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Abstract. We present principles for guessing clubs in the gener-
alized club filter on Pκλ. These principles are shown to be weaker
than classical diamond principles but often serve as sufficient sub-
stitutes. One application is a new construction of a λ+-Suslin-tree
using assumptions different from previous constructions. The other
application partly solves open problems regarding the cofinality of
reflection points for stationary subsets of [λ]ℵ0 .

1. Introduction

Club guessing principles have been studied intensely in the literature,
a major source being [10]. But in all of these references, the guessing
sequences anticipate clubs of ordinals. The purpose of this note is to
introduce principles that guess clubs in the generalized club filter on
Pκλ. Throughout the whole paper, the notion of a club always refers
to the club filter that is generated by the sets

Cf = {x ∈ Pκλ : x is closed under f},
where f : <ωλ −→ λ. Some references refer to this as ‘strongly club’
as opposed to ‘Jech clubs’ which are unbounded sets that are closed
under chains of length less than κ. We generally prefer to write [λ]<κ

for Pκλ. For the future, we will also make the implicit assumption that
κ and λ are regular cardinals and usually κ ≤ λ.

Section 2 of this article contains the definition of and basic facts
about f∗, the newly introduced principle. We show in Section 3 that
the guessing of clubs in the generalized club filter is a fairly weak as-
sumption if the guessing attempts are on ordinals of small cofinality.
For example, 2λ = λ+ would suffice to guarantee a variety of guessing
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principles for clubs in [λ+]<κ. In Section 4 we give an independence
result using iterated forcing to demonstrate that even full GCH does
not imply f∗ if the guessing attempts are made on ordinals of maximal
cofinality. The last two sections deal with applications: in Section 5, a
λ+-Suslin-tree is constructed from GCH and a club guessing principle
on ordinals of maximal cofinality. This is related to the old problem if
GCH always constructs a Suslin-tree on successors of regular cardinals.
Finally, in Section 6 we show that guessing on ordinals of cofinality ω
can be used to thin out stationary subsets of [ωn]ℵ0 and thereby remove
all possible reflection points with countable cofinality but preserving
stationarity of the original set. Problems regarding the cofinality of
reflection points for stationary subsets of [λ]ℵ0 have frequently been
asked in the literature.

As additional guidelines for general set theory, we recommend the
sources [6] and [8]. For more information about issues related to proper
forcing and iterations, we suggest [11]. The authors would like to thank
Dieter Donder, Yo Matsubara, and Hiroshi Sakai for their helpful com-
ments.

2. The principle

The following definition seems to be in the spirit of guessing clubs
in the generalized club filter on [λ]<κ.

1 Definition. Let E ⊆ λ be stationary. Then f∗(κ,E) is the state-
ment that there is a sequence 〈Fδ : δ ∈ E〉 such that

(1) Fδ is club in [δ]<κ for all δ in E, and
(2) for all clubs D ⊆ [λ]<κ there is a club C ⊆ λ such that for all

δ ∈ C ∩ E we have that Fδ ≤∗ D.

Where in (2), A ≤∗ B means that there is x of size less than κ such
that x ⊆ y ∈ A implies y ∈ B for all y.

We also say that 〈Fδ : δ ∈ E〉 is tail club guessing. Defining A ≤∗ B
like this seems to be the right notion for saying that “a tail of A is
included in B” in the context of subsets of [λ]<κ. The cardinal κ is
supposed to be clear from the context whenever we use this notation.
Note that our new statement can be viewed as a ♦∗ spin-off.1 We
will go on to show that f∗(κ,E) is strictly weaker than ♦∗(E). The
following facts help determining the status of f∗(κ,E):

1If E ⊆ λ then ♦∗(E) means that there is a sequence 〈Sδ : δ ∈ E〉 where
|Sδ| ≤ |δ| and such that for every S ⊆ λ there is a club C ⊆ λ such that for all
δ ∈ C ∩E we have that S ∩ δ ∈ Sδ. Standard arguments show that ♦∗(λ) holds in
the constructible universe if and only if λ is not ineffable [1, p.328].
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2 Lemma. Let E ⊆ λ be stationary.

(1) ♦∗(E) implies f∗(κ,E) for all κ ≤ λ.
(2) f∗(κ,E) is preserved by κ-cc forcings.

