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Abstract

We prove an induction step that can be used to show that in certain
cases the removal of finitely many points from a product space produces an
irreducible space. For example, we show that whenever γ is less than ℵω,
removing finitely many points from the product of γ many first countable
compact spaces gives an irreducible space. This result answers questions
asked privately by Alexander Arhangel’skii.

If O is a collection of open sets corresponding to some topological space, we
call O′ an open refinement of O if every member of O′ is an open set and a
subset of a member of O. A collection S of sets is said to be minimal if for each
S ∈ S there is an x ∈ S which is not in any other member of S. A topological
space is said to be irreducible if every open cover of the space has a minimal
open refinement covering the space (see [1, 2, 3, 4]). In this note we prove an
induction step which can be used to show in certain cases that the removal
of finitely many points from a product space yields an irreducible space. This
induction step applies to regular limits, and the most immediate question left
open is how to get past singular ones. One larger project, as we understand
it, is to collect examples of noncompact irreducible spaces, though we cannot
claim expertise on this topic.

A cube in a product space X =
∏

a∈A Xa is a set of the form

IA
f = {x ∈ X | ∀a ∈ dom(f) x(a) ∈ f(a)}

for some finite function f with domain contained in A such that each f(a) is an
open subset of Xa. We call the domain of f the support of IA

f . We say that a
subspace Y of a product space X is cube-irreducible if every cover of Y by open
subsets of X has a minimal open refinement covering Y and consisting of cubes.
Note that every compact subspace of a product space is cube-irreducible.

Following [5], we say that a topological space X is (γ,∞)-compact if every
open cover of X has a subcover of cardinality less than γ.

∗The work in this paper was supported in part by NSF Grant DMS-0401603. The au-
thor would also like to thank Alexander Arhangel’skii, Dennis Burke and Sheldon Davis for
introducing him to this topic.
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Theorem 0.1 below gives an argument that applies to the removal of one point
from a product space, and Theorem 0.2 gives a slightly generalized argument
that handles the removal of finitely many points. One could naturally ask about
the removal of infinite sets satisfying certain conditions.

Note that condition (1) in Theorem 0.1 and Theorem 0.2 are satisfied when
each Xα is compact and first countable, since then the removal of finitely many
points from Xα produces a Lindelöf space, and the product of a Lindelöf space
with a compact space is Lindelöf.

Theorem 0.1. Let κ be an uncountable regular cardinal. For each α < κ let
Xα be a topological space and let eα be a point in Xα. For each A ⊂ κ, let
X(A) denote

∏
α∈A Xα, and let e(A) denote the element of X(A) whose α-th

coordinate is eα for each α ∈ A. Suppose that the following hold:

1. for all α < κ, (Xα \ {eα})×X(κ \ (α + 1)) is (κ,∞)-compact;

2. for all β < γ < κ, X([β, γ)) \ {e([β, γ))} is irreducible.

Then X(κ) \ {e(κ)} is irreducible. Furthermore, if for all β < γ < κ,

X([β, γ)) \ {e([β, γ))}
is cube-irreducible, then so is X(κ) \ {e(κ)}.
Proof. Since every open subset of X(κ) \ {e(κ)} is a union of cubes in X(κ)
not containing e(κ), it suffices to consider the case where O is a set of cubes in
X(κ) not containing e(κ) which covers X(κ) \ {e(κ)}. It follows that for every
Iκ
f ∈ O, eα 6∈ f(α) for some α ∈ dom(f). For each α < κ, let Eα be a subset

of O of cardinality less than κ covering the set of z ∈ X(κ) for which α is the
least β < κ such that z(β) 6= eβ . We may assume that whenever f is a function
defining a cube in Eα and β ∈ dom(f)∩α, then eβ ∈ f(β). Since for each α < κ
the union of the supports of the members of Eα is a bounded subset of κ, and
since κ is regular, we may fix a club subset C of κ with 0 ∈ C such that for
each β ∈ C and each α < β, the support of each member of Eα is contained in
β. For each β ∈ C, let Yβ be the set of z ∈ X(κ) for which the least α such
that z(α) 6= eα is in the interval [β, c(β)), where c(β) is defined to be the least
element of C above β.

Then for each β ∈ C, Oβ =
⋃{Eα | α ∈ [β, c(β))} is a covering of Yβ and

{I [β,c(β))

f¹[β,c(β))
| Iκ

f ∈ Oβ} is a covering of X([β, c(β)))\{e([β, c(β)))}, which can be

refined to a minimal open covering Uβ of X([β, c(β))) \ {e([β, c(β)))}. For each
open set O in each Uβ , pick a function f such that Iκ

f ∈ Oβ and O ⊂ I
[β,c(β))

f¹[β,c(β))

and let F (O) be the set of z ∈ X(κ) such that z¹[β, c(β)) ∈ O and z ∈ Iκ
f . Note

that for such an f , eα ∈ f(α) for every α ∈ dom(f) ∩ β, and also that if O is a
cube then so if F (O).

