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A CHOICE FUNCTION ON COUNTABLE SETS, FROM

DETERMINACY

PAUL B. LARSON

Abstract. We prove that ADR implies the existence of a definable class func-

tion which, given a countable set X, a tall ideal I on ω containing Fin and a
function from I \ Fin to X which is invariant under finite changes, selects a

nonempty finite subset of X. Among other applications, this gives an alter-

nate proof of the fact (previously established by Di Prisco-Todorcevic [2]) that
there is no selector for the E0 degrees in the P(ω)/Fin-extension of a model

of ADR.

An ideal I on ω is said to be tall if every infinite subset of ω contains an infinite
member of I. In this paper we show that, assuming the Axiom of Real Determinacy
(ADR), there is a definable procedure which, given a tall ideal on ω containing Fin
(the ideal of finite subsets of ω), and a function on I \Fin which is invariant under
finite changes and has countable range, selects a nonempty finite subset of the
range of this function. In the case we are most interested in, I is generated by
a countable collection of pairwise orthogonal ideals. In this context, these ideals
represent a P(ω)/Fin-name for an element of a countable set from the ground
model. Our result (Theorem 3.3) has the following consequence (Corollary 3.4) : if

• M [U ] is a P(ω)/Fin-extension of a model M of ADR,
• F is a function in M [U ] with domain Y ∈M ,
• G is a function in M with domain Y such that, for all y ∈ Y , G(y) is

countable and F (y) is a finite nonempty subset of G(y),

then there exists a function G′ in in M with domain Y such that, for all y ∈ Y ,
G′(y) is a nonempty finite subset of G(y). This gives another proof of a theorem
of Di Prisco-Todorcevic [2] (see also [6]) that there is no function in M [U ] which
selects a single member from each E0-equivalence class (where E0 is the relation of
mod-finite agreement on P(ω)). Since the finite sets of E0 degrees can be injectively
embedded into the (individual) E0 degrees in a Borel fashion, this also implies that
whenever F is an equivalence relation on P(ω) in M whose equivalence classes are
countable unions of E0-classes, if a function in M [U ] picks an E0 subclass for each
F -class, then such a function exists already in M .

In the final section of the paper (Section 5) we note that “finite” cannot be
replaced with “size n” in our result, for any positive n ∈ ω. In particular, since
ADR implies that all sets of reals have the property of Baire, for any fixed positive
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n ∈ ω it is not possible in this context to pick n members from each countable
family of orthogonal ideals generating a tall ideal.

1. Strategically selective ideals

Given a sequence 〈xn : n ∈ ω〉 consisting of subsets of ω, a fast selector for this
sequence is a set {bi : i ∈ ω} (listed in increasing order) such that b0 ∈ x0 and
bi+1 ∈ xbi for all i ∈ ω. Given an ideal I on ω, we let G(I) be the game where
players Noselector (who moves first) and Selector alternately pick the members of
a ⊆-decreasing sequence of I-positive sets, with Selector winning if the sequence
produced has a fast selector in I+. We say that an ideal I is strategically selective
if Noselector does not have a winning strategy in G(I). The proof of Theorem 1.1
below consists of combining work of Martin, Solovay and Woodin with Mathias’s
proof [4] that ADR implies that there are no tall selective ideals.

Theorem 1.1 ([3]). If ADR holds, then there are no tall strategically selective ideals
on ω.

It follows that under ADR, the strategically selective ideals are exactly those
ideals I such that every infinite A ⊆ ω contains an infinite B ⊆ ω with P(B) ∩ I
containing no infinite set.

For the definition of strategically selective ideals, it is appropriate for Noselector
to move first, but for the purposes of this paper Selector moves first in the relevant
game. We therefore let G′(I) be modified game in which Selector moves first, and
again the two players alternately pick the members of a ⊆-decreasing sequence of
I-positive sets, with Selector winning if the sequence produced has a fast selector in
I+. Theorem 1.1 implies that under ADR, Noselector still has a winning strategy
in this game whenever I is a tall ideal on ω.