Proof. For (1), let ♦∗(E) guess all functions f : <ωλ −→ λ via a
sequence 〈Sδ : δ ∈ E〉. Then each Sδ consists of less than λ-many
functions f δ

ξ : <ωδ −→ δ (ξ < µ) that are guessing each f : <ωλ −→ λ
club many times. Now for each δ ∈ E find a club Fδ in [δ]<κ such that
y is closed under f δ

ξ whenever ξ ∈ y ∈ Fδ. One easily checks that this
suffices.

(2) follows easily from the following standard fact:

2.1 Claim. If D ⊆ [λ]<κ is a club in some κ-cc extension, then there
is a club D0 ⊆ D in the ground model.

Proof of Claim 2.1. Let Ḋ be a name for a club in [λ]<κ in the κ-cc
extension. Then

D0 = {x ∈ [λ]<κ : 
 x ∈ Ḋ}
is a club in V . �

�

Notice finally that both principles f∗(κ,E) and ♦∗(E) increase in
logical strength as E gets bigger.

3. Small cofinality

Let us denote the set {γ ∈ [λ, λ+) : ω ≤ cf(γ) < κ} by S<κ
λ+ . The

next theorem shows that f∗(κ, S<κ
λ+ ) is pretty weak in logical strength.

When compared to Lemma 2(1), the assumptions needed here are far
weaker than the previous ♦∗(S<κ

λ+ ).

3 Theorem. Let κ ≤ λ. The following are equivalent2:

(i) f∗(κ, S<κ
λ+ ).

(ii) There is a club F ⊆ [λ+]<κ such that for every club D ⊆ [λ+]<κ

there is a club C ⊆ λ+ such that for all δ ∈ C ∩ S<κ
λ+ we have

that F ∩ [δ]<κ ≤∗ D.
(iii) There are λ+-many clubs in [λ]<κ such that the collection of

these is cofinal in the ≥∗-ordering.

Considering (ii), it is an interesting fact that the witness for the
principle f∗(κ, S<κ

λ+ ) can actually be taken to be a single club F in
[λ+]<κ. We still chose to formulate f∗(κ, S<κ

λ+ ) in the way given above
because it is more in the style of classical guessing principles.

2The global assumption that λ is regular is actually not necessary for this par-
ticular theorem.
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Proof of Theorem 3. It is straightforward to check that (ii) implies
(i), so we show (iii)⇒(ii). To this end, suppose that the sequence
〈Cα : α < λ+〉 is ≥∗-cofinal in the clubs on [λ]<κ. For each η ∈ [λ, λ+)
fix a bijection gη : λ → η and let

gη∗ : [λ]<κ → [η]<κ

be the induced bijection. If λ ≤ η < λ+ and α < λ+, then we set
Cη

α = gη∗”Cα. One checks that 〈Cη
α : α < λ+〉 is ≥∗-cofinal in the clubs

on [η]<κ for each η ∈ [λ, λ+). Now fix a bijection g : [λ, λ+)×λ+ → λ+

and let
Fg(η,α) = {x ∈ [λ+]<κ : x ∩ η ∈ Cη

α}
for each (η, α) ∈ [λ, λ+)× λ+. Note that Fγ is club in [λ+]<κ for each
γ < λ+. Define

F = 4
γ<λ+

Fγ = {x ∈ [λ+]<κ : ∀γ ∈ x (x ∈ Fγ)}.

Clearly, F is a club subset of [λ+]<κ. We show that this F works: let
D be any club subset of [λ+]<κ generated by f : <ωλ+ −→ λ+. Then
set

D = {η ∈ [λ, λ+) : η is closed under f}.
Note that D is a club subset of λ+. For each η ∈ D there exists an h(η)
such that Cη

h(η) ≤∗ D ∩ [η]<κ. Let D′ be the set of ordinals which are

closed under both g and h and set D′′ = S<κ
λ+ ∩D′∩lim D. Note that D′′

is a relative club subset of S<κ
λ+ . For each δ ∈ D′′ there is an increasing

sequence 〈δi : i < cf(δ)〉 ⊆ D converging to δ. For each i < ω pick an
xi ∈ [δi]

<κ which witnesses Cδi

h(δi)
≤∗ D ∩ [δi]

<κ, i.e. xi ⊆ y ∈ Cδi

h(δi)

implies y ∈ D. Now let

x =
⋃

i<cf(δ)

(
xi ∪ {g(δi, h(δi))}

)
,

and note that x ∈ [δ]<κ. Whenever x ⊆ y ∈ F ∩ [δ]<κ then we have
y ∈ Fg(δi,h(δi)) and thus y ∩ δi ∈ Cδi

h(δi)
holds. But since xi ⊆ y ∩ δi we

have that y ∩ δi is in D and therefore closed under f . Then clearly, y
is closed under f . This shows that F ∩ [δ]<κ ≤∗ D.