Then O∗ = {F (O) : O ∈ ⋃{Uβ | β ∈ C}} is an open refinement of O. It
remains to see that O∗ covers X(κ) \ {e(κ)} and is minimal.

To see that O∗ covers X(κ) \ {e(κ)}, fix z ∈ X(κ) \ {e(κ)} and let β be
the least γ ∈ C such that z(α) 6= eα for some α in the interval [γ, c(γ)). Then
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z¹[β, c(β)) is in some member O of Uβ , and since z(α) = eα for all α < β, z is
in F (O).

To see that O∗ is minimal, fix β < κ and O ∈ Uβ . Since Uβ is a minimal cover
of X([β, c(β))) \ {e([β, c(β)))}, there exists a z0 ∈ X([β, c(β))) \ {e([β, c(β)))}
which is not an element of any member of Uβ other than O. Let z ∈ X(κ) be
the extension of z0 taking value eα at each α outside of [β, c(β)). Then z is not
a member of any F (O′) for any O′ 6= O in Uβ , and for each β′ ∈ κ \ {β} and
each O′ ∈ Uβ′ , z is not in F (O′), since every element of O′ takes value other
than eα at some point α ∈ [β′, c(β′)).

If s is a function with domain an ordinal, we let l(s) denote the domain
(equivalently, the length) of s.

Theorem 0.2. Let κ be an uncountable regular cardinal. For each α < κ let Xα

be a Hausdorff topological space. For each A ⊂ κ, let X(A) denote
∏

α∈A Xα.
Let E = {ei : i < n} be a subset of X(κ) and for each A ⊂ κ let E(A) denote
{ei¹A | i < n}.

Let Σ denote {ei¹γ | i < n ∧ γ < κ}, and for each s ∈ Σ let N(s) denote the
set of x ∈ Xl(s) such that s_〈x〉 ∈ Σ. For each s ∈ Σ and each γ ∈ (l(s), κ), let
M(s, γ) denote

{x¹[l(s), γ)) | x ∈ X(γ) ∩ Σ ∧ s ⊂ x}.
Suppose that the following hold:

1. for all s ∈ Σ,
(Xl(s) \N(s))×X(κ \ (l(s) + 1))

is (κ,∞)-compact;

2. for all s ∈ Σ and all γ ∈ (l(s), κ), X([l(s), γ)) \M(s, γ) is irreducible.

Then X(κ) \E is irreducible. Furthermore, if for all s ∈ Σ and all γ ∈ [l(s), κ),
X([l(s), γ)) \M(s, γ) is cube-irreducible, then so is X(κ) \ E.

Proof. Fix an open covering O of X(κ)\E. Since every open subset of X(κ)\E
is a union of cubes disjoint from E, it suffices to consider the case where O is a
set of cubes disjoint from E covering X(κ)\E. Then for every Iκ

f ∈ O and each
e ∈ E there is a β ∈ dom(f) such that e(β) 6∈ f(β). Let D be a finite subset of
κ such that for each pair ei, ej of distinct elements of E there is an α ∈ D such
that ei(α) 6= ej(α). For each α in D, fix disjoint open subsets O(i, α) (i < n)
of Xα containing ei(α) but no ej(α), j 6= i. We may assume furthermore that
for each function f with Iκ

f ∈ O, D ⊂ dom(f) and, for each α ∈ D and i < n,
if ei(α) ∈ f(α) then f(α) ⊂ O(i, α).

For each s ∈ Σ, let Vs be a subset of O of cardinality less than κ covering the
set of z ∈ X(κ) such that s ⊂ z and for which l(s) is the least β < κ such that
z¹β 6∈ Σ (note that this set, and thus Vs, might be empty). We may assume
that whenever f is a function defining a cube in Vs and β ∈ dom(f) ∩ l(s),
s(β) ∈ f(β). For each α < κ, the union of the supports of the members of all
the Vs with l(s) < α is a bounded subset of κ, and so we may fix a club subset
C of κ satisfying the following:
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• 0 ∈ C;

• C ∩ ((max(D) + 1) \ {0}) = ∅;
• each nonzero element of C is a limit ordinal;

• for each β ∈ C and each s ∈ Σ with l(s) < β, the support of each member
of Vs is contained in β.

For each s ∈ Σ with l(s) ∈ C, let Ys be the set of z ∈ X(κ) such that s ⊂ z and
for which the least α such that z¹α 6∈ Σ is in the interval (l(s), c(l(s))), where
for each β < ω1, c(β) is defined to be the least element of C above β.