Corollary 1.2. If ADR holds, then Noselector has a winning strategy for G′(I)
whenever I is a tall ideal on ω.

2. Embedding the Baire space

For each ⊆-decreasing sequence x̄ = 〈xn : n ∈ ω〉 consisting of infinite subsets of
ω, we recursively define an association of finite sequences σ ∈ ω<ω to finite subsets
zx̄σ ⊆ ω as follows.

• zx̄〈〉 = ∅;
• zx̄σ_〈0〉 = zx̄σ ;

• if σ has length n, i is an element of ω, and zx̄σ = ∅, then zx̄σ_〈i+1〉 is the

singleton containing the ith member of xn, where the least member is taken
to be the 0th member.

• if σ has length n and i is an element of ω, zx̄σ is nonempty, and r is the
largest member of zx̄σ , then zx̄σ_〈i+1〉 is the union of zx̄σ with the singleton

containing the ith member of xr+n greater than all elements of zx̄σ .

Let πx̄ be the continuous embedding of the Baire space into P(ω) induced by the
assignment σ 7→ zx̄σ . Comeagerly many members of the Baire space map to infinite
sets, and all of these are fast selectors for 〈xn : n ∈ ω〉.
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2.1 Remark. Given x̄ as above, and σ0, σ1 ∈ ω<ω, there exist τ0, τ1 ∈ ω<ω such
that σ_0 τ0 and σ_1 τ1 have the same length, and zx̄σ_

0 τ0 and zx̄σ_
1 τ1 have the same

maximal element. Furthermore, given ρ0, ρ1 ∈ ω<ω with the same length, if k is
the maximal element of both zx̄ρ0 and zx̄ρ1 , then for all w ∈ ωω,

πx̄(ρ_0 w) \ k = πx̄(ρ_0 w) \ k.

These observations are used in the first paragraph of the proof of Theorem 3.2.

2.2 Definition. Let x̄ = 〈xn : n ∈ ω〉 and ȳ = 〈yn : n ∈ ω〉 be ⊆-decreasing
sequences of infinite subsets of ω. We say that x̄ and ȳ are eventually intertwining
if there exist n,m ∈ ω such that for all k ∈ ω,

ym+k+1 ⊆ xn+k+1 ⊆ ym+k ⊆ xn+k.

The family of embeddings πx̄ was defined in order to make the following lemma
hold.

Lemma 2.3. Let x̄ and ȳ be eventually intertwining sequences of infinite subsets
of ω, and let C be a comeager subset of the Baire space. Then there exist a, b ∈ C
such that πx̄(a) = πȳ(b).

Proof. We recursively define σn, τn in ω<ω for n ∈ ω as follows, maintaining the
following conditions for all n ∈ ω:

• σn ⊆ σn+1;
• τn ⊆ τn+1;
• zx̄σn

= zȳτn .

Let n0,m0 ∈ ω witness that x̄ and ȳ are eventually intertwining. Let σ0 consist of
n0 many 0’s followed by a+ 1, and let τ0 consist of m0 many 0’s, followed by b+ 1,
where the a-th member of xn0

is the same as the b-th member of ym0
, and greater

than both n0 and m0. Suppose now that n ∈ ω, σn and τn have been chosen. We
need to see that, given a dense set D ⊆ ω<ω, we can choose σn+1 and τn+1 as
above so that σn+1 ∈ D (we need to do this also for the τn’s, but the argument
is symmetric). If necessary, we first extend σn with 0’s to a sequence σ′n of length
at least |τn| + (n0 − m0 + 1). Let σn+1 be any extension of σ′n in D. Suppose
that 〈i0, . . . , ip〉 is the sequence added to σ′n to make σn+1. We can add a sequence
〈j0, . . . , jp〉 to τn to make τn+1, in such a way that for all q ≤ p,

zx̄(σ′n)_〈i0,...,iq〉 = zȳτ_
n 〈j0,...,jq〉

.

