some results of Todorcevic [To2], [Fi1]. Consider the axioms:

MAω1(S): There exists a coherent Suslin tree S, and if P is a partial order sat-
isfying the countable chain condition which doesn’t force an uncountable antichain
in S, and Dξ (ξ < ω1) is a sequence of dense open subsets of P , then there is a
filter G ⊆ P such that G ∩Dξ 6= ∅ for each ξ < ω1.

PFA(S): There exists a coherent Suslin tree S, and if P is a proper partial order
which doesn’t force an uncountable antichain in S, and Dξ (ξ < ω1) is a sequence
of dense open subsets of P , then there is a filter G ⊆ P such that G ∩Dξ 6= ∅ for
each ξ < ω1.

The consistency of MAω1(S) is established explicitly in [Lar], though very similar
constructions had been studied earlier (in [Fa], for instance). The consistency of
PFA(S) (minus the coherence requirement, which presents no additional difficul-
ties), was established in [Mi].
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Recall that a space X is countably tight if whenever y ∈ Y ⊆ X, there is a
countable Z ⊆ Y such that y ∈ Z. Finite powers of compact countably tight spaces
are countably tight [M]. Todorcevic proved:

Lemma 4. (PFA(S)) If K̇ is an S-name for a compact countably tight space, then
K is S-forced to be sequential.

Recall that a subspace Y of a space X is locally countable if for each y ∈ Y
there is an open Uy about y containing only countably many members of Y . Y is
σ-discrete if it is the union of countably many discrete subspaces. Todorcevic then
proved:

Theorem 5. (PFA(S)) If K̇ is an S-name of a compact space with finite powers
sequential, then S forces that every locally countable subset of K of size ℵ1 is σ-
discrete.

The proof will appear in [Fi1]. A weaker version is proved in [To2].

Using this he got:

Theorem 6. (PFA(S)) If K̇ is an S-name for a compact countably tight space,
then Ẏ is S-forced to be a hereditarily separable subspace of K̇ if and only if Ẏ is
S-forced to be hereditarily Lindelöf.

To avoid this somewhat unwieldy way of stating such results, we introduce
“PFA(S)[S] implies φ” as an abbreviation for “φ holds whenever we force with
S (a coherent Suslin tree) over a model of PFA(S).” We shall use analogous nota-
tion without further explanation. We now can state

Theorem 6′. (PFA(S)[S]) If Y is a subspace of a compact countably tight space,
then Y is hereditarily separable if and only if it is hereditarily Lindeöf.

Let us also note the following fact which had been established earlier [LT2]:

Lemma 7. (MAω1(S)) First countable hereditarily Lindelöf spaces are hereditarily
separable.

We will use Lemma 4 to get that the one-point compactification of a locally
compact perfectly normal space X is a space to which Theorem 5 can be applied.
Standard techniques and Theorem 6 will then yield that X is paracompact if it is
collectionwise Hausdorff, so let us establish the theorems on that subject that we
need.

Let us recall some standard facts about “normality versus collectionwise normal-
ity” [Ta1].



LARSON AND TALL 5

Definition. Let κ be an infinite cardinal. A topological space is κ-collectionwise
Hausdorff (<κ-collectionwise Hausdorff) if each closed discrete subspace D
of size ≤ κ (< κ) can be separated, i.e., there exist disjoint open sets {Ud}d∈D
such that d ∈ Ud. A space is collectionwise Hausdorff if it is κ-collectionwise
Hausdorff for every κ.

Definition [Fl]. Let λ be a regular uncountable cardinal. A = {Af : f ∈λλ} is
a stationary system for λ if each Af is a stationary subset of λ, and whenever
α ∈ λ and f, g ∈λλ, if f |α = g|α then

Af ∩ (α+ 1) = Ag ∩ (α+ 1).

♦ for stationary systems (at λ) is the assertion that for each stationary system
A for λ, there is a sequence {fα}α<λ such that fα ∈ αα and for each f ∈ λλ there
is a stationary S ⊆ Af such that β ∈ S implies f |β = fβ .

Fleissner proved:

Lemma 8. Suppose κ is a regular uncountable cardinal, GCH holds at κ and above,
and ♦ for stationary systems holds for all regular λ ≥ κ. Then if X is a normal first
countable < κ-collectionwise Hausdorff space, then X is collectionwise Hausdorff.