Then for each s ∈ Σ with l(s) ∈ C,

Os =
⋃
{Vt | s ⊂ t ∧ t ∈ Σ ∧ l(t) ∈ [l(s), c(l(s)))}

is a covering of Ys and

{I [l(s),c(l(s)))

f¹[l(s),c(l(s))) | I
κ
f ∈ Os}

is a covering of X([l(s), c(l(s))))\M(s, c(l(s))), which can be refined to a minimal
open covering Us of X([l(s), c(l(s))))\M(s, c(l(s))). For each open set O in each
Us, pick a function f such that Iκ

f ∈ Os and O ⊂ I
[l(s),c(l(s)))

f¹[l(s),c(l(s))) and let F (O)

be the set of z ∈ X(κ) such that z¹[l(s), c(l(s))) ∈ O and z ∈ Iκ
f . Note that for

such an f , s(α) ∈ f(α) for every α ∈ dom(f) ∩ l(s). Note also that if O is a
cube then so if F (O).

Then O∗ = {F (O) : O ∈ ⋃{Us | s ∈ Σ∧ l(s) ∈ C}} is an open refinement of
O. It remains to see that O∗ covers X(κ) \ E and is minimal.

To see that O∗ covers X(κ) \ E, fix z ∈ X(κ) \ E and let β be the least
γ ∈ C such that z¹α 6∈ Σ for some α in the interval (γ, c(γ)). Then z¹β ∈ Σ,
z¹[β, c(β)) is in some member O of Uz¹β , and z is in F (O), since for each α < β

and each Iκ
f ∈ Oz¹β , z(α) ∈ f(α).

To see that O∗ is minimal, fix s ∈ Σ with l(s) ∈ C and fix O ∈ Us. Since
Us is a minimal cover of X([l(s), c(l(s)))) \ M(s, c(l(s))), there exists a z0 ∈
X([l(s), c(l(s)))) \ M(s, c(l(s))) which is not an element of any member of Us

other than O. Fix i < n as follows. If l(s) = 0, let i be the unique j < n
such that z0(α) ∈ O(j, α) for all α ∈ D, if such a j exists, and if no such j
exists let i = 0. If l(s) > 0, let i be the unique j such that s ⊂ ej . Let
z = z0 ∪ (ei¹(κ \ [l(s), c(l(s))). Then z ∈ X(κ) \ E, and z is not a member of
any F (O′) for any O′ 6= O in Us.

Suppose that l(s) 6= 0 and fix s′ ∈ Σ such that l(s′) ∈ C and s′¹D 6= s¹D.
Fix α ∈ D such that s(α) 6= s′(α). Since s(α) 6∈ f ′(α) for all functions f ′ with
Iκ
f ′ ∈ Os′ , z is not in F (O′) for any O′ ∈ Us′ .

Now, suppose that s′ ∈ Σ, l(s′) ∈ C \ {l(s)} and s′¹D = s¹D or l(s) = 0.
Then s′ is an initial segment of s or vice-versa. First, suppose that s′ is an initial
segment of ei (which subsumes the subcase s′ ⊂ s). Then ei¹[l(s′), c(l(s′))) 6∈ O′

for any O′ ∈ Us′ , and so z 6∈ F (O′), since [l(s′), c(l(s′))) ⊂ (κ \ [l(s), c(l(s)))).
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Finally, if s′ is not an initial segment of ei (in this case l(s) = 0, though we
don’t use this fact), then s′ is an initial segment of some ej and for some α ∈ D,
z(α) is not in O(j, α). Then every F (O′) for some O′ ∈ Us′ is a subset of Iκ

f ′ for
a function f ′ with the property that O(j, α) ⊂ f ′(α), and so z 6∈ F (O′).

0.3 Remark. One could weaken condition (2) in the statement of Theorem 0.2
to say that (a) for all γ < κ, X([0, γ)) \ M(∅, γ) is irreducible, and (b) there
exists a ρ < κ such that for all s ∈ Σ of length greater than ρ and for all
γ ∈ (l(s), κ), X([l(s), γ)) \M(s, γ) is irreducible. Then in the proof, make the
least nonzero element of C greater than ρ and max(D). One has in this case
that M(s, γ) is a singleton for each nonempty s ∈ Σ with l(s) ∈ C.

Naturally, one would like to improve the proofs of Theorem 0.1 and Theorem
0.2 to get past singular limits. Another natural issue is to find base cases for the
induction steps proved above. The following fact follows easily from standard
arguments.

Theorem 0.4. The removal of finitely many points from a countable product
of first countable compact spaces produces a cube-irreducible space.

Adding this to Theorem 0.2, one gets the following.

Corollary 0.5. The removal of finitely many points from a product of less than
ℵω many first countable compact spaces produces a cube-irreducible space.
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