Regarding (i)⇒(iii), let 〈Fδ : δ ∈ E〉 be a f∗(κ, S<κ
λ+ )-sequence and,

for each δ ∈ S<κ
λ+ , fix a ladder δi (i < cf(δ)). We may assume without

restriction for all x ∈ Fδ that {δi : i < cf(δ)} ⊆ x and that x is closed
under the bijections gδi

: λ −→ δi used above. Now define a sequence
of clubs in [λ]<κ by letting

Cδ = {x ∩ λ : x ∈ Fδ}
for all δ ∈ S<κ

λ+ .
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3.1 Claim. Cδ (δ ∈ S<κ
λ+ ) is ≥∗-cofinal in the clubs on [λ]<κ.

Proof of Claim 3.1. If C ⊆ [λ]<κ is club, define

(3.1) D = {y ∈ [λ+]<κ : y ∩ λ ∈ C}.
Then find δ ∈ S<κ

λ+ such that Fδ ≤∗ D witnessed by some b ∈ [δ]<κ, i.e.

(3.2) ∀x b ⊆ x ∈ Fδ implies x ∈ D.

Now set

(3.3) a =
⋃

i<cf(δ)

g−1
δi

”(b ∩ δi).

We claim that Cδ ≤∗ C is witnessed by a. So assume there is an x ∈ Fδ

such that a ⊆ x∩λ. But x is closed under the relevant bijections gδi
for

all i < cf(δ), hence b ⊆ x. By (3.2), x is in D and therefore x ∩ λ ∈ C.
This suffices. �

By Claim 3.1, we have found a collection of size λ+ of clubs in [λ]<κ

that is cofinal in the ≥∗-ordering. This finishes the proof. �

We remark that the simple cardinal arithmetic 2λ = λ+ implies that
there are λ+-many clubs in [λ]<κ such that the collection of all these
generates the club filter and is therefore cofinal in the ≥∗-ordering. It
will be shown in the next section of this article that tail club guess-
ing principles defined on ordinals of higher cofinality are considerably
stronger than that.

As to the possible failure of f∗(κ, S<κ
λ+ ), if λ is regular one can add

λ++-many Cohen-subsets of λ to create a model in which the equivalent
statements (i)-(iii) of Lemma 3 are false. We leave the details to the
interested reader.

4. Maximal cofinality

We assume GCH throughout this section and remember that κ and
λ are always assumed to be regular. Similar to previous notation, we
denote the set {γ < λ+ : cf(γ) = λ} by Sλ

λ+ . We want to investigate the
status of f∗(κ, Sλ

λ+): it will be shown that f∗(κ, Sλ
λ+) does not follow

from GCH which means that it is much stronger than f∗(κ, S<κ
λ+ ) and

cannot be characterized analogously to Theorem 3.
Let 〈Fδ : δ ∈ Sλ

λ+〉 be a f∗(κ, Sλ
λ+)-sequence. Then define a forcing

QF in the following way: conditions are functions f : <ωγ −→ γ, where
γ < λ+ is such that for all β ∈ Sλ

λ+ ∩ (γ + 1) we have that Fβ �∗ Cf ,
where Cf is the club generated by f . The ordering on QF is reverse
inclusion.

4 Lemma. QF is λ-closed and λ+-distributive.
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Proof. The λ-closure should be clear and to show λ+-distributivity, let
τ̇ be a name for an λ-sequence, g an arbitrary condition in QF , and M
an elementary substructure of Hθ for some sufficiently large regular θ
such that |M | = λ with F , g, τ̇ ∈ M , <λM ⊆ M , and δ = M∩λ+ ∈ Sλ

λ+ .
Fix a sequence 〈δi : i < λ〉 such that δi ↗ δ and let xi (i < λ) be an
enumeration of [δ]<κ. Now build a descending sequence of conditions
〈fi : i < λ〉 of M ∩QF with f0 ≤ g such that for all i < λ,

(1) <ωδi ⊆ dom(fi),
(2) fi decides the value of τ̇ at i,
(3) there is xi ⊆ y ∈ Fδ such that y is not closed under fi.