He also probably noticed the following results, but the only reference for them
we know of is [Ta2].

Lemma 9. Suppose λ is a regular uncountable cardinal. Adjoin λ+ Cohen subsets
of λ. Then ♦ for stationary systems holds at λ.

Lemma 10. Suppose ♦ for stationary systems holds at the regular uncountable
cardinal λ. Force with a λ-chain condition partial order of size ≤ λ. Then ♦ for
stationary systems still holds at λ.

Using these lemmas, it is not difficult to get that normal first countable spaces
which are ℵ1-collectionwise Hausdorff will be collectionwise Hausdorff in the model
obtained by S-forcing over a model of PFA(S), provided we start with an appropri-
ate model over which to do the PFA(S) iteration. In particular, start with a model
in which there is a supercompact cardinal κ. To simplify matters, we could estab-
lish GCH below κ by a “mild” forcing [K] keeping κ supercompact. We then make
κ indestructible under κ-directed-closed forcing [Lav] and then Easton-force to add
λ+ Cohen subsets of λ for every regular cardinal λ ≥ κ [E]. This will establish ♦
for stationary systems for regular λ ≥ κ, while keeping κ supercompact. We then
force to create a coherent Suslin tree S, then force PFA(S) and lastly force with S.
The iteration of these three forcings has the κ-chain condition and is of size κ, so
we have established that normal first countable spaces that are <κ-collectionwise
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Hausdorff are collectionwise Hausdorff. It is clear that the straightforward iteration
to produce PFA(S) — if it works at all — will produce a model in which κ = ℵ2,
but in fact Farah [Fa] proves PFA(S) implies OCA, while PFA(S) implies MA(σ-
centred) because σ-centred forcing doesn’t add uncountable chains to Suslin trees
[KuTa] (see also [Lar]). It follows (see [Be]) that

Lemma 11. PFA(S) implies that 2ℵ0 = ℵ2 and therefore so does PFA(S)[S].

The second part of Lemma 11 follows from the fact that forcing with a Suslin
tree preserves cardinals and does not add reals. This gives the following lemma.

Lemma 12. Let κ be a supercompact cardinal, and assume that ♦ for stationary
systems holds for every regular cardinal λ ≥ κ. In the model obtained by first forcing
PFA(S) by a κ-c.c. forcing of size κ and then forcing with S, normal first countable
ℵ1-collectionwise Hausdorff spaces are collectionwise Hausdorff.

It remains to prove normal first countable spaces are ℵ1-collectionwise Hausdorff
in this model. In order to do that, we prove a purely set-theoretic combinatorial
lemma:

Lemma 13. After forcing with a Suslin tree, the following holds. Suppose that
{N(α, i) : i < ω, α < ω1} are sets such that for all α, i, N(α, i + 1) ⊆ N(α, i).
Suppose further that:

For all A ⊆ ω1, there is an f : ω1 → ω such that⋃
{N(α, f(α)) : α ∈ A} ∩

⋃
{N(β, f(β)) : β ∈ ω1 \A} = 0.

Then there is a g : ω1 → ω and a closed unbounded C ⊆ ω1, such that:

whenever α < β and C ∩ (α, β] 6= ∅, then N(α, g(α)) ∩N(β, g(β)) = ∅.

It should be clear that Lemma 13 yields ℵ1-collectionwise Hausdorffness in first
countable normal spaces: without loss of generality we may assume that the topol-
ogy is on a member of V ; let the N(α, i)’s be a descending neighborhood base at
α, where we have labeled the points of a discrete closed subspace of the space X
with the countable ordinals. Define c:ω1 → ω1 by letting c(α) = sup(C ∩ α), and
let α ∼ β if c(α) = c(β). The ∼-classes are countable and normality implies ℵ0-
collectionwise Hausdorffness, so there is a q : ω1 → ω such that c(α) = c(β) implies
N(α, q(α)) ∩N(β, q(β)) = 0. Let r(α) = max(g(α), q(α)). Then {N(α, r(α)}α<ω1

is the required separation.
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Proof of Lemma 13. Let S be a Suslin tree. Let {Ṅ(α, i) : i < ω, α < ω1, α < ω1}
be S-names for subsets of X as in the hypothesis. For s ∈ S, let `(s) be the length of
s. Since S has countable levels and its corresponding forcing poset is ω-distributive,
we can construct an increasing function h : ω1 → ω1 such that:

For all α < ω1 and all s ∈ S with `(s) = h(α), s decides all statements of the
form “Ṅ(β, j) ∩ Ṅ(α, i) = 0”, for all i, j < ω and β < α.

Let Ȧ be an S-name for a subset of ω1 such that for no α < ω1 does any s ∈ S
with `(s) = h(α) decide whether α ∈ A. To define such an Ȧ, for each α < ω1 pick
two successors of each s ∈ S with `(s) = h(α) and let one force α ∈ Ȧ and let the
other force α 6∈ Ȧ.

Let ḟ be an S-name for a function f : ω1 → ω1 as in the hypothesis of the
lemma, with respect to A. Let C be a closed unbounded subset of ω1 in V such
that for each s ∈ S with `(s) ∈ C, s decides f |`(s) and A|`(s), and such that for
all α < β < ω1, if β ∈ C then h(α) < β. We will define an S-name ġ for a function
from ω1 to ω such that whenever α < β < ω1,

if (α, β] ∩ C 6= ∅, then N(α, g(α)) ∩N(β, g(β)) = ∅.

Let c:ω1 → ω1 be defined by c(α) = sup(C ∩ α). Fix β < ω1. Each s ∈ S with
`(s) = h(β) decides f |c(β) and A|c(β) and “Ṅ(α, f(α))∩ Ṅ(β, i) = 0” for all i < ω,
α < c(β), but not whether β ∈ A. Fix s ∈ S with `(s) = h(β). Since s does not
decide whether β ∈ A, we claim that there is an i0 < ω such that:

for all α < c(β) such that s 
 α ∈ Ȧ, s 
 Ṅ(α, ḟ(α)) ∩ Ṅ(β, i0) = ∅.

To see this, extend s to t ∈ S forcing that β 6∈ A and deciding f(β). Let i0 be
the value of f(β) as decided by t. Then for each α < c(β) such that s 
 α ∈ Ȧ, t
forces that N(α, f(α)) ∩ N(β, i0) = ∅, but these facts were already decided by s.
Similarly, there is an i1 < ω such that:

for all α < c(β) such that s 
 α 6∈ Ȧ, s 
 Ṅ(α, ḟ(α)) ∩ Ṅ(β, i̇1) = ∅.

Since s decides A|c(β), letting i = max{i0, i1},

for all α < c(β), s 
 Ṅ(α, ḟ(α)) ∩ Ṅ(β, i)) = ∅.

We have such an is for each s in the c(β)-th level of the tree, so we can construct
a name ġ such that:

s 
 ġ(β) = max{is, ḟ(β)}

for each s ∈ S wih `(s) = c(β). Then ġ is as required. �
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The compatibility of “locally countable subspaces of size ℵ1 in a compact count-
ably tight space are σ-discrete” with “normal first countable spaces are collection-
wise Hausdorff” enables us to strengthen a variety of results of Balogh [B] and other
authors, in particular proving Theorem 1, which we shall now establish.

Following Nyikos [N2], we have:

Definition. A space X is of Type I if X =
⋃

α<ω1

Uα, where the Uα’s are open,

Uβ ⊆ Uα whenever β < α, Uα =
⋃
β<α

Uβ for limit α, and each Uα is Lindelöf. The

skeleton of (such a decomposition of) a Type I space is the sequence {Uα − Uα :
α < ω1}. The Uα−Uα’s are called bones. We extend Nyikos’ metaphor by calling
a selection of one point from each bone a bone-scan.

Modulo nonstationary sets, a Type I space has a unique skeleton.

Lemma 14 [N2]. Any two skeletons of a Type I space agree on a closed unbounded
set of bones.

The relevance of Type I spaces to the problem at hand is that:

Lemma 15. If X is hereditarily collectionwise Hausdorff, locally hereditarily Lin-
delöf and subspaces of X are hereditarily Lindelöf if and only if they are hereditarily
separable, then X is the disjoint union of clopen Type I spaces.

To see that this result applies in our setting, let X be locally compact and
perfectly normal. Then X is first countable and hereditarily normal, so it will be
hereditarily collectionwise Hausdorff in our model. X is also locally hereditarily
Lindelöf. Let Y ⊆ X. Whether Y is hereditarily Lindelöf or hereditarily separable,
it has no uncountable discrete subspace. Since Y is collectionwise Hausdorff, it
also has no uncountable discrete subspace, and the same holds for its one-point
compactification. By a well-known result of Arhangel’skĭi, (see e.g. [H]) it follows
that that compactification has countable tightness. But then by Theorem 6, Y is
hereditarily separable if and only if it is hereditarily Lindelöf.

Proof of Lemma 15. The space X has a basis of open sets which are hereditarily
Lindelöf and hereditarily separable. We first claim that hereditarily Lindelöf open
sets have hereditarily Lindelöf closure. To see this, let U be hereditarily Lindelöf
and hence hereditarily separable. It follows as usual, by collectionwise Hausdoff-
ness, that U has no uncountable discrete subspace. It follows that to show U
is hereditarily separable and hence hereditarily Lindelöf, it suffices to show each
subspace Z of it is locally separable. Without loss of generality, let W ∩ Z be a
neighborhood of z in Z, where W is a basic open neighborhood of z in X. But
then W is hereditarily separable, so W ∩ Z is separable.
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Towards completing the proof of Lemma 15, let U0 be a maximal disjoint collec-
tion of basic open sets in X. Suppose Uβ , β < α have been defined to be unions of
countably many disjoint collections of basic open sets. Let

Fα = X −
⋃
β<α

⋃
Uβ .

Let Vα be a collection of basic open sets such that {Fα ∩V : V ∈ Vα} is a maximal
disjoint collection of relatively open subsets of Fα. Fix a dense countable subset DV

in each Fα ∩V . Any selection of points, one from each DV , yields a discrete subset
of

⋃
Vα, which may therefore be separated by basic open sets. We may therefore

cover
⋃
{DV : V ∈ Vα} by a collection Uα of basic open sets, such that Uα is the

union of countably many collections of disjoint basic open sets. We claim that

X =
⋃
α<ω1

⋃
Uα.

Towards a contradiction, suppose that this is false. Let W be a basic open neigh-
borhood of x. Since the Fα’s are descending and W is hereditarily Lindelöf, there
is an α < ω1 such that Fα ∩W = Fα+1 ∩W . Then

⋃
Uα+1 ∩W is empty, so Fα+1

is dense in Fα+1. But that’s a contradiction, since x ∈
⋂

α<ω1

Fα.

Now
⋃

α<ω1

Uα is the union of ℵ1 collections of disjoint open sets. Each member of⋃
α<ω1

Uα meets only countably many elements of each such collection. Therefore X

is the sum of clopen subspaces, each composed of the union of ℵ1 basic open sets.
Let one of those clopen subspaces, say S, be such that

S =
⋃
α<ω1

Sα,

where each Sα is basic open. We work within S. Let T0 = S0. Suppose {Tβ}β<α
have been defined so that each Tβ is open with hereditarily Lindelöf closure. For α
limit, let

Tα =
⋃
β<α

Sβ ∪
⋃
β<α

Tβ .

Then Tα is hereditarily Lindelöf. For α = β + 1, since Sβ ∪ Tβ is hereditarily
Lindelöf and hence has (hereditarily) Lindelöf closure, pick basic open {Wn

α }n<w
such that

Sβ ∪ Tβ ⊆
⋃
n<ω

Wn
α .

Let
Tα =

⋃
n<w

Wn
α .
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Since for any α, we have Tα ⊆ Tα+1, and
⋃

α<ω1

Tα = S, we have shown that S is

Type I. �

In [N2] Nyikos erroneously ascribes to Gruenhage [G] the assertion that every
locally compact perfectly normal collectionwise Hausdorff space is the disjoint union
of clopen type I spaces. Ostaszewski’s space [O] is in fact a counterexample. What
Gruenhage in fact proved was that every locally compact perfectly normal space
which is collectionwise normal with respect to compact sets is the disjoint union of
clopen subspaces, each of which is the union of ℵ1 open subspaces, each with com-
pact closure. The hypothesis of collectionwise normality with respect to compact
sets was later weakened by Junnila (unpublished) to collectionwise Hausdorffness.
Under MAω1 — which was the situation of interest in [N2] — indeed the ascribed
assertion holds by Lemma 15, since perfectly normal collectionwise Hausdorff spaces
are hereditarily collectionwise Hausdorff, and the equivalence between hereditary
Lindelöfness and hereditary separability follows from MAω1 the same way we did
it here. However we think the finer analysis of Lemma 15 is interesting. The proof
technique can be found in [B].

Since the disjoint union of clopen paracompact spaces is paracompact, given
Lemma 15, we may confine ourselves to considering Type I spaces. For the same
reason, we note:

Lemma 16 [N2]. If the skeleton of a Type I space has a closed unbounded set of
empty bones, the space is paracompact.

Nyikos further notes:

Lemma 17 [N2]. If X is locally hereditarily Lindelöf Type I, then X is hereditarily
collectionwise Hausdorff if and only if every discrete subspace misses the elements
of a skeleton closed unboundedly often.

This is proved by a standard pressing-down argument. Lastly, we will need two
facts due to Balogh.

Definition. f : X → Y is perfect if it is continuous, closed, and inverse images
of points are compact.

The same argument that proves that the set of limit ordinals in ω1 is not a Gδ
extends to show that:

Lemma 18 [B]. A perfectly normal space does not include a perfect pre-image of
ω1.

We also have:
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Lemma 19 [B]. If X is locally compact and countably tight, then the one-point
compactification of X is countably tight if and only if X does not include a perfect
preimage of ω1.

Putting everything together, we have the following.

Proof of Theorem 1. Assume that there exists a supercompact cardinal. By the
remarks after Lemma 10, there is a forcing extension V [G] in which there exists a
coherent Suslin tree S, PFA(S) holds and ♦ for stationary systems holds for each
regular λ ≥ ℵ2. Let H ⊂ S be V [G]-generic. We wish to see that in V [G][H]
every locally compact perfectly normal space is paracompact. By Lemmas 8 and
13, it suffices to show that in V [G][H] every locally compact perfectly normal
collectionwise Hausdorff space is paracompact. Work in V [G][H] and fix such a
space X. Note that X is locally hereditarily Lindelöf and hereditarily collectionwise
Hausdorff. By Lemma 15 and the remarks afterwards, if X is a perfectly normal
locally compact collectionwise Hausdorff space, then X is a disjoint union of clopen
Type I spaces. By Lemmas 18 and 19, since each of these Type I spaces is perfectly
normal, their one-point compactifications are countably tight. Since a disjoint union
of clopen paracompact spaces is paracompact, it suffices to show that these Type
I subspaces of X are paracompact. Let Y be one of these subspaces. By Lemmas
4 and 5, every locally countable subset of the one-point compactification of Y is
the countable union of discrete subspaces and the same holds for Y itself. Since
bone-scans are locally countable, Lemmas 16 and 17 complete the proof. �

We are now ready to prove Theorem 2. First, let us note that the procedures
applied above in a PFA(S) context also work for MAω1(S). That is, do the Easton
forcing, force to create S, force MAω1(S), and lastly force with S. Then one obtains
a model in which normal first countable spaces are collectionwise Hausdorff. By
Lemma 7, we are then in position to establish Theorem 2. To prove it, let X be
a hereditarily normal first countable countable chain condition space. Let Y ⊆ X.
Since X is hereditarily collectionwise Hausdorff, Y cannot have an uncountable
discrete subspace. It is standard that Y must therefore have a dense hereditarily
Lindelöf subspace. For recursively define xα such that xα 6∈ {xβ : β < α}, until
for some λ, {xα : α < λ} is dense. Claim {xα : α < λ} is hereditarily Lindelöf.
For if not, there would exist {xαγ : γ < ω1} such that {xαγ : γ < δ} is open in
{xαγ : γ < ω1}, for each δ < ω1. But then {xαγ : γ < ω1} is discrete. Thus, since
{xα : α < λ} is dense and hereditarily Lindelöf, by Lemma 7 Y is separable.

In the MAω1(S) situation, one can actually rely on L rather than on Easton and
so the argument can be simplified somewhat.

Theorem 3

There are a number of consequences of the compatibility of “locally countable
subspaces of countably tight compact spaces are σ-discrete” with “all normal first



12 LOCALLY COMPACT PERFECTLY NORMAL SPACES

countable spaces are collectionwise Hausdorff” that follow relatively straightfor-
wardly from Balogh’s work [B], for example:

Theorem 20. If it is consistent there is a supercompact cardinal, by S. Todorc̆ević
it is consistent that every locally compact perfectly normal space of cardinality

ℵ1 is metrizable.

Proof. We first note a space such as in the Theorem has a countable neighborhood
around each point. This follows from Lemma 11 and the fact that compact first
countable spaces have cardinality either ℵ0 or 2ℵ0 . But countable compact sets
are metrizable and paracompact locally metrizable spaces are metrizable, so we are
done.

Balogh [B] proved under MA + ∼CH that connected, locally compact, locally
hereditarily Lindelöf, hereditarily normal collectionwise Hausdorff spaces are para-
compact if and only if they do not include a perfect pre-image of ω1. We drop two
of these conditions and get:

Theorem 21. If it is consistent there is a supercompact cardinal, it is consistent
that locally compact, locally hereditarily Lindelöf, hereditarily normal spaces are
paracompact if and only if they do not include a perfect pre-image of ω1.

This answers a question Balogh asked for manifolds in [B]. Theorem 21 will follow
immediately from the following lemma, which Balogh [B] proved from MAω1 , but
just using the consequences mentioned.

Lemma 22. Suppose first countable hereditarily Lindelöf spaces are hereditarily
separable and locally countable subspaces of size ℵ1 of a compact countably tight
space are σ-discrete. Then if X is locally hereditarily Lindelöf, hereditarily collec-
tionwise Hausdorff, and can be embedded into a countably tight compact space, then
X is paracompact.

This is proved by the same argument as for Theorem 1. In the situation of
Theorem 21, we know the one-point compactification of X is countably tight, that
X is first countable, and hence that X is hereditarily collectionwise Hausdorff. So
Lemma 22 applies.

As a corollary, we will get a metrization theorem which answers a question in
[BB]:

Definition. X has a Gδ-diagonal if {〈x, x〉 : x = x} is a Gδ in X ×X.

Lemma 23 [C]. A countably compact space with a Gδ-diagonal is metrizable (and
hence compact.)
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Theorem 24. If it is consistent there is a supercompact cardinal, it is consistent
that every locally compact hereditarily normal space with a Gδ-diagonal is metriz-
able.

Proof. It suffices to show X is paracompact, since it is locally metrizable. It follows
from Lemma 23 that X does not include a perfect pre-image of ω1, as well as that
X is first countable and locally hereditarily Lindelöf. But then Lemma 22 applies.

It was shown in [LarTo2] that in the extension produced by forcing with the
Suslin tree S over a model of MAω1(S), every compact space with hereditarily
normal square is metrizable. We shall extend this to locally compact spaces by using
the variation on this model considered in this paper, thus obtaining Theorem 3.

Again, we suspect that the supercompact cardinal is not necessary, though we
think it unlikely that the locally compact result can be obtained from the compact
case for the following reason. Katětov [Ka] proved that every compact space with
hereditarily normal cube is metrizable. There is no such ZFC result for locally
compact spaces − it is routine to show:

Theorem 25. MAω1 implies there is a locally compact non-metrizable space X
with Xn hereditarily normal for all n ∈ ω.

Proof. This is standard. X will be any subset of the real line of size ℵ1 with
the following topology. Let D be countable dense in X in the real line subspace
topology. Each point of D we make isolated. For each x ∈ X − D, we fix a
sequence from D converging to x, and let a neighborhood of x be {x} together
with a tail of the sequence. Then X is locally compact and non-metrizable, as is
Xn, for each n ∈ ω. Xn has a weaker separable metrizable topology, as a subspace
of Rn. Each point of Xn has a neighborhood base consisting of sets which are
compact in that weaker topology. By the following lemma, MAω1 will imply Xn is
hereditarily normal.

Lemma 26 ([We], Section 7.1).
Assume MA(σ-centred) + ∼CH. Suppose ρ and τ are two topologies on a set X

such that
(i) ρ ⊆ τ .

(ii) 〈X, ρ〉 is Hausdorff and second countable, and
(iii) there is a closed neighborhood base for τ consisting of sets compact in 〈X, ρ〉.

Then for all H,K ∈ [X]<2ℵ0 such that H ∩K = H ∩K = ∅ in the τ topology,
we have disjoint open UH and UK in τ including H and K respectively.

Now to prove Theorem 3, we will need a lemma of Katětov [Ka]:
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Lemma 27. If Y is countably compact and Y 2 is hereditarily normal, then Y is
perfectly normal.

Now suppose that X is locally compact and X2 is hereditarily normal. By [LT2]
it follows that X is locally metrizable and hence locally hereditarily Lindelöf. X
is homeomorphic to a subspace of X2, so it too is hereditarily normal. Since X
is locally metrizable, to show it is metrizable it suffices to show it is paracompact.
This will follow from Lemma 19 if we can show X includes no perfect pre-image of
ω1. Suppose it had such a pre-image Y . Y would be countably compact and, by
Katětov’s Lemma, perfectly normal. But that’s impossible by Lemma 18.

Another consequence of the approach taken in this paper is the following result.

Theorem 28. If it is consistent that there is a supercompact cardinal, then it is
consistent that every hereditarily normal vector bundle is metrizable.

Nyikos [N] needed only MAω1 for the hypothesis of Theorem 28, but he required
also that the vector bundle be hereditarily collectionwise Hausdorff. More on vector
bundles, including their definition, can be found in [Sp].

Proof of Theorem 28. Vector bundles are manifolds, so by Theorem 21, it suffices
to show that hereditarily normal ones don’t include perfect preimages of ω1. By
Lemma 15, since our vector bundle V will be hereditarily collectionwise Hausdorff
and connected, it will be of Type I. But Nyikos [N] proved that vector bundles of
Type I cannot include a perfect preimage of ω1. �

A more interesting question concerns the metrizability of hereditarily normal
manifolds of dimension greater than 1. Nyikos has written several papers on the
subject, proving for example from the consistency of a supercompact cardinal that
such manifolds are metrizable if in addition they are hereditarily collectionwise
Hausdorff [N2]. We make the following conjecture:

Conjecture. If it is consistent that there is a supercompact cardinal, then it is
consistent that every hereditarily normal manifold of dimension greater than 1 is
metrizable.

Furthermore, we expect that there is a proof of this conjecture using the approach
taken in this paper.

Remarks. According to Todorcevic (personal communication) the supercompact
can probably be eliminated in the work of his on which Theorem 1 depends.

Almost all of this paper was written in 2002; it was submitted in 2008. The
reason for the delay was that the authors had not seen the still unpublished proofs
of Lemma 4 and Theorem 5.
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We now know how to obtain Theorem 5; at Todorcevic’s suggestion, this will
appear in [Fi1]. At the 2006 Prague Topological Symposium Todorcevic announced
Lemma 4. He sketched the proof at the conference on Advances in Set-theoretic
Topology, in Honor of T. Nogura in Erice, Italy in 2008.

In the years following the writing of the first version of this paper, further results
have succeeded in weakening the “perfect normality” condition of Theorem 1. This
work appears in the preprints [LarTa] and [Ta4].

Whitehead Groups

Just as the questiong of when normality implies collectionwise normal led to
many advances in set-theoretic topology, the question of when Whitehead groups
are free has been similarly influential in set-theoretic algebra. For a short, accessible
introduction to the subjet, see [Ek]. For a comprehensive presentation, see [EM].
All terms not defined here can be found in both references. Here we only want to
point out:

Theorem 29. In the MAω1(S)[S] and PFA(S)[S] models discussed here, in which
normal first countable spaces are collectionwise Hausdorff, all Whitehead groups are
free.

Proof. We assume the reader is somewhat familiar with the proof that Whitehead
groups are free in L. That proof proceeds by induction on the cardinality of the
groups. It is true for countable ones, and for singular cardinals it is true if it is true
for smaller cardinals, by a Singular Compactness Theorem.

At regular cardinals κ, ♦(S) for S a stationary subset of κ is sufficient to carry
on with the induction. ♦ for stationary systems is a stronger principle, so the case
of κ = ℵ1 is the only one needing consideration.

Shelah showed that there is a non-free Whitehead group of size ℵ1 if and only
if there is a ladder sustem on some stationary subset of ω1 which has the 2-
uniformization property. But such a ladder system determines in a natural way
a first countable, normal, non-collectionwise Hausdorff space of size ℵ1. �

It remains to be seen whether there are MAω1 or PFA consequences holding in
these models which would, in conjunction with “all Whitehead groups are free”,
produce results of algebraic interest.
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