For each q ≤ p, let jq = 0 if and only if iq = 0. Given q ≤ p such that iq > 0,
zx̄(σ′n)_〈i0,...,iq〉 has length at least 2. Let r < s be its top two elements. Then s is

in x|σ′n|+q+r, and therefore in y|τn|+q+r. It follows then that jq can be chosen as
desired, so that s is the (jq − 1)-th member of y|τn|+q+r greater than all elements
of zx̄(σ′n)_〈i0,...,iq−1〉. �

3. Extending a function on an ideal

3.1 Definition. Let I be an ideal on ω containing Fin, and let J be a set of
ideals on ω. We say that the members of J are pairwise I-orthogonal if x ∩ y ∈ I
whenever J0 and J1 are distinct elements of J , and x and y are elements of J0

and J1 respectively. We let FCI(I,J ) (the finite covering ideal) denote the ideal
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generated by I ∪
⋃
J . For each x ∈ FCI(I,J ) \ I, the set of J ∈ J such that

x∩y ∈ I+ for some y ∈ J is finite and nonempty. We call this set C(I,J , x) below.
The following is our main result. In Theorems 3.2 and 3.3, the formula defining

the specified operation can be extracted from the proof, but we leave this to the
interested reader.

Theorem 3.2. Suppose that ADR holds. There exists a definable operation which
takes in a nonempty countable set X, a tall ideal I on ω containing Fin and a
function

f : (I \ Fin)→ ([X]<ω \ {∅})
which is invariant under finite changes, and returns a nonempty set X ′ ⊆ [X]<ω

and a collection of pairwise I-orthogonal ideals {Ja : a ∈ X ′} such that each Ja
properly contains I and every I-positive set contains an I-positive set in some Ja.

Proof. By Corollary 1.2, Noselector has a winning strategy Γ in the game G′(I).
Suppose now that x̄ is the sequence of moves played by Noselector in some run of
G′(I) which has been won by Noselector. The function f ◦ πx̄ maps a comeager
subset of the Baire space into a countable set. Since all sets of reals have the Baire
property, and f is invariant under finite changes, f ◦ πx̄ is constant on a comeager
set (not merely a relatively comeager set; see Remark 2.1). Let vx̄ be this constant
value.

Noselector can win the modified game in which he must declare with his first
move the value vx̄ corresponding to the eventual run of the game. To see this,
note that otherwise there exist a first move w for Selector and a sequence of G′(I)
strategies Σa for Selector, for each nonempty a ∈ [X]<ω, each guaranteeing that
either Selector wins the game or that the value vx̄ will not be a. Fixing some
enumeration 〈ai : i ∈ ω〉 of [X]<ω \ {∅}, consider then the sequence which blends
each Σai against Γ, i.e.,

• x0 = Γ(〈w〉)
• y0

0 = Σa0(〈x0〉)
• x1 = Γ(〈w, x0, y

0
0〉)

• y0
1 = Σa0(〈x0, y

0
0 , x1〉)

• y1
0 = Σa1(〈y0

1〉)
• x2 = Γ(〈w, x0, y

0
0 , x1, y

1
0〉)

• y0
2 = Σa0(〈x0, y

0
0 , x1, y

0
1 , x2〉)

• y1
1 = Σa1(〈y0

1 , y
1
0 , y

0
2〉)

• y2
0 = Σa2(〈y1

1〉)
• x3 = Γ(〈w, x0, y

0
0 , x1, y

1
0 , x2, y

2
0〉)

• y0
3 = Σa0(〈x0, y

0
0 , x1, y

0
1 , x2, y

0
2 , x3〉)

• y1
2 = Σa1(〈y0

1 , y
1
0 , y

0
2 , y

1
1 , y

0
3〉)

• y2
1 = Σa2(〈y1

1 , y
2
0 , y

1
2〉)

• y3
0 = Σa3(〈y2

1〉)
• x4 = Γ(〈w, x0, y

0
0 , x1, y

1
0 , x2, y

2
0 , x3, y

3
0〉)

and so on. Then the sequence x̄ = 〈xn : n ∈ ω〉 is the sequence of moves for
Noselector in a run of G′(I) according to Γ, and thus winning for Noselector.
Letting i be such that ai = vx̄, let ȳ be x̄ in the case where i = 0 and

〈yi−1
n+1 : n ∈ ω〉

otherwise. Then ȳ is the sequence of moves for Noselector in a run of G′(I) ac-
cording to Σai . However, x̄ and ȳ are eventually intertwining, which by Lemma 2.3
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implies that the comeager constant values for these two sequences are the same,
giving a contradiction.