This construction can be carried out since QF is λ-closed. Now let
p =

⋃
i<λ fi. Note that dom(p) = <ωδ by (1). But then p is a condition

below g by (3) and decides τ̇ by (2). �

The argument for Lemma 4 also shows that every condition can
be properly extended by increasing its domain. Thus it follows that
a generic filter G ⊆ QF adds a club DG ⊆ [λ+]<κ whose existence
destroys the tail club guessing properties of 〈Fδ : δ ∈ Sλ

λ+〉. The rest of
the section depends heavily on iteration lemmas from [13], so we would
like to remind the reader of some definitions from that paper.

5 Definition. If S ⊆ Sλ
λ+ is stationary then a substructure M ≺ Hθ of

size λ will be called S-good whenever M∩λ+ ∈ S and M is closed under
countable sequences. A λ-closed forcing notion Q is called strongly S-
complete if for all but non-stationarily many S-good structures M we
have that every (M,Q)-generic sequence of conditions 〈qξ : ξ < λ〉 has
a lower bound in Q.

We chose not to reproduce Shelah’s notions in the most general form.
Our presentation here is basically a special case of the machinery in
[13]. The same holds for future definitions.

6 Lemma. Strongly S-complete forcings are λ+-distributive and pre-
serve stationary subsets of S. �

7 Remark. Let E ⊆ Sλ
λ+ be stationary. The poset QF(E) is like above

but with the weakened requirement that only for all β ∈ E ∩ (γ + 1) we
have that Fβ �∗ Cf . Then QF(E) is again λ-closed and λ+-distributive.
Moreover, if we let S = Sλ

λ+ \ E then QF(E) is strongly S-complete.

Proof. The proof for λ-closure and λ+-distributivity is as before in
Lemma 4. So we only have to show that QF(E) is strongly S-complete.
To this end, let N ≺ Hθ be an S-good elementary substructure of size
λ such that δ = N ∩λ+ ∈ S and let 〈pi : i < λ〉 be a QF(E)-generic se-
quence over N . We define p∗ =

⋃
i<λ pi. Then p∗ is clearly a condition

in QF(E) since S and E are disjoint and therefore δ /∈ E. �
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8 Definition. Let θ be a sufficiently large regular cardinal. A con-
tinuous increasing sequence (Ni : i ≤ λ) is called S-suitable if for all
i ≤ λ:

(1) Ni ≺ Hθ is of size λ,
(2) (Nξ : ξ ≤ i) ∈ Ni+1,

and there is a club X ⊆ λ such that for all i ∈ X

(3) Ni+1 is S-good.

9 Definition. A forcing notion Q is really S-complete if it is

(1) λ-closed,
(2) strongly S-complete, and
(3) whenever N̄ = (Ni : i ≤ λ) is S-suitable witnessed by the club

X ⊆ λ and r ∈ N0 ∩ Q then INC(omplete) does not have a
winning strategy in the following game G(N̄ ,X, r) of length λ:

COM ζ0, p0 . . . ζi, pi . . .
INC q̄0 . . . q̄i . . .

where for all i < λ
(a) ζi ∈ X and ζi < ζj for all i < j,
(b) pi ∈ Nζi+1 ∩Q,
(c) q̄i = (qi(ξ) : ξ < λ) ⊆ Nζi+1 ∩Q is Q-generic over Nζi+1,
(d) q̄i ∈ Nζi+2,
(e) r ≥ pi ≥ qi(0),
(f) qi(ξ) ≥ pj for all ξ < λ and i < j.

The player COM(plete) wins the play of the game iff the se-
quence (pi : i < λ) has a lower bound in Q.

10 Remark.

(i) Recalling the definitions above, we see that the sequences q̄i

played by INC will always have a lower bound in Q. This is be-
cause Q is S-complete, the sequence q̄i is Q-generic over Nζi+1,
and Nζi+1 is S-good.

(ii) Standard arguments show that really S-complete forcings pre-
serve all stationary subsets of λ+.

The following theorem is one of the crucial iteration lemmas of [13]
that will be used in the proof of Theorem 13.

11 Theorem. Let 〈Pi, Q̃i : i < γ〉 be a λ-support iteration such that
for each i < γ


Pi
“Q̃i is really S-complete.”

Then the forcing notion Pγ is really S-complete. �
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12 Lemma. Suppose E ⊆ Sλ
λ+ and S = Sλ

λ+ \ E are stationary. Then
QF(E) is really S-complete.

Proof. We already showed in Remark 7 that QF(E) is λ-closed and
strongly S-complete. So we are left with showing (3) of Definition 9.
To this end, let (Ni : i ≤ λ) be an S-suitable sequence witnessed by
the club X ⊆ λ and let r ∈ N0 ∩ Q. We actually describe a winning
strategy for player COM in the game G(N̄ ,X, r).

