THE EXTENDER ALGEBRA AND PRESERVING STATIONARY SETS

PAUL B. LARSON

ABSTRACT. We give an instance when the extender algebra can preserve stationary subsets of ω_1 . In particular, we show that for any model operator satisfying certain conditions (satisfied by the currently known minimal inner models for large cardinal statements), any Ω -consistent statement about a rank initial segment of the universe can be forced over canonical model containing $H(\omega_2)$ while preserving stationary subsets of ω_1 . This is a variation of Theorem 10.13 of [8].

We will use the following phrasing of Woodin's extender algebra theorem (see [7, 4, 6, 2]). The notion of iterability here and in the statement of our main theorem refers to the existence of iteration strategies for iteration trees of arbitrary length.

Theorem 0.1. Let M be an iterable model, and let δ be a Woodin cardinal in M. Then for any set x and any $\lambda < \delta$ there is an elementary embedding $j: M \to M^*$ with critical point greater than λ such that x is M^* -generic for a partial order in M^* of cardinality $j(\delta)$.

The following well-known fact is used to produce \mathbb{P}_{max} conditions from large cardinals, and will be used in our argument in almost the same way. Proofs appears in [5, 3].

Lemma 0.2. Let θ be a regular cardinal, suppose that T is a weakly homogeneous tree on $\omega \times Z$ in $H(\theta)$, for some set Z. Let $\gamma \geq 2^{\omega}$ be an ordinal such that there exists a countable collection Σ of γ^+ -complete measures witnessing the weak homogeneity of T. Assume that there is a measurable cardinal in the interval (γ, θ) .

Then for every elementary submodel X of $H(\theta)$ of cardinality less than γ with $T, \Sigma, \gamma \in X$, there is an elementary submodel Y of $H(\theta)$ containing X such that $Y \cap \theta$ is uncountable, $Y \cap \gamma = X \cap \gamma$ and $p[T \cap Y] = p[T]$.

Fixing a recursive bijection $\pi: \omega \times \omega \to \omega$, we use the following coding of elements of $H(\omega_1)$ by subsets of $\omega: x \subseteq \omega$ codes $a \in H(\omega_1)$ if

$$\langle \omega, \{(n,m) \mid \pi(n,m) \in x\} \rangle \cong \langle \{a\} \cup tc(a), \in \rangle,$$

where tc(a) is the transitive closure of a. Under this coding, the relations " \in " and "=" are both Σ_1^1 , since permutations of ω can give rise to different codes for the same set. We say that a function $f: \mathcal{P}(\omega) \to \mathcal{P}(\omega)$ is *invariant in the codes* if whenever x and y code the some element of $H(\omega_1)$, f(x) and f(y) do as well. Note that if a function $f: \mathcal{P}(\omega) \to \mathcal{P}(\omega)$ is universally Baire and invariant in the codes, it induces a class function from V to V: for any set Z in any $H(\kappa)$, letting f^* denote the extension of f in the $Coll(\omega, \kappa)$ -extension, the set coded by $f^*(x)$ exists already in V, for x any subset of ω in this extension coding Z.

Date: December 4, 2006.

PAUL B. LARSON

The statement of our main theorem uses the notion of A-closure from Woodin's Ω -logic. For our purposes, we need to know only that if A is a universally Baire function which is invariant in the codes and N is an A-closed model, then N is closed under the induced class function from the previous paragraph (see [8, 1]).

The proof of our main theorem uses another notion of iterability, that of producing wellfounded models under generic iterated embeddings using the stationary tower. The following fact is proved in [8].

Theorem 0.3. Suppose that Q is a transitive model containing ω_1 in which countable ordinals $\delta < \lambda$ are a Woodin cardinal and a strongly inaccessible cardinal, respectively. Then Q and V^Q_{λ} are both iterable with respect to $\mathbb{Q}^Q_{<\delta}$.

Theorem 0.4. Suppose that

- $\delta_0 < \delta_1$ are a Woodin cardinals below a measurable cardinal.
- A is a set of reals coding a function that takes each real x to a model M(x)of ZFC + T containing x and an iteration strategy for M(x), in a way that is invariant for some coding of elements of $H(\omega_1)$ by reals, such that A and $\omega^{\omega} \setminus A$ are δ_1^+ -weakly homogeneously Suslin;
- ϕ is a statement of the form "some rank initial segment of the universe satisfies ψ ", for some statement ψ ;
- for every real r, ϕ holds in an A-closed model of ZFC containing r.

Then for every set $Z \in V_{\delta_1}$ such that M(Z) is NS_{ω_1} -correct, ϕ can be forced over M(Z) by a forcing preserving stationary subsets of ω_1 .

Proof. Let $\kappa > \delta_1$ be measurable, and let θ be a regular cardinal greater than 2^{κ} . Let λ be a strongly inaccessible cardinal between δ_0 and δ_1 with $Z \in V_{\lambda}$. Applying Lemma 0.2, let Y be an elementary submodel of $H(\theta)$ with κ , δ_0 , δ_1 , Z and A as members such that $Y \cap \delta_1$ is uncountable, $Y \cap \lambda$ is countable, and such that there exist trees S and T on $\omega \times \gamma$ (for some ordinal γ) in Y such that $p[S \cap Y] = A$, $p[T \cap Y] = \omega^{\omega} \setminus A$.

Let Q be the transitive collapse of Y and let S_Q , T_Q , κ_Q , δ_{0Q} , δ_{1Q} , λ_Q and Z_Q be the images of S, T, κ , δ_0 , δ_1 , λ and Z under this collapse. Let P denote $V^Q_{\kappa_Q}$. Since $\omega_1 \subset Q$, Q is iterable with respect to $\mathbb{Q}^Q_{<\delta_{0Q}}$, and therefore P is as well. Let N be a countable A-closed model of ZFC + ϕ with P as an element. Let γ be an ordinal such that $V^N_{\gamma} \models \psi$. Let $j: P \to P'$ be an iterated generic elementary embedding of length ω^N_1 in N via $\mathbb{Q}^P_{<\delta_{0Q}}$ such that P' is correct about stationary subsets of ω_1 in N ([8]). Thus induces an iteration of Q with the same generic filters, such that P' is a rank initial segment of the corresponding final model Q'. We let j denote the entire embedding from Q to Q'.

Since Q' is wellfounded and the projections of $j(S_Q)$ and $j(T_Q)$ are disjoint in Q', they are disjoint in V as well. Since $p[S] = p[S_Q] \subset p[j(S_Q)]$ and $p[T] = p[T_Q] \subset$ $p[j(T_Q)]$, it follows that $p[j(S_Q)] = p[S]$ and $p[j(T_Q)] = p[T]$. Therefore, $M(j(Z_Q))$ exists in Q' and is coded by a real in the projection of $p[jS_Q]$ in any $Coll(\omega, j(Z_Q))$ extension of Q' (this is just to say that $M(j(Z_Q))$) is definable in Q' from $j(S_Q)$ and $j(Z_Q)$, which since M(Z) is definable in the same way from S and Z means that facts about $M(j(Z_Q))$ true in Q' will be true about M(Z) in $H(\theta)$).

Since N is A-closed, $M(j(Z_Q))$ is in N as well. Furthermore, $M(j(Z_Q))$ is NS_{ω_1} correct in P' and thus in N. Let $k \colon M(j(Z_Q)) \to M^*$ be an elementary embedding
in N with critical point greater than 2^{ω_1} such that V_{γ}^N is generic over M^* . Then

2

 M^* and $M(j(\mathbb{Z}_P))$ have the same $\mathcal{P}(\omega_1)$, so M^* is NS_{ω_1} -correct in N, so M^* must be NS_{ω_1} -correct in $M^*[V^N_{\gamma}]$. Furthermore,

$$V_{\gamma}^{M^*[V_{\gamma}^N]} = V_{\gamma}^N.$$

Therefore, $M^*[V_{\gamma}^N]$ is an NS_{ω_1} -preserving forcing extension of M^* satisfying ϕ , so $M(j(Z_Q))$, $M(Z_Q)$ and M(Z) all also have NS_{ω_1} -preserving forcing extensions satisfying ϕ .

References

- J. Bagaria, N. Castells, and P.B. Larson. An Ω-logic primer. In Set Theory, CRM 2003-2004. to appear.
- [2] I. Farah. The extender algebra. unpublished note, 2006.
- [3] I. Farah and P.B. Larson. Absoluteness for universally Baire sets and the uncountable I. in preparation, 2005.
- [4] G. Hjorth. Some applications of coarse inner model theory. Journal of Symbolic Logic, 62:337– 365, 1997.
- [5] P. Larson and S. Shelah. Bounding by canonical functions, with CH. Journal of Mathematical Logic, 3:193–215, 2003.
- [6] I. Neeman. The determinacy of long games, volume 7 of de Gruyter Series in Logic and its Applications. Walter de Gruyter GmbH & Co. KG, Berlin, 2004.
- [7] J. Steel. An outline of inner model theory. In Handbook of Set Theory. to appear.
- [8] W.H. Woodin. The Axiom of Determinacy, forcing axioms and the nonstationary ideal, volume 1 of de Gruyter Series in Logic and Its Applications. de Gruyter, 1999.

Department of Mathematics and Statistics, Miami University, Oxford, Ohio 45056, USA

E-mail address: larsonpb@muohio.edu

 $\mathit{URL}: \texttt{http://www.users.muohio.edu/larsonpb/}$