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Abstract. We characterize the compact subsets K of 2ω for which one can
force the existence of a set X of cardinality less than the continuum such that

K +X = 2ω .

1. Introduction

In this this note we answer a variant of the following well-known question: For
which compact subsets K of the real line can one force that the real line is covered
by fewer than continuum many translations of K (as reinterpreted in the forcing
extension)? This question has been considered by several authors and the following
are known.

• The real line is not covered by fewer than 2ℵ0 many translations of the
ordinary Cantor set. (Gruenhage)

• If C has packing dimension less than 1 then R is not covered by fewer than
2ℵ0 translations of C. (Darji-Keleti, [3]),

• There is a compact set K of measure zero such that R is covered by cof(N )
(which is consistently < 2ℵ0) many translations of K (Elekes-Steprāns, [4]).
The same holds in any locally compact abelian Polish group. (Elekes-Toth,
[5]).

Instead of the real line, we will work in the space 2ω, with addition as coordinate-
wise addition modulo 2. For all sets X,K ⊆ 2ω, and any z ∈ 2ω, X ⊆ K + z if
and only if z ̸∈ (2ω \ K) + X (this formulation uses the fact that −z = z for all
z ∈ 2ω). Replacing K with its complement, this says that 2ω is covered by the set
of translations of K by elements of X if and only if X is not covered by a single
translation of 2ω \K. It follows that we can restrict our attention to compact sets
K which are nowhere dense and have measure zero with respect to the standard
product measure on 2ω.

Lemma 1. Let K be a closed subset of 2ω.

(1) If K is somewhere dense then 2ω is covered by finitely many translations of
K.

(2) If K has positive measure and non(N ) < 2ℵ0 then 2ω is covered by fewer
than 2ℵ0 many translations of K.

Proof. For the first part, if K is somewhere dense then it contains a basic open set,
which implies that a finite set of translations of K covers 2ω. For the second, if
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non(N ) < 2ℵ0 there there exists a set X ⊆ 2ω of cardinality less than 2ℵ0 and outer
measure 1. Suppose that K has positive measure. Since X ̸⊆ (2ω \K) + z for any
z ∈ 2ω it follows that K +X = 2ω. �

Known proofs that fewer than 2ℵ0 many translations of a given set K do not
cover 2ω are based on the following property.

Definition 2. Let K be a subset of 2ω. We say that K is small if there exists a
perfect set P ⊆ 2ω such that for every z ∈ 2ω,

(K + z) ∩ P is countable.

If K is small then we need 2ℵ0 translations of K to cover 2ω since we need that
many translations to cover P . Furthermore, the property “K is small” is Σ1

2 in a
parameter for K, hence absolute. To see this, note that K is small if and only if
there exists P such that

(1) P is closed and uncountable, and
(2) ∀z (K + z) ∩ P is countable.

The first clause is Σ1
1 and the second is Π1

1, by the well known fact that {W ∈
K(2ω) : W is countable} is a Π1

1 set, where K(2ω) is the hyperspace of compact
subsets of 2ω (see Section 33.B of [7]).

The notion of being small can be generalized as follows:

Definition 3. Suppose that K is a subset of 2ω, Y is a subset of 2ω and J is an
ideal on Y . We say that K is J - small if for every z ∈ 2ω, (K + z) ∩ Y ∈ J .

In particular, K is small if it is J -small for J the ideal of countable subsets of
some fixed perfect set. In the cases of interest the ideal J is defined on |Y | rather
than Y so we omit mention of Y in the notation.

The following lemma connects the previous definition with the topic of this paper.

Lemma 4. Suppose that X, Y and K are subsets of 2ω, and that J is an ideal on
Y such that K is J -small. If X +K = 2ω, then |X| ≥ cov(J ).

A compact subset K of 2ω, being closed, is the set of paths through the tree
{x � n | x ∈ K,n ∈ ω}. This tree gives rise to a natural reinterpretation of K in
any forcing extension as the set of paths through T . The main result of this paper
is the following.

Theorem 5. Suppose that K is a compact set in 2ω. Then exactly one of the
following holds.

(1) In some forcing extension, 2ω is covered by fewer than continuum many
translations of the reinterpretation of K.

(2) There exist a set Y ⊆ 2ω of size 2ℵ0 and an ideal J on Y such that
(a) K is J -small, and
(b) cov(J ) = 2ℵ0 .

The theorem easily gives that if the second case holds, then it holds in all forcing
extensions. In fact, our characterization of the dichotomy is absolute between
models of set theory with the same ordinals (see Remark 33).

The paper is organized as follows. In Section 2 we give a simple criterion which
implies that in a c.c.c. forcing extension fewer than 2ℵ0 translations of K cover 2ω.
In Section 3 we give examples of sets that satisfy this criterion. Section 4 reviews
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basic information about Sacks forcing, and Section 5 introduces a rank function on
Sacks names for reals. In Sections 6 and 7 we prove both parts of the main result
and give necessary and sufficient conditions for a compact set K to cover 2ω with
fewer than 2ℵ0 translations.

2. Special cases and simple tests

In this section we introduce a property of a set K ⊆ 2ω which implies that
in some c.c.c. forcing extension fewer than 2ℵ0 translations of the corresponding
reinterpretation of K cover 2ω.

Definition 6. A perfect set K ⊆ 2ω is big if for every n ∈ ω there exists jn ∈ ω
such that for X ⊆ 2ω and x ∈ 2ω, if

(1) |X| ≤ n,
(2) (2ω \K) +X ̸= 2ω,
(3) x�jn ∈ X�jn = {y�jn : y ∈ X},

then
(2ω \K) + (X ∪ {x}) ̸= 2ω.

We say that K is big⋆ if K ∩ [s] is big for every s ∈ 2<ω such that K ∩ [s] ̸= ∅.

IfK is big then the collection of finite sets covered by translations ofK resembles
an ideal, in the following sense: if X0, X1 ⊆ 2ω are sets of size n, (2ω \K)+X0 ̸= 2ω

and X0�j2n = X1�j2n, then (2ω \K) + (X0 ∪X1) ̸= 2ω.

Lemma 7. If K is big then K is not small.

Proof. Suppose that P ⊆ 2ω is a perfect set. Build recursively a sequence

{xn : n ∈ ω} ⊆ P

such that

(1) Q = cl({xn : n ∈ ω}) is perfect,
(2) (2ω \K) + {x0, . . . , xn} ̸= 2ω for n ∈ ω.