We have no problem unless δ = Nλ∩λ+ ∈ E. The following argument
is similar to the proof of Lemma 4: player COM creates his strategy
by fixing an enumeration xi (i < λ) of [δ]<κ. At stage i < λ, he picks
ζi ∈ X above all ζξ’s played so far with the additional requirements
that there is y ∈ Fδ such that xi ⊆ y and

(4.1) y *
⋃
ξ<i

Nζξ+1.

Then COM extends all conditions played so far to a pi such that

(4.2) pi 
 “y is not closed under the generic G”.

The requirement (4.1) guarantees that this can be carried out. But
now (pi : i < λ) has a lower bound in Q since we stipulated (4.2) for
unboundedly many y’s. �

13 Theorem. GCH does not imply f∗(κ, Sλ
λ+) for any ℵ0 < κ ≤ λ.

Proof. Start with a model of GCH and fix two sets E, S ⊆ Sλ
λ+ sta-

tionary such that E ∩ S = ∅. Now define a λ-support iteration of
length λ++. In each step i < λ++, we force with Q̃i

F(E) to deal with
a guessing sequence of the form 〈Fδ : δ ∈ Sλ

λ+〉 that is given to us by
a book-keeping device. Note that this will destroy the guessing prop-
erties of 〈Fδ : δ ∈ Sλ

λ+〉. Remember also that each Q̃i
F(E) is forced to

be really S-complete by Lemma 12. We have thus defined a λ-support
iteration of the form

〈Pi, Q̃i
F(E) : i < λ++〉,

so by Theorem 11 we conclude that P = Pλ++ is really S-complete.
Consulting Lemma 6 and Remark 10(ii), this is enough to make sure
that P is λ+-distributive and that all stationary subsets of λ+ are
preserved. Finally, P has the λ++-chain-condition by the standard line
of reasoning using the fact that every iterand has size ≤ λ+. The
λ++-chain-condition ensures, like in standard arguments, that every
sequence 〈Fδ : δ ∈ Sλ

λ+〉 appears at some initial step of the iteration,
so that every potential sequence is finally taken care of. With the
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properties just mentioned, it is also easy to see that P preserves GCH.
This finishes the proof. �

The authors do not know for a fact if GCH is consistent with the
failure of f∗(κ, S) for every stationary S ⊆ Sλ

λ+ since the methods
presented here cannot settle this question. It is conjectured though
that the older (and more involved) Shelah-techniques of [14] can be
applied to show that the above actually is consistent.

5. Suslin-trees

Let us turn to applications of the club guessing principles presented
above. We give an interesting application of f∗-sequences defined on
Sλ

λ+ . Again, assume that λ is regular throughout. The following theo-
rem of Shelah from [10, p.126] is used, where nacc(A) is the set of all
non-accumulation points of A, i.e. the set A \ lim(A).

14 Theorem. There is a sequence (Cα : α ∈ S) such that

(1) S ⊆ Sλ
λ+ is stationary

(2) Cα ⊆ α is a club of order-type λ
(3) nacc(Cα) ⊆ Sλ

λ+

(4) if D ⊆ λ+ is club then there is α ∈ S such that

sup(D ∩ nacc(Cα)) = α.

�

The application we present is the construction of a λ+-Suslin-tree
from GCH and f∗(λ, Sλ

λ+). Note that the consistency of GCH + “no
ω2-Suslin-trees” is still an open question. The following construction
originally raised hopes that GCH actually does imply the existence
of an ω2-Suslin-tree. But in light of Theorem 13, this old question is
now more open than ever. It should be mentioned that Jensen [7] was
the first to construct a λ+-Suslin-tree in a similar fashion but using
stronger square- and guessing-principles in the constructible universe.

15 Theorem. 2<λ = λ + 2λ = λ+ + f∗(λ, Sλ
λ+) implies the existence

of a λ-closed λ+-Suslin-tree.

Proof. Fix enumerations P(α) = {Wα
γ }γ<λ+ for all α < λ+ and then

define Wα
X = {Wα

γ }γ∈X . Let (Cα : α ∈ S) be as in Theorem 14, where

we enumerate Cα = {αξ}ξ<λ. Furthermore, take 〈Fδ : δ ∈ Sλ
λ+〉 to be

f∗(λ, Sλ
λ+)-guessing. Remember that Fδ is club in [δ]<λ and |δ| = λ, so

we may assume without restriction that Fδ is of the form (F ξ
δ : ξ < λ)

such that

• F ξ
δ ∈ [δ]<λ for all ξ < λ,
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• the sequence (F ξ
δ : ξ < λ) is continuously (-increasing, and

• αξ+1 ∈ F ξ+1
α .