Let Z be the set of pairs (x, a) ∈ I+ × ([X]<ω \ {∅}) such that Noselector has a
winning strategy in the modified version of G′(I) where Selector must play ω with
his first move and Noselector must play x and declare a as the eventual constant
value for x̄. Let X ′ be the set of a for which there exists an x with (x, a) ∈ Z, and
for each a ∈ X ′, let Ja be the union of I with the set of x such that (x, a) ∈ Z.
Then each Ja is an ideal, and the previous paragraph shows that every I-positive
set contains an I-positive member of some Ja.

Another strategy-blending argument shows that the ideals Ja are pairwise I-
orthogonal. Fix (x, a) and (x′, a′) in Z as witnessed (respectively) by strategies ∆
and ∆′, and suppose that x ∩ x′ ∈ I+.

Consider the sequences defined by

• x0 = x
• x′0 = x′

• x1 = ∆(〈ω, x, x ∩ x′〉)
• x′1 = ∆′(〈ω, x′, x1〉)
• x2 = ∆(〈ω, x, x ∩ x′, x1, x

′
1〉)

• x′2 = ∆′(〈ω, x′, x1, x
′
1, x2〉)

• x3 = ∆(〈ω, x, x ∩ x′, x1, x
′
1, x2, x

′
2〉)

• x′3 = ∆′(〈ω, x′, x1, x
′
1, x2, x

′
2, x3〉)

and so on. Then 〈xn : n ∈ ω〉 lists Noselector’s moves for a run of G′(I) according
to ∆, 〈x′n : n ∈ ω〉 lists Noselector’s moves for a run of G′(I) according to ∆′, and
the two sequences are eventually intertwining. Applying Lemma 2.3 again then
completes the proof. �

Given I, X, f , and J = {Ja : a ∈ X ′} as in Theorem 3.2, f can be extended,
using the map x 7→ C(I,J , x), to a function on FCI(I,J ) which is invariant under
finite changes and has codomain [X]<ω. Iterating this fact, possibly transfinitely,
one must eventually add ω to the domain of the extended function. This gives the
following result.

Theorem 3.3. Suppose that ADR holds. There is a definable operation which takes
in a function of the form f : (I \Fin)→ ([X]<ω \ {∅}), where I is a tall ideal on ω
containing Fin, X is a countable set and f is invariant under finite changes, and
returns a function f ′ : (P(ω) \ Fin) → ([X]<ω \ {∅}), also invariant under finite
changes, such that f ′(x) = f(x) for all x ∈ I \ Fin.

The following corollary was our motivation for proving this theorem.

Corollary 3.4. Suppose that ADR holds. Let Y be a set, and let G be a function
with domain Y such that G(y) is countable for all y ∈ Y . Suppose that there exists
a P(ω)/F in-name for a function on Y which picks a nonempty finite subset of G(y)
for each y ∈ Y . Then there exists already a function on Y which picks a nonempty
finite subset of G(y) for each y ∈ Y .

Proof. We show how to pick a finite subset of G(y) for each y ∈ Y . Fix y ∈ Y . For
each nonempty finite a ⊆ G(y), let Ja be the union of Fin with the set of infinite
x ⊆ ω forcing the value of τ at y to be a. Let J be the collection of nonempty sets of
the form Ja. Then J is a collection of pairwise orthogonal ideals, and FCI(Fin,J )
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is a tall ideal. Define

f : (FCI(Fin,J ) \ Fin)→ ([G(y)]<ω \ {∅})
by setting f(x) =

⋃
{a | Ja ∈ C(I,J , x)}. Then apply Theorem 3.3 with f , and let

f ′(ω) be the chosen set. �

As a consequence, forcing with P(ω)/Fin over a model of ADR does not add an
E0-selector. Furthermore, for any pair of equivalence relations E,F in a model M
of ADR for which every E-class is made up of countably many F -classes, if in a
P(ω)/Fin extension of M there is a function which picks a finite set of F -subclasses
for each E-class, then such a function exists in M .