Given {x0, . . . , xn} satisfying (2), choose xn+1 ∈ P such that xn+1�jn = xi�jn
for some i ≤ n. This will guarantee that (2) continues to hold. Condition (1) can
be arranged by careful bookeeping.

By (2), Ln = {z ∈ 2ω : {x0, . . . , xn} ⊆ K + z} is a nonempty compact set. For
z ∈

∩
n Ln, we have {xn : n ∈ ω} ⊆ K + z, and thus Q ⊆ K + z. �

The following theorem is essentially proved in [5].

Theorem 8. If K is big⋆ then there exists X ⊆ 2ω such that X + K = 2ω and
|X| ≤ cof(N ).

The following theorem complements this result.

Theorem 9. If K is big⋆, then there is a c.c.c. forcing extension in which 2ω is
covered by fewer than continuum many translations of the reinterpretation of K.

Let Q = {q ∈ 2ω : ∀∞n q(n) = 0}. Before beginning the proof, we prove the
following lemma.

Lemma 10. Suppose that K ⊆ 2ω is big⋆. There exists a c.c.c. forcing notion PK

which adds real zK ∈ 2ω such that


PK
∀x ∈ 2ω ∩V ∃q ∈ Q x ∈ K + zK + q.

coverin_perfect39.tex, January 20, 2015 Time: 10: 27



4 TOMEK BARTOSZYNSKI, PAUL LARSON, AND SAHARON SHELAH

Proof of the lemma. Suppose that K ⊆ 2ω is big⋆. Let PK be the collection of pairs
(t,X) such that

(1) t ∈ 2<ω and X is a finite subset of 2ω,
(2) ((2ω \K) +X) ∩ [t] ̸= [t].

For (t0, X0), (t1, X1) ∈ PK , we put (t1, X1) ≥ (t0, X0) if t0 ⊆ t1 and X0 ⊆ X1. We
will show that PK has the required properties.

To see that PK is c.c.c., suppose that {(tα, Xα) : α < ω1} is a subset of PK .
Without loss of generality we can assume that there exist t ∈ 2<ω and n ∈ ω
such that tα = t and |Xα| = n for all α < ω1. Furthermore, we can assume that
Xα�j2n = Xβ�j2n for α, β < ω1, where j2n is as in the definition of big⋆. It follows
then from the definition of big⋆ that (t,Xα ∪ Xβ) ∈ PK is a condition extending
both (tα, Xα) and (tβ , Xβ).

Let zK =
∪
{t : (t,X) ∈ G}, where G is the generic filter.

Now suppose that (t,X) ∈ PK , |X| = n and x ∈ 2ω. Find q ∈ Q such that
q+x�jn ∈ X�jn. SinceK is big⋆, it follows that (t,X∪{x+q}) ∈ PK . Furthermore,

(t,X ∪ {x+ q}) 
PK x ∈ K + zK + q.

In particular,

VPK |= 2ω ∩V ⊆ K + zK +Q,
which finishes the proof. �
Proof of Theorem 9. Let V[g] be a c.c.c. extension of the universe satisfying ¬CH
and let Pω1 be the finite support iteration of PK of length ℵ1 defined in V[g]. Let
H be V[g]-generic for Pω1 . For each α < ω1, let Hα denote the restriction of H
to the first α many stages of Pω1 , and let zα be the generic real added at the αth
stage. Let X = {zα + q : α < ω1, q ∈ Q}. For each x ∈ 2ω ∩ V[g,H] there is an
α < ω1 such that x ∈ V[g,Hα], and it follows that for some q ∈ Q, x ∈ K + zα + q.
Thus in V[g,H], 2ω ⊆ X +K and |X| < 2ℵ0 . �

3. Examples of big sets and small sets

In this section we will provide some examples of small sets and big⋆ sets. Let
{In : n ∈ ω} be a partition of ω into finite sets of increasing size and let Kn be a
subset of 2In , for each n ∈ ω. Consider sets of form K =

∏
nKn. This is a typical

compact set in 2ω whose combinatorial properties are hereditary with respect to
all full subtrees, i.e. subtrees of form K ∩ [s], where K ∩ [s] ̸= ∅ and s ∈ 2<ω. In
particular if such set is big it is also big⋆.

Theorem 11. If limn→∞
|Kn|
|2In |

= 1 then K is big⋆.

We use the following lemma.

Lemma 12 ([5]). Suppose that I ⊆ ω is finite, n ∈ ω and C ⊆ 2I is such that
|C|
2|I|

≥ 1 − 1

n+ 1
. For any X ⊆ 2I of size ≤ n there exists t ∈ 2I such that

t+X ⊆ C.

Proof. For any s ∈ X,

|{t ∈ 2I : t+ s ̸∈ C}|
|2I |

≤ 1

n+ 1
.
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Thus
|{t ∈ 2I : ∃s ∈ X t+ s ̸∈ C}|

|2I |
≤ n

n+ 1
< 1.

�
Proof of Theorem 11. For each n ∈ ω, let jn =

∑
m≤k |Ii|, where k is such that

|Kj |/2|Ij | ≥ 1− 1

n+ 2
for all j ≥ k. Then for any n ∈ ω, and X ⊆ 2ω of size n and

any x ∈ 2ω, repeated application of Lemma 12 will produce a translation as desired
(the initial segment of the translation up to jn being given by the assumption that
some translation already covers X). �

If the sets In are large enough then we can chose sets Kn (n ∈ ω) so that

1− 1

n+ 1
≤ |Kn|

|2In |
≤ 1− 1

2n+ 1

holds for all n ∈ ω. Then K =
∏

n∈ωKn has measure zero since
∏

n∈ω

1

2n+ 1
= 0.

The next two lemmas show that if limn→∞
|Kn|
|2In |

< 1 then K may be small or

big⋆, depending on the choice of Kn’s. In the following lemma, the sets Kn can be

chosen so that the ratios
|Kn|
|2In |

are eventually any given dyadic rational value in the

interval [0,
1

2
].

Lemma 13. For each n ∈ ω, let Jn be a nonempty proper subset of In, and let
Kn be the set of s ∈ 2In such that s(i) = 0 for all i ∈ Jn. Then K =

∏
n∈ωKn is

small.