Now construct a binary λ+-tree T by induction on the levels so that
the following holds for every α < λ+:

(5.1) For every x ∈ T<α there is y ∈ Tα such that x <T y,

and simultaneously carry along an enumeration of T in the usual way.
To start, let T0 = λ. Once T≤α is constructed, let every x ∈ Tα

have exactly two successors at level (α + 1). If cf(α) < λ then Tα

extends all branches through T<α and if α ∈ Sλ
λ+ \ S then choose any

normal extension Tα of size λ. If α ∈ S then for any x ∈ T<α we will
construct a branch bx through x and cofinal in T<α: first pick ξ0 < λ
such that αξ0 is larger than the height of x and pick xξ0 ∈ Tαξ0

above
x. Now by induction on ξ ∈ [ξ0, λ) we will construct xξ ∈ Tαξ

as
follows: if xξ is constructed, then pick xξ+1 ∈ Tαξ+1

above xξ, so that

the branch determined by xξ+1 intersects with all A ∈ W
αξ+1

F ξ+1
α

that are

maximal antichains in T<αξ+1
. Note that this is possible because αξ+1

has cofinality λ and we are diagonalizing through less than λ-many
antichains. If ξ < λ is a limit, then let xξ be the limit of {xη}ξ0≤η<ξ

in T<α. At the end of the day, let bx be the α-branch determined by
{xξ}ξ0≤ξ<λ.

Now set Tα = {bx : x ∈ T<α} and T =
⋃

α<λ+ Tα. Note that by an
easy inductive argument, (5.1) was achieved at all levels. The following
claim will finish the proof.

15.1 Claim. T has no antichains of size λ+.

Proof of Claim 15.1. Assume that A is a maximal antichain of size
λ+ and let the function f : λ+ −→ λ+ be defined by f(α) = γ iff
A ∩ α = W α

γ . Then define the club

D = {δ < λ+ : A ∩ δ is a maximal antichain in T<δ and T<δ = δ}.
Now we can use both guessing sequences simultaneously to find δ ∈ S
such that

(5.2) sup(D ∩ nacc(Cδ)) = δ and

(5.3) each set in a tail of Fδ is closed under f .

If b ∈ Tδ then by construction there is x ∈ T<δ such that b = bx.
Applying (5.2) and (5.3), there is ξ < λ such that

• ht(x) < δξ+1,
• δξ+1 ∈ D, and

• F ξ+1
δ is closed under f .
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This means, again by construction, that bx ∩ A ∩ δξ+1 6= ∅, since

A ∩ δξ+1 ∈ W
δξ+1

F ξ+1
δ

as δξ+1 ∈ F ξ+1
δ and F ξ+1

δ is closed under f . So bx∩A 6= ∅, which shows
that A is sealed off at δ. �

�

6. Stationary reflection

We would like to shift the attention to the following question which
was asked in [2], [3], [4], and other places in the literature. This question
has been formulated in various ways, but the basic problem reads:

16 Question. Are the following equivalent for a regular λ?

• every stationary E ⊆ [λ]ℵ0 reflects to a set X of size ℵ1 con-
taining all countable ordinals.3

• every stationary E ⊆ [λ]ℵ0 reflects to a set X of size ℵ1 con-
taining all countable ordinals with the additional property that
cf(otp X) = ω1.

Using the principle f∗(ℵ1, S
ω
λ ), we can now shed new light on this

question even though the most general case seems to be still open.
Remember that Sω

λ denotes the collection of all ω-cofinal ordinals below
the cardinal λ.

17 Definition. If B ⊆ [λ]ℵ0 and x ∈ [λ]ℵ0 then we define

B(x) = {y ∈ B : x ⊆ y},

the set of all supersets of x in B. Furthermore, the union of all supersets
of x in B, i.e. ⋃

B(x) =
⋃
{y ∈ B : x ⊆ y},

is said to be the B-coverage of x.

We need the following sequence of lemmas.

18 Lemma. If B ⊆ [λ]ℵ0 then we can partition B into two sets B(0)

and B(1) such that

(1) B(0) has no (-increasing chains of length ω1, and
(2) every x ∈ B(1) has uncountable B(1)-coverage.