The argument for Corollary 3.4 also shows the following.

Corollary 3.5. Suppose that ADR holds. Then there is a function which takes in a
countable family of orthogonal ideals whose union is dense in P(ω)/Fin and returns
a finite subfamily.

Prikry [5] proved from ADR that every set of reals is Ramsey. By work of Martin,
Steel and Woodin this assumption was improved to AD+ (see [1]). The following
question asks for an analogous improvement for Theorem 3.2.

3.6 Question. Can the assumption of ADR in Theorem 3.2 be replaced by AD+?

Another natural question is the following.

3.7 Question. Are there uncountable sets X for which Theorem 3.3 holds?

4. Examples

By convention, Θ denotes the least ordinal which is not a surjective image of
P(ω). The iterated application of Theorem 3.2 in the proof of Theorem 3.3 clearly
cannot run for Θ steps. Let us say that a function f as in Theorem 3.2 has rank
α if it takes exactly α many iterations of Theorem 3.2 to add ω to its domain.
We show in this section that, assuming ADR, there exist functions of rank α for
cofinally many α < Θ. Our first example below illustrates a function of rank 1.
The second shows how to combine a collection of functions, indexed by an almost
disjoint family, to produce a function whose rank is greater than all the members
of the collection.

4.1 Example. Suppose that {ai : 1 ≤ i < ω} is a partition of ω into infinite sets.
For each positive i ∈ ω, let Ji be the set of x ⊆ ω for which x \ ai is finite. Let J0

be the set of x ⊆ ω having finite intersection with each ai, and let J = {Ji : i ∈ ω}.
Define f : (FCI(Fin,J )\Fin)→ ([J ]<ω \{∅}) by letting f(x) = C(Fin,J , x). Then
every position (in particular, ω) in the game from the proof of Theorem 3.2 is a
winning position for Noselector with value {J0}, so f extends to all of P(ω) \ Fin
in one step.

4.2 Example. Suppose that we are given a countable set X (with ∅ 6∈ X), a
nonmaximal almost disjoint family A of infinite subsets of ω (so distinct members
of A have finite intersection), and ideals Ia (properly containing Fin) and functions
fa : (Ia \Fin)→ ([X]<ω \{∅}) (a ∈ A) as in Theorem 3.2. Suppose that αa (a ∈ A)
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are ordinals such that each fa takes αa many applications of Theorem 3.2 to add ω
to its domain. Let J∅ be A⊥, the set of x ⊆ ω having finite intersection with each
a ∈ A. For each a ∈ A, let πa : ω → a be a bijection. For each a ∈ A, let Ja be the
ideal generated by Fin∪{πa[x] : x ∈ Ia}, and define f ′a : (Ja \Fin)→ ([X]<ω \ {∅})
by setting f ′a(x) = fa(π−1

a [x ∩ a]). Let J = {J∅} ∪ {Ja : a ∈ A}, and define
f : (FCI(Fin,J ) \ Fin)→ ([{∅} ∪X]<ω \ {∅}) by letting

• ∅ ∈ f(x) if and only if J0 ∈ C(Fin,J , x),
• for all z ∈ X, z ∈ f(x) if and only if there exists a ∈ A such that Ja ∈
C(Fin,J , x) and z ∈ f ′a(x ∩ a).

The iterated application of Theorem 3.2 for f adds subsets of each a ∈ A exactly
when the corresponding process for fa adds the πa-preimages of these sets. It
follows that it takes αa many iterations of Theorem 3.2 to add each a ∈ A to the
extended domain of f , and more than sup{αa : a ∈ A} many iterations to add ω.

Fixing a bijection g : Fin→ ω, the function which sends a ∈ P(ω) to

{g(a ∩ n) : n ∈ ω}
is Borel and sends distinct infinite sets to infinite sets with finite intersection. It
follows then (under ZF), that for each α < Θ there is a surjection ρ : A → α, for
some almost disjoint family A. Starting with a function as in Example 4.1, one can
iteratively apply the construction from Example 4.2, filling in functions of rank β
for the indices in ρ−1[{β}], to produce a function of rank at least α.

5. Counterexamples

The Axiom of Real Determinacy implies that every set of reals has the property
of Baire, and this precludes a number of variations of the result proved in this
paper. In this section we show that “finite subset of G(y)” cannot be replaced with
“element of [G(y)]≤n \ {∅}” in Corollary 3.4, for any positive n ∈ ω, even if τ is
a name for a function picking a single element from each G(y). Similarly, “finite
subfamily” cannot be replaced with “nonempty subfamily of size at most n” in
Corollary 3.5.

5.1 Example. Suppose that every set of reals has the property of Baire. Then
there is no function F : P(ω) → 2 with the property that for all subsets x, y of
ω, F (x) 6= F (y) if x 4 (ω \ y) is finite (i.e., no function which chooses between
complementary pairs of E0-degrees). This follows from the fact that F would be
invariant under finite changes, so one of F−1[{0}] and F−1[{1}] would have to be
comeager, but any comeager subset of P(ω) contains a pair of complements. A
similar argument shows (under the same assumption) that, for any n ∈ ω, there is
no function which takes in a collection {[ai]E0 : i < n}, for {ai : i < n} a partition
of ω, and returns a nonempty proper subset. If there were such a function, there
would be j, k < n such that for comeagerly many partitions 〈ai : i < n〉 of ω, [aj ]E0

would be in the chosen subset, and [ak]E0
would not. However, comeagerly many

members of this set would have the property that switching the values of aj and
ak would give another member of the set, giving a contradiction.

To see this example in terms of Corollary 3.3, notice that a nonprincipal ultra-
filter on ω induces a choice of one element from each set of the form

{[ai]E0
: i ≤ n},
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for {ai : i ≤ n} a partition of ω into infinite sets. The previous paragraph shows
that there is no function in a model of ADR picking a proper subfamily from each
such family.

The previous example does not give a counterexample corresponding to Theorem
3.3, as the corresponding ideal FCI(Fin,J ) would be all of P(ω). We remedy this by
showing how to replace each set of the form [a]E0 with an infinite maximal antichain
in P(a)/E0. Once we have this, we can replace each set {[ai]E0

: i ≤ n} as above
with the union of the corresponding antichains. Then as before, no function in the
ground model can pick a subfamily of size at most n from each such union. The
corresponding function f as in Theorem 3.3 has the form x 7→ C(Fin,J , x) for
x ∈ FCI(Fin,J ) and J the collection of ideals derived from this antichain.

The only missing ingredient is a method for taking a set of the form [a]E0 , for
a ⊆ ω infinite, and returning a set of the form [b]E0

, for some infinite b ⊆ a for
which a \ b is infinite. The following observation does what we need.

Lemma 5.2. There is a Borel function g that assigns each to infinite a ⊆ ω an
infinite g(a) ⊆ a for which a\g(a) is infinite, in such a way that a4b ∈ Fin implies
that g(a)4 g(b) ∈ Fin.

Proof. For each n ∈ ω, let Fn be the equivalence relation on P(ω) defined by
aFnb⇔ (a \ n) = (b \ n). Then define functions Sn (n ∈ ω) on P(ω) by

• S0(a) is the second element of a,
• Sn+1(a) is the second element of

⋂
[a]Fn+1 \ (sup{Sn(b) + 1 : b ∈ [a]Fn+1}).

Then for each infinite a ⊆ ω and each n ∈ ω, Sn(a) ≥ 2n + 1, and
⋂

[a]Fn+1
can

equivalently be replaced with a in the definition of Sn+1(a). It follows that the
function g(a) = {Sn(a) : n ∈ ω} is as desired. �
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