Proof. Put J =
∪

n Jn and let P = {x ∈ 2ω : ∀n ̸∈ J x(n) = 0}. For each z ∈ 2ω,
(K + z) ∩ P has at most one element. �
Lemma 14. Fix a sequence of positive reals {εn : n ∈ ω}. There exists a sequence
Kn ⊆ 2In such that for each n, |Kn|/2|In| ≤ εn and K =

∏
n∈ωKn is big⋆.

Lemma 14 can be proved in the same way as Lemma 12, with the following
theorem (which is Theorem 3.3 of [1], with 1 − ε in place of ε) used instead of
Lemma 11.

Theorem 15 ([1]). Suppose that m ∈ ω and 0 < δ < 1− ϵ < 1. There exists n ∈ ω
such that for every finite set I ⊆ ω of size at least n, there exists a set C ⊆ 2I such
that ε+ δ ≥ |C| · 2−|I| ≥ ε− δ and for every set X ⊆ 2I , |X| ≤ m∣∣∣∣ |∩s∈X(C + s)|

2|I|
− ε|X|

∣∣∣∣ < δ.

Theorem 15 says that we can choose C is such a way that for all sequences
s1, . . . , sm ∈ 2I the sets s1 + C, . . . , sm + C are probabilistically independent with
error δ.

Proof of Lemma 14. Thus, if we choose δ to be much smaller than εm, then if
|X| < m it follows that

∩
s∈X(C + s) ̸= ∅. In particular, if t ∈

∩
s∈X(C + s) then

t+X ⊆ C.
The rest of the argument is just like in Theorem 11. �
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4. The Sacks model

In the following section we will describe necessary and sufficient conditions for
a compact set K to (consistently) cover 2ω by fewer than 2ℵ0 translations. This
characterization is intrinsically connected to the Sacks model.

The Sacks model, obtained by a length ω2 countable support iteration of perfect
set forcing, is a natural candidate to witness that ℵ1 translations of a compact set
K covers 2ω. This follows from Zapletal’s work on tame cardinal invariants in [13].
More specifically, we have the following:

Definition 16. A tame cardinal invariant is defined as

min{|A| : A ⊆ R & ϕ(A)& ψ(A)}
where ϕ(A) is a statement of the model ⟨TC(A),∈, A⟩ and ψ(A) is a statement of
form “∀x ∈ R ∃y ∈ A θ(x, y)”, where θ is a formula whose quantifiers range over
reals and ω only.

If K ⊆ 2ω is a compact set than

min{|A| : A ⊆ 2ω ∀x ∈ 2ω ∃y ∈ A x+ y ∈ K}
is a tame cardinal invariant.

Theorem 17 (Zapletal [13]). Assuming the existence of a proper class of inacces-
sible cardinals δ which are limits of Woodin cardinals and of <δ-strong cardinals,
if r is a tame cardinal invariant, and r < 2ℵ0 holds in a set forcing extension, then
r < 2ℵ0 holds in the iterated Sacks extension.

A natural attempt would be to show that if K is not small then in the Sacks
model VSω2 ,

∀x ∈ 2ω ∃z ∈ V ∩ 2ω x ∈ K + z.

Translating to the Sacks model it would suffice that the following statement
holds:

Proposition 18 (false). Suppose that p 
Sω2
ẋ ∈ 2ω. Then there exists p′ ≥ p and

a perfect set P ⊆ 2ω such that for every perfect set Q ⊆ P there exists q ≥ p′ such
that q 
 ẋ ∈ Q.

Indeed, suppose that K is not small and let p 
Sω2
ẋ ∈ 2ω. If there is p′ ≥ p and

x ∈ V ∩ 2ω such that p′ 
Sω2
ẋ = x then any z ∈ (K + x) ∩V will be as required.

Otherwise, find p′ ≥ p and P as in Proposition 18. Since K is not small there is
z ∈ 2ω such that P ∩ (K + z) is uncountable. Let Q ⊆ P ∩ (K + z) be a perfect
set. It follows that there is q ≥ p′ such that q 
Sω2

ẋ ∈ Q ⊆ K + z. Since ẋ was
arbitrary, this finishes the proof.

Proposition 18 is true for a single Sacks forcing but fails for an iteration of two
or more Sacks reals. To see this note that if (p, q̇) 
S⋆S ẋ ∈ 2ω, then (p, q̇) can be
represented as a closed subset p̄ ⊆ 2ω × 2ω, where p = {x : (p̄)x ̸= ∅}, and (p̄)x ∈ S
whenever (p̄)x ̸= ∅. Furthermore, we can find a one-to-one continuous function
f : p̄ −→ 2ω such that p̄ 
S⋆S ẋ = f(s0, s1), where s0, s1 are first and second Sacks
reals. Let x0 ∈ p be a real that is not Sacks-generic (for example a real that is in
V) , and put Q = {z : ∃y ∈ (p̄)x0 z = f(x0, y)}. Clearly Q is a perfect set (since
(p̄)x0 is and f is one-to-one) and p̄ 
 ẋ ̸∈ Q (since x0 is not Sacks-generic).

In spite of this counterexample, the basic idea in the Proposition 18 is sound and
in the sequel we will look for a largeness condition on Q such that Proposition 18
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is true for the iteration as well. Then we will require that K is such that for some
z ∈ 2ω, P ∩ (K + z) satisfies this condition.

We begin with a review of well known properties of Sacks forcing and its itera-
tions.

Sacks forcing S is defined as the collection of perfect subtrees of 2<ω ordered by
inclusion (we write T ≥ T ′ to indicate that T ⊆ T ′). We will often identify a tree T
with the corresponding (perfect) set [T ] consisting of its branches, and use letters
p, q, etc. to refer to these perfect sets. Given a closed set p ⊆ 2ω, we let split(p) be
the set of s ∈ 2<ω such that s⌢⟨0⟩ and s⌢⟨1⟩ are both initial segments of members
of p. For each n ∈ ω, we let splitn(p) be the set of s ∈ split(p) having exactly n
proper initial segments in split(p).

For T, T ′ ∈ S and n ∈ ω define

T ≥n T
′ ⇐⇒ T ≥ T ′ & T �n = T ′�n.

Lemmas 19-23 are taken from [2] (which in turn is modeled after [8]). Lemmas
19 and 20 are well known (see, for instance, pages 244-245 of [6]).