3Following [3], we say for short that E reflects to X.
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Proof. Given B ⊆ [λ]ℵ0 , we iteratively remove all sets with countable
coverage, i.e. define

B0 = B
Bξ+1 = {x ∈ Bξ : x has uncountable Bξ-coverage}
Bξ =

⋂
ζ<ξ

Bζ if ξ is limit.

There must be an ordinal ∞ such that B∞ = B∞+1. Then set

B(1) = B∞ and B(0) = B \ B(1).

Clearly, every member of B(1) has uncountable B(1)-coverage because
B∞ = B∞+1. On the other hand it is straightforward to check that, by
construction of the Bξ’s, B(0) does not contain any (-increasing chains
of length ω1. �

19 Lemma. Suppose B ⊆ [λ]ℵ0 for some regular λ and xα (α < γ) is a
(possibly incomplete) list of members of B. For each α < γ, assume that
Aα is a ⊆-cofinal subset of B(xα) that does not contain any continuous,
increasing (-chains of length ω + 1. Define a sequence A′

α (α < γ)
inductively:

A′
α = {y ∈ Aα : ∀ξ < α ∀x ∈ A′

ξ y * x and x * y}.

Then A′ =
⋃

α<γ A′
α is cofinal in

⋃
α<γ B(xα) and contains no contin-

uous, increasing (-chain of length ω + 1.

Proof. The proof is by induction on γ. To check cofinality, consider an
x ∈ B(xα) for some α < γ. Since Aα is ⊆-cofinal in B(xα), we may
assume that x ∈ Aα. Without loss of generality, x /∈ A′

α and x is not
contained in any member of

⋃
ξ<αA′

ξ. So there must be an a ∈ A′
ξ for

some ξ < α such that a ⊂ x. But note that by induction hypothesis,⋃
ζ<αA′

ζ is ⊆-cofinal in
⋃

ζ<αAζ . Note also that Aξ ∩B(a) is ⊆-cofinal

in B(a). Thus, there must be y ∈
⋃

ζ<αA′
ζ such that x ⊆ y.

The lack of continuous, increasing (-chains of length ω + 1 in A′

follows by construction, using the fact that no individual Aα contains
such a sequence. �

20 Lemma. Assume CH and 1 ≤ n < ω. Let B ⊆ [ωn]ℵ0 be such
that every member of B has uncountable B-coverage. Then there is
A ⊆ B which is ⊆-cofinal in B but contains no continuous, increasing
(-sequence of length ω + 1.

Proof. We go by induction on n. The following claim is crucial.



GUESSING CLUBS IN THE GENERALIZED CLUB FILTER 13

20.1 Claim. Assume that every y ∈ B(x) has B-coverage of cardinality
ωn. Then there is A(x) which is ⊆-cofinal in B(x) such that A(x) does
not contain any continuous, increasing (-chains of length ω + 1.

Proof of Claim 20.1. Enumerate B(x) = {xα : α < ωn}, this uses CH.
For each α < ωn, choose yα ∈ B(xα) such that

yα *
⋃
ξ<α

yξ,

or in other words, every yα contains a brand new ordinal. Then the set
A(x) = {yα : α < ωn} contains no continuous, increasing (-chains of
length ω + 1. �

So we have two cases in which we can thin out a set B(x) to a
⊆-cofinal A(x) which contains no continuous, increasing (-chains of
length ω + 1.

Case 1: if every superset of x in B has B-coverage of cardinality ωn,
this is by Claim 20.1.

Case 2: if x has B-coverage of cardinality less than ωn, this is by
induction hypothesis.

It is straightforward to check that the set of x ∈ B satisfying Case 1
or Case 2 is ⊆-cofinal in B. So we a have a situation that allows us to
apply Lemma 19. This finishes the proof. �

21 Lemma. Assume CH and 1 ≤ n < ω. Then for every B ⊆ [ωn]ℵ0

there is an A ⊆ B such that A is ⊆-cofinal in B and A does not reflect
to any set of size ℵ1.

Proof. First partition B into two pieces as in Lemma 18. Then apply
Lemma 20 to the piece B(1) to get an A(1) ⊆ B(1). Now B(0) ∪A(1) will
do the job. �

22 Theorem. Assume CH and f∗(ℵ1, S
ω
ωn

) for some 2 ≤ n < ω. Then
every stationary B ⊆ [ωn]ℵ0 can be refined to a stationary A ⊆ B with
the property that {x ∈ A : sup(x) = γ} does not reflect to a set of size
ℵ1 for all γ ∈ Sω

ℵn
.

Proof. Let F ⊆ [ωn]ℵ0 be as stated in Theorem 3(ii). We may assume
that every element of F has limit order type with a supremum in Sω

ℵn
.

For each η ∈ Sω
ℵn

, let Fη = {x ∈ F | sup(x) = η}. If B ⊆ [ωn]ℵ0 is
stationary, we may also assume that B ⊆ F . For every η ∈ Sω

ℵn
, apply

Lemma 21 to find a ⊆-cofinal Aη ⊆ B∩Fη such that A does not reflect
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to any set of size ℵ1. Let

A =
⋃

η∈Sω
ℵn

Aη.

It suffices to show that A is stationary, so pick a club D ⊆ [ωn]ℵ0 . We
may assume that D ⊆ F . Let D∗ be the set of x ∈ [ωn]ℵ0 containing
increasing ordinals 〈µi | i < ω〉 such that

• supi<ω µi = sup x,
• D ∩ [µi]

ℵ0 is club in [µi]
ℵ0 for each i < ω,

• every element of F ∩ [µi]
ℵ0 containing x ∩ µi is in D.

It is easy to see that D∗ is club. Now pick x ∈ B∩D∗ and let sup x = η.
Then x ∈ B ∩ Fη, and thus there is y ∈ Aη containing x. By the
definition of D∗ we have y ∩ µi ∈ D for each i < ω, and therefore
y ∈ D ∩A. �

23 Corollary. Assume CH and 2ℵn−1 = ℵn for some 2 ≤ n < ω. If
every stationary subset of [ωn]ℵ0 reflects, then every stationary subset
of [ωn]ℵ0 reflects to a set of ordinals of uncountable ordertype.

Proof. Directly from Theorems 3 and 22. �

If n = 2 then we can get by without CH.

24 Corollary. Assume 2ℵ1 = ℵ2. If every stationary subset of [ω2]
ℵ0

reflects, then every stationary subset of [ω2]
ℵ0 reflects to a set of ordinals

of uncountable ordertype.

Proof. Note that if E ⊆ [ω2]
ℵ0 is stationary, we may assume that

E = {δ ∈ Sℵ0
ℵ2

: E ∩ [δ]ℵ0 is stationary in [δ]ℵ0}
is stationary. Otherwise, throw away all elements of E whose supremum
is in E to reach the conclusion of the corollary.

So given that E is stationary, we can do without Lemmas 18-21: if
E ∩ [δ]ℵ0 is stationary for some δ < ω2, it is straightforward to find
an unbounded subset thereof which contains no continuous, increasing
(-sequence of length ω + 1. Now repeat the proof of Theorem 22. �

So the outcome of this section is that the Generalized Continuum
Hypothesis is enough to provide a partial answer to Question 16 but we
were not able to push the method beyond ℵω. It is possible that similar
arguments can be carried out for higher cardinals but there are some
problems. For instance, Lemma 20 is false if we replace the cardinal
ωn with ωω: assuming that ℵω is strong limit, Shelah [12] constructs a
club subset of [ωω]ℵ0 with the property that every unbounded subset
of it is stationary.
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To wrap things up, let us mention a result communicated to us by
Donder which says that, in the constructible universe, a much better
refinement than Theorem 22 is possible. This is the following fact
which has also been established independently by Sakai [9].

25 Theorem. In L, for all uncountable regular λ, every stationary
B ⊆ [λ]ℵ0 can be refined to a stationary A ⊆ B such that the sup-
function on A is 1-1.

The interested reader will find that the proof of Theorem 25 is pretty
close to the usual condensation argument that ♦λ holds in L. Note
that the conclusion of Theorem 25 is stronger than the conclusion of
Theorem 21 but it also requires the stronger assumption of V = L. In
[9], Matsubara and Sakai use a model of Gitik [5] to show that there can
be an inaccessible cardinal λ and a stationary B ⊆ [λ]ℵ0 such that B
cannot be thinned out to a stationary subset on which the sup-function
is 1-1. But it seems to be open whether the same can happen if λ is a
successor cardinal. In other words, the answer to the following question
is not known:

26 Question. Let λ > ω1 be a successor cardinal. Is it possible to
prove in ZFC that every stationary B ⊆ [λ]ℵ0 can be thinned out to a
stationary A ⊆ B on which the sup-function is 1-1?
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