Lemma 19. Suppose that p ∈ S and p 
S ẋ ∈ 2ω. For every n ∈ ω there exist
q ≥n p and a continuous function F : [q] −→ 2ω such that q 
S ẋ = F (ġ), where ġ
is the canonical name for the generic real.

Moreover, we can require that for every v ∈ splitn(q) and any x1, x2 ∈ [qv],
F (x1)�n = F (x2)�n.

Lemma 20. Suppose that p ∈ S, n ∈ ω and p 
S ẋ ∈ 2ω. Let F : [p] −→ 2ω be a
continuous function such that p 
S ẋ = F (ġ).

There exists q ≥ p such that F �[q] is constant, or there exists q ≥n p such that
F �[q] is one-to-one. In particular, the generic real is minimal.

For each ordinal γ ≤ ω2, we let Sγ denote the countable support iteration of S
of length γ. So Sγ is the set of functions p such that

(1) dom(p) = γ,
(2) supp(p) = {β : p(β) ̸= ∅} is countable,
(3) ∀β < γ p�β 
Sβ p(β) ∈ S.

For F ∈ [γ]<ω, n ∈ ω, and p, q ∈ Sγ define

q ≥F,n p ⇐⇒ q ≥ p & ∀β ∈ F q�β 
Sβ q(β) ≥n p(β).

For p ∈ Sγ let cl(p) be the smallest set w ⊆ γ such that p can be evaluated using
the generic reals ⟨ġβ : β ∈ w⟩. In other words, cl(p) consists of those β < γ such
that the transitive closure of p (as a set) contains a Sβ-name for an element of S.
It is well-known [12] that {p ∈ Sγ : cl(p) ∈ [γ]≤ω} is dense in Sγ .

Suppose that p ∈ Sγ , w = cl(p) is countable and γp = ot
(
cl(p)

)
. Let Sw be

the countable support iteration of S with domain w. In other words, consider the
countable support iteration ⟨Pβ , Q̇β : β < sup(w)⟩ such that

∀β < sup(w) 
Pβ
Q̇β ≃

{
S if β ∈ w
∅ if β ̸∈ w

.

It is clear that Sw is forcing-equivalent to Sγp . Moreover, we can view the condition
p as a member of Sw.

Let γ be a countable ordinal and p ∈ Sγ . Define p ⊆ (2ω)γ as follows:
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⟨xβ : β < γ⟩ ∈ p if for every β < γ,

xβ ∈
[
p(β)

[
⟨xγ : γ < β⟩

]]
.

Note that p(β)[⟨xγ : γ < β⟩] is the interpretation of p(β) using reals ⟨xγ : γ < β⟩
so it may be undefined if these reals are not sufficiently generic.

For a set G ⊆ (2ω)γ , u ⊆ γ, and x ∈ (2ω)u let

(G)x = {y ∈ (2ω)γ\u : ∃z ∈ G z�u = x & z�(γ \ u) = y},

and for β ∈ γ let (G)β = {x(β) : x ∈ G}.
We say that p ∈ Sγ is good if

(1) p is compact,

(2) for every β < γ and x ∈ p�β, p[x] = (p)x and p(β)[x] = ((p)x)β .
(3) p is homeomorphic to (2ω)γ via a homeomorphism h such that for every

β < γ and x ∈ p�β, h�((p)x)β is a homeomorphism between ((p)x)β and
2ω.

Lemma 21. {p ∈ Sγ : p is good} is dense in Sγ .

From now on we will always work with conditions p such that p is good.
As in the lemma 19 we show that:

Lemma 22. Suppose that p ∈ Sγ and p 
Sγ ẋ ∈ 2ω. Then there exists q ≥ p and a
continuous function F : p −→ 2ω such that q 
Sγ ẋ = F (ġ), where ġ = ⟨ġβ : β < γ⟩
is the sequence of generic reals.

The following lemma is an analogue of Lemma 20.

Lemma 23. Suppose that p ∈ Sγ , n ∈ ω and p 
Sγ ẋ ∈ 2ω. Let F : p −→ 2ω be
a continuous function such that p 
Sγ ẋ = F (ġ), where ġ = ⟨ġβ : β < γ⟩ is the
sequence of generic reals. There exists q ≥ p such that exactly one of the following
conditions hold:

(1) F �q is constant,
(2) F �q is one-to-one.

5. A rank function

In this section we will work towards formulating a correct version of Proposition

18. Let K be a perfect subset of 2ω and fix a tree T̃ such that K = [T̃ ].
Our main objective is to find property of K which will lead to the following

dichotomy:
Suppose that V |= GCH is a model containing K. Either

VSω2 |= K + (V ∩ 2ω) = 2ω

or, in all outer models of ZFC,

∀X ⊆ 2ω (|X| < 2ℵ0 → K +X ̸= 2ω).

We need only look at iterations of Sacks forcing of countable length.

Lemma 24. The following are equivalent for a model V |= GCH:

(1) VSω2 |= K + (V ∩ 2ω) = 2ω,
(2) for every γ < ω1, V

Sγ |= K + (V ∩ 2ω) = 2ω.
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Proof. Implication (1) → (2) is obvious. To show that (2) → (1) observe that every
real in VSω2 depends only on countably many Sacks reals. If G ⊆ Sω2 is a generic
filter over V and x ∈ V[G] ∩ 2ω then there exists a countable ordinal γ and a
H ⊆ Sγ generic filter over V which belongs to V[G] such that x ∈ V[H]. It follows
that V[H] |= ∃z ∈ 2ω ∩ V x ∈ K + z and, by absoluteness, the same holds in
V[G]. �

Definition 25. For γ < ω1 let Qγ be the collection of triples p⃗ = (p, F, T ) where
p ∈ Sγ is good and F : p̄→ [T ] is a homeomorphism.

Elements of Qγ represent Sγ-names for real numbers. By Lemma 22, when
p 
Sγ ẋ ∈ 2ω we can find a homeomorphism F : p̄ −→ P such that p 
Sγ ẋ = F (ġ),
possibly after passing to a stronger condition.

By combining F with a homeomorphism between p̄ and (2ω)γ , we can assume
that all elements of Qγ are of form ((2ω)γ , F, T ). This is equivalent to the home-
geneity of Sγ .

Since F is a homeomorphism, every branch of T reconstructs the entire generic
sequence of γ Sacks reals.

Definition 26. Suppose that (p, F, T ) ∈ Qγ . For u ∈ split(T ) let projα(u) be the
portion of α-th Sacks real computed by u.

The notation projα(u) suppresses the parameter (p, F, T ), which will be clear in
context. Since [u] is a clopen set, projα(u) ̸= ∅ only for finitely many α < γ. More
precisely, we have the following:

Lemma 27. For every u ∈ split(T ) there is Au ∈ [γ]<ω such that

F−1([u]) = {x ∈ p̄ : ∀α ∈ Au projα(u) ⊆ x(α)}.

Let R ⊆ (2<ω)γ be the tree generated by the family

{⟨projα(u) : α ∈ Au⟩ : u ∈ split(T )}.
It is easy to see that

Lemma 28. ⟨xα : α < γ⟩ ∈ p̄ ⇐⇒ ∀α < γ ∀n xα�n ∈ R(α).

Lemma 29. Suppose that (p, F, T ) ∈ Qγ . For every v ∈ split(T ), and any δ ∈ γ
there are nodes t0, t1 ∈ split(T ) such that

(1) v ⊆ t0, t1,
(2) projδ(t0), projδ(t1) are incompatible,
(3) projα(t0) = projα(t1) for α < δ.

Proof. Let Av ∈ [γ]<ω be such that F−1[v] = {x ∈ p̄ : ∀α ∈ Av projα(u) ⊆ x(α)}.
Choose two branches x0, x1 ∈ F−1[v] such that x0(α) = x1(α) for all α < δ and
x0(δ) ̸= x1(δ). Recall that we assumed that ẋ depends on all Sacks reals so this is
always possible. Now F (x0) and F (x1) are two branches extending v. Let n ∈ ω
be so large that projδ(F (x0)�n), projδ(F (x1)�n) are incompatible.

Now let t0 = F (x0)�n and t1 = F (x1)�n. Since x0(α) = x1(α) for α < δ, it
follows that projα(t0) = projα(t1) for all α < δ. �

In the proof above, n may have to be quite large to determine that x0(δ)�n ̸=
x1(δ)�n, and its value depends on F and T . To illustrate this point suppose that
we are dealing with just two Sacks reals and ẋ is a name for the sum of them. Even
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if we know that the first digit of ẋ is 0 we only know that the first digits of both
Sacks reals are the same. It depends on the tree T how far we have to extend v to
determine the value of the first digit of either Sacks real.

Definition 30. Given a tree T ⊆ 2<ω we let obj(T ) be the collection of triples
x = (nx, tx, sx) such that

(1) nx ∈ ω,
(2) tx ⊆ T is a finite tree whose all maximal nodes have length nx,
(3) sx ∈ 2nx .

For x = (nx, tx, sx) and y = (ny, ty, sy) we say that x ≥ y if

(1) nx ≥ ny,
(2) tx ∩ 2ny = ty,
(3) sy ⊆ sx.

Let 0 be (0, ∅, ∅), the smallest element in obj(T ).

The following definition is modeled after Lemma 29.

Definition 31. Suppose that

• p⃗ = (p, F, T ) ∈ Qγ ;
• x = (nx, tx, sx) is in obj(T );
• v is a maximal node of tx;
• ξ < γ.

We say that y is a response to (p⃗, x)-challenge (v, ξ) if

(1) y ≥ x,
(2) there are maximal nodes t0, t1 ∈ ty such that

(a) v ⊆ t0, t1,
(b) projξ+1(t0), projξ+1(t1) are incompatible and
(c) ∀ζ ≤ ξ projζ(t0) = projζ(t1).

Definition 32. Suppose that p⃗ = (p, F, T ) ∈ Qγ and K = [T̃ ] is a fixed compact
set. The rank function rkp⃗ : obj(T ) −→ ω1 ∪ {∞} is defined as follows.

(1) rkp⃗(x) = 0 if tx + sx ̸⊆ T̃ ∩ 2nx ,
(2) rkp⃗(x) ≥ α > 0 if for every β < α, and every (p⃗, x)-challenge (v, ξ) there

exists a response y ∈ obj(T ) with rkp⃗(y) ≥ β.

In other words,

rkp⃗(x) = min
ξ<γ

min
v∈tx∩2nx

sup{rkp⃗(y) + 1 : y ≥ x, y responds to (p⃗, x)-challenge (v, ξ)}.

Let rkp⃗(x) = ∞ if rkp⃗(x) ≥ α for all α.

Remark 33. For p⃗ = (p, F, T ) ∈ Qγ , the members of obj(T ) are hereditarily finite,
and the function rkp⃗ depends only on obj(T ) and p⃗. It follows that rkp⃗ takes the same
values in every wellfounded model of ZFC containing p⃗. Similarly, the existence of
a countable ordinal γ and p⃗ ∈ Qγ such that the corresponding rank function rkp⃗
takes value γ at 0 is a Σ1

2 statement, so absolute to models of ZFC containing ω1.

Lemma 34. If x ≤ y then rkp⃗(x) ≥ rkp⃗(y).

Proof. If (v, ξ) is a (p⃗, y)-challenge then (v�nx, ξ) is a (p⃗, x)-challenge. �
Lemma 35. Suppose that x ∈ obj(T ) and y ≥ x is a response to (p⃗, x)-challenge
(v, ξ). Then there exists a minimal x ≤ y′ ≤ y which responds to (v, ξ).
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Proof. Suppose that x = (nx, tx, sx) and y = (ny, ty, sy). First find nx ≤ ny′ ≤ ny
such that t0�ny′ , t1�ny′ are still responses to (v, ξ). Let ty′ consist of these two
nodes plus one extension of length ny′ for each maximal node of tx. �

Observe that in the definition of rank we can limit ourselves to extensions that
are minimal in the above sense.

Examples rkp⃗(0) = 1 if there exists ξ < γ such that for every n ∈ ω, if t0, t1 ∈ 2n

and

(1) projξ+1(t0) ̸= projξ+1(t1) and
(2) ∀ζ ≤ ξ projζ(t0) = projζ(t1),

then

¬∃s ∈ 2n t0 + s, t1 + s ∈ T̃ ∩ 2n.

In other words, for every response y to (p⃗,0)-challenge (∅, ξ), rkp⃗(y) = 0.
For arbitrary x = (nx, tx, sx) the same holds except that the (p⃗, x)-challenge

would be of form (v, ξ) for some v ∈ tx and then we also require that v ⊆ t0, t1,
sx ⊆ s and n ≥ nx.

Similarly rkp⃗(0) = 2 if for every (p⃗,0)-challenge (∅, ξ) there is a response y ≥ 0
such that rkp⃗(y) = 1.

Lemma 36. Suppose that rkp⃗(x) = ∞ and ξ < γ. Then there exists y ≥ x such
that

(1) rkp⃗(y) = ∞,
(2) for every maximal node v ∈ tx, y responds to the (p⃗, x)-challenge (v, ξ).

Proof. Let v1, . . . , vk be a list of maximal nodes of tx. Let x0 = x and define by
recursion a sequence x1, . . . , xk = y such that for every i < k,

(1) xi+1 ≥ xi,
(2) rkp⃗(xi) = ∞,
(3) for every j > i, vj has a unique maximal extension v⋆j in txi ,
(4) xi+1 is a response to the (p⃗, xi)-challenge (v⋆i+1, ξ).

If xi is already constructed then by the induction hypothesis vi has a unique
extension v⋆i in xi. Let xi+1 be any maximal extension of xi responding to (v⋆i , ξ)
with rkp⃗(xi+1) = ∞. It is easy to see that y = xk has required properties. �

The definition of rank depends on the set K. The following examples relate it to
the concepts from previous sections. The two lemmas below follow from the general
theorem which we are aiming to prove but here we will provide a direct argument.

Lemma 37. Suppose that p⃗ = (p, F, T ) and rkp⃗(0) = ∞. Then there exists z ∈ 2ω

such that K ∩ (z + [T ]) is uncountable. In particular, if rkp⃗(0) = ∞ then K is not
small.

Proof. Suppose that rkp⃗(0) = ∞. Recursively construct a sequence ⟨xk : k ∈ ω⟩
such that for every k,

(1) xk = ⟨nxk
, txk

, sxk
⟩,

(2) xk+1 ≥ xk,
(3) rkp⃗(xk) = ∞,
(4) xk+1 responds to all (p⃗, xk)-challenges (v, 1) for each maximal node v ∈ txk

.
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For the step (4) we use Lemma 36 with ξ = 1.
Let T̄ =

∪
k txk

and z =
∪

k sxk
. It follows that T̄ is a perfect tree and [T̄ ] ⊆

[T̃ ] + z. �

Lemma 38. Suppose that K is big⋆. Then rkp⃗(0) = ∞ for all γ < ω1 and all
p⃗ ∈ Qγ .

Proof. Fix γ < ω1 and let p⃗ = (p, F, T ) ∈ Qγ . It suffices to to find a tree T ′ ⊆ T
and a real z ∈ 2ω such that

(1) [T ′] ⊆ [T ] + z,
(2) for all v ∈ split(T ′) and all δ < γ there are nodes t0, t1 such that

(a) v ⊆ t0, t1,
(b) projδ+1(t0), projδ+1(t1) are incompatible,
(c) ∀η ≤ δ projη(t0) = projη(t1).

If we succeed in finding such T ′ and z then for every x = (nx, tx, sx) ∈ obj(T )
satisfying

(1) tx ⊆ T ′ ∩ 2nx

(2) sx ⊆ z

we have rkp⃗(x) > 0. Consequently, rkp⃗(x) = ∞.
We will refine the argument in Lemma 7. Let {ηn : n ∈ ω} be the enumeration

of γ. We build inductively a function f ∈ ω<ω and find reals {ys : s ∈ ω<ω & s(i) <
f(i) for i < |s|} and a sequence of integers {kn : n ∈ ω} such that

(1) cl({ys : s < f}) is a perfect set,
(2) (2ω \K) + {ys : s < f, |s| < n} ̸= 2ω for n ∈ ω,
(3) for every t ∈ {ys�kn : s < f, |s| < n} and every ηm, m ≤ n there are reals

ys⌢i, ys⌢j with i, j < f(|s|) such that
(a) t ⊆ ys⌢i, ys⌢j ,
(b) projηm+1(ys⌢i�kn+1), projηm+1(ys⌢j�kn+1) are incompatible,
(c) ∀η ≤ ηm projη(ys⌢i�kn+1) = projη(ys⌢j�kn+1).

Suppose that {ys : s < f, |s| < n} are given. For each already constructed real
and each γm, m ≤ n we need to construct two reals satisfying (3). This requirement
determines the value of f(|s|). Condition (1) is guaranteed by (3) and condition (2)
will be satisfied as long as for every i < f(|s|), ys⌢i�jf(|s|) ∈ {ys�jf(|s|) : s < f, |s| <
n} where j is the function from Definition 6. Finally, reals ys⌢i for i < f(|s|) can
be found using lemma 29, and lastly kn+1 can be chosen large enough so that (3)
holds.

Arguing as in Lemma 7 we find z ∈ 2ω such that {ys : s < f} ⊆ K + z. Let
T ′ be a tree such that [T ′] is the closure of {ys : s < f}. Observe that T ′ has the
required properties. �

The following theorem is a refinement of Theorem 5. It characterizes sets K that
require than continuum translations to cover 2ω.

Theorem 39. Suppose that K is a compact subset of 2ω. If for some γ < ω1 there
is p⃗ ∈ Qγ such that rkp⃗(0) < ω1 then 2ω is not covered by less than ℵ0 translations
of K.

If for every γ < ω1 and every p ∈ Qγ , rkp⃗(0) = ∞ then for a model V |= GCH,

VSω2 |= K + (V ∩ 2ω) = 2ω.

coverin_perfect39.tex, January 20, 2015 Time: 10: 27



CLOSED SETS WHICH CONSISTENTLY HAVE FEW TRANSLATES COVERING THE LINE13

6. The consistency result

In this section we will show the second part of Theorem 39.

Theorem 40. If for every γ < ω1 and every p ∈ Qγ , rkp⃗(0) = ∞ then for a model
V |= GCH,

VSω2 |= K + (V ∩ 2ω) = 2ω.

The proof of this theorem will occupy the rest of this section. As we already
remarked earlier it suffices to show that for every γ < ω1,

VSγ |= K + (V ∩ 2ω) = 2ω.

Fix γ < ω1. We have to show that for every real x ∈ VSγ ∩ 2ω there exists
z ∈ V ∩ 2ω such that x ∈ K + z.

Suppose that x ∈ VSγ ∩ 2ω. Without loss of generality, x depends on all Sacks
reals, that is γ is minimal. We can find p⃗ = (p, F, T ) ∈ Qγ such that p 
Sγ
ẋ = F (ġ), where g = ⟨gβ : β < γ⟩ is the sequence of Sacks reals. As before we
can assume that p̄ = (2ω)γ . We need to find q ∈ Sγ and z ∈ V ∩ 2ω such that
q 
Sγ ẋ ∈ K + z. We will construct sequences ⟨xk = (nxk

, txk
, sxk

) : k ∈ ω⟩ and
⟨ξk : k ∈ ω⟩ such that

(1) ∀ξ < γ ∃∞k ξk = ξ,
(2) xk+1 ≥ xk,
(3) rkp⃗(xk) = ∞,
(4) xk+1 responds to every (p⃗, xk)-challenge (v, ξk).

Suppose that xk is already constructed. To get xk+1 apply Lemma 36 with
ξ = xξk.

Let T̄ =
∪

k txk
and z =

∪
k sxk

. It follows that [T̄ ] + z ⊆ [T̃ ] = K, that is
[T̄ ] ⊆ K + z.

Lemma 41. There exists q ∈ Sγ such that q̄ = F−1([T̄ ]).

Proof. This lemma finishes the proof, as q 
Sγ ẋ ∈ [T̄ ] ⊆ K + z.

Let Q = F−1([T̄ ]), we want to show that there is q ∈ Sγ such that q̄ ⊆ Q. It
suffices to show that for every β < γ and every x ∈ (2ω)β , ((Q)x)β is a perfect set
provided that ((Q)x)β ̸= ∅. In other words, whenever x simulates the first β Sacks
reals, ((Q)x)β is supposed to be a Sacks condition determined by x. Note that
((Q)x)β is a closed set, so it a set of branches of some tree. Choose a v ∈ 2<ω such
that [v] ∩ ((Q)x)β ̸= ∅. It remains to check that v has two incompatible extensions
t0, t1 such [t0] ∩ ((Q)x)β ̸= ∅ and [t1] ∩ ((Q)x)β ̸= ∅. Let x⋆ ∈ (2ω)γ be such that
x⋆�β = x and v ⊆ x⋆(β) and let y⋆ = F (x⋆). By Lemma 27 for each n ∈ ω there
is An such that F−1([y⋆�n]) = {x : ∀α ∈ An projα(y

⋆�n) ⊆ x(α)}. Let n and k be
chosen so large that

(1) β = ξk,
(2) v ⊆ projβ(y

⋆�n),
(3) y⋆�n is a maximal node in txk

.

In other words, at this step we will produce nodes t0, t1 such that

(1) y⋆�n ⊆ t0, t1,
(2) projβ(t0), projβ(t1) are incompatible,
(3) ∀ζ < β projζ(t0) = projζ(t1).

It follows that t0 and t1 are two incompatible extensions of v in ((Q)x)β . �
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7. Coherent club-guessing principles

The argument in Section 8 uses the coherent club-guessing principle given by
Theorem 46 below. First we prove Theorem 42, a stronger version of the restriction
of Theorem 46 to the case of successors of regular cardinals. The material in
this section is entirely due to the third author, but the proof of Theorem 42 was
provided to us by Assaf Rinot. The sets Cα in Theorem 42 are not closed, but they
are cofinal. In Theorem 46 the condition of cofinality is dropped as well.

Theorem 42. Let λ be a regular uncountable cardinal, let θ < λ be a limit ordinal,
and let S be a stationary subset of λ+ consisting of ordinals of cofinality cof(θ).
Then there exists a sequence ⟨Cα | α < λ+⟩ such that for each club E ⊆ λ+ there
exists an α ∈ S such that

(1) sup(Cα) = α,
(2) ot(Cα) = θ,
(3) Cβ = Cα ∩ β for all β ∈ Cα,
(4) Cα ⊆ S ∩ E.

Proof. For each ordinal α < λ+, fix an injection dα : α→ λ, and for each β < λ, let
aβα denote d−1

α [β]. Then for each α < λ+, ⟨aβα | β < λ⟩ is a continuous, ⊆-increasing
chain in [α]<λ with union α. For each α < λ+, let Fα be the set of γ < λ such that,
for all β ∈ aγα, a

γ
β = aγα ∩ β. Then each Fα is club subset of λ.

Since θ < λ, club many ordinals below λ+ of cofinality cof(θ) contain a cofinal
set of ordertype θ.

Given a set E ⊆ λ+, and β < λ, let E(β) be the set of all α ∈ S for which the
following hold:

(1) β ∈ Fα;
(2) ot(E ∩ S ∩ α) = α;
(3) sup(E ∩ S ∩ aβα) = α;
(4) ot(E ∩ S ∩ aβα) = ot(aβα) contains a cofinal subset of ordertype θ.

Note that if E ⊆ E′ are subsets of λ and β < λ, then E(β) ⊆ E′(β).

Lemma 43. There exists a β∗ < λ for which E(β∗) is nonempty whenever E is a
club in λ+.

Proof. To prove the claim, suppose otherwise. Then for each β < λ we may pick a
club Eβ ⊆ λ+ for which Eβ(β) = ∅. Let E =

∩
β<λEβ \ λ. Since E is club in λ+,

we may fix an α ∈ E ∩ S such that ot(E ∩ S ∩ α) = α.
As cf(α) < cf(λ), the set D = {β < λ : sup(E ∩ S ∩ aβα) = α} is co-bounded in

λ. Furthermore, continuity entails that the set

D′ = {β ∈ D : ot(E ∩ S ∩ aβα) = ot(aβα)}
is club in λ. Pick β ∈ D′∩Fα such that ot(aβα) contains a cofinal subset of ordertype
θ. Then since E ⊆ Eβ , we get that ot(Eβ ∩ S ∩ aβα) = ot(aβα). So α ∈ Eβ(β),
contradicting the choice of Eβ . This completes the proof. �

Let β∗ < λ be as given by Lemma 43.

Lemma 44. There exists a club E∗ ⊆ λ+ such that for every club D ⊆ λ+, the set
{α ∈ E∗(β∗) : aβ

∗

α ∩ E∗ ⊆ D} is nonempty.

Proof. To prove this, suppose otherwise. Then there exists a ⊆-decreasing sequence
⟨Gβ : β < λ⟩ of club subsets of λ+ such that
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(1) G0 = λ+,
(2) for every β < λ, the set {α ∈ Gβ(β

∗) : aβ
∗

α ∩Gβ ⊆ Gβ+1} is empty,
(3) for every limit ordinal γ < λ, Gγ =

∩
β<γ Gβ .

Let G =
∩

β<λGβ , and pick α ∈ G(β∗). Then α ∈ Gβ(β
∗) for all β < λ, hence

⟨aβ∗

α ∩Gβ : β < λ⟩ must be a strictly-decreasing sequence of subsets of aβ
∗

α , contra-

dicting the fact that |aβ∗

α | < λ. This completes the proof. �

Let E∗ ⊆ λ+ be as given by Lemma 44.

Lemma 45. There exists an ordinal τ∗ < λ which contains a cofinal subset of
ordertype θ such that for every club D ⊆ λ+, the set {α ∈ E∗(β∗) : aβ

∗

α ∩ E∗ ⊆
D ∧ ot(aβ

∗

α ) = τ} is nonempty.

Proof. Again, to prove this, suppose otherwise. Then for every ordinal τ < λ which
contains a cofinal subset of ordertype θ, there exists a club Dτ ⊆ λ+ for which

{α ∈ E∗(β∗) : aβ
∗

α ∩ E∗ ⊆ Dτ ∧ ot(aβ
∗

α ) = τ}

is empty. Let D be the intersection of these sets Dτ . By the choice of E∗ we may
pick an α ∈ E∗(β∗) such that aβ

∗

α ∩ E∗ ⊆ D. Let τ = ot(aβ
∗

α ). Since α ∈ E∗(β∗),
τ contains a cofinal subset of ordertype θ, contradicting the fact aβ

∗

α ∩ E∗ ⊆ Dτ .
This completes the proof �

Let τ∗ be as given by the previous Lemma. As τ∗ contains a cofinal subset of
ordertype θ, we may fix a cofinal subset u ⊆ τ∗ of order-type θ. For each α < λ+,
let

Cα = {β ∈ E∗ ∩ S ∩ aβ
∗

α : ot(aβ
∗

β ) ∈ u}.
Let us see that ⟨Cα : α < λ+⟩ works. Suppose that we are given a club E ⊆ λ+.
Applying the choice of τ∗, pick α ∈ E∗(β∗) such that aβ

∗

α ∩E∗ ⊆ E and ot(aβ
∗

α ) = τ∗.
Then:

(1) α ∈ S;
(2) sup(E∗ ∩ S ∩ aβ∗

α ) = α;
(3) Cα ⊆ E∗ ∩ S ∩ aβ∗

α ⊆ S ∩ E;
(4) β∗ ∈ Fα, so for all γ ∈ aβ

∗

α , we have aβ
∗

γ = aβ
∗

α ∩ γ, and Cγ = Cα ∩ γ;
(5) ot(E∗ ∩ S ∩ aβ∗

α ) = ot(aβ
∗

α ) = τ∗;
(6) ot(Cα) = ot(u) = θ.

This completes the proof. �

Given a set C of ordinals, and an ordinal β < sup(C), we let nextC(β) denote
min(C \ (β + 1)).

Theorem 46. Suppose that λ is an uncountable cardinal, and let γ be a countable
ordinal. There exists a sequence C̄ = {Cα : α < λ+} such that

(1) ∀α < λ+ Cα ⊆ α,
(2) if β ∈ Cα then Cβ = Cα ∩ β,
(3) S = {α < λ+ : ot(Cα) = γ} is stationary,
(4) if E ⊆ λ+ is a club then the set

gd(E) = {α ∈ S ∩ E : ∀β ∈ Cα [β, nextCα(β)) ∩ E ̸= ∅}

is stationary.
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Proof. In the case where λ is regular, this follows from Theorem 42, by replacing
each Cα given there (with S as the set of all ordinals below λ+ of countable cofi-
nality) with Cα ∩ β for β minimal violating condition (2) of the statement of this
theorem (and leaving Cα as is if there is no such β).

We now prove the theorem assuming only λ ≥ ω2, following the argument on
pages 93-94 of [11]. By Conclusion 1.7 and Claim 1.3 of [9], there exist a stationary
S0 ⊆ λ+ ∩ cof(ℵ1) \ (ω1 + 1), a club E0 ⊆ λ+ and a sequence ⟨C0

α : α < λ+⟩ such
that

(1) each C0
α is a closed subset of the corresponding α,

(2) each nonaccumulation point of each C0
α is a successor ordinal,

(3) whenever β ∈ C0
α is a nonaccumulation point of C0

α, C
0
β = C0

α ∩ β,
(4) for every α ∈ S0 ∩ E0, ot(C

0
α) = ω1 and α = sup(C0

α).

We may assume that S0 ⊆ E0. Let ⟨C1
α : α < λ+⟩ be the sequence formed by

removing from each C0
α all of its accumulation points. Then ⟨C1

α : α < λ+⟩ retains
properties (1) - (4), except that the sets C1

α need not be closed.
Given sets C,F , let gl(C,F ) denote the set {sup(β ∩F ) : β ∈ C ∧ β > min(F )}.

By [10] (Sh365, Claim 2.3 (2), for idb), there is a club E1 ⊆ λ+ such that for each
club E ⊆ E1, the set of α ∈ S0 for which gl(C1

α, E1) ⊆ E is stationary (otherwise
we can derive a descending ω-sequence of ordinals from a ⊆-decreasing ω2-sequence
of club sets Fγ ⊆ λ+, where each Fγ+1 witnesses that Fγ is not as desired). For
each α ∈ λ+, let

C2
α = {β ∈ C1

α : β = min(C1
α \ sup(β ∩ E1)) ∧ β > min(E1)}.

Let us check that ⟨C2
α : α < λ+⟩ satisfies item (4) of the conclusion of the theorem

(using S0, which will be a subset of the desired S). Fix E ⊆ λ+ club. It suffices to
consider the case where E consists of limit points of E1. Fix α ∈ S0 ∩E for which
gl(C1

α, E1) ⊆ E, and fix β ∈ C2
α. Let β′ = nextC2

α
(β). Then β < sup(β′ ∩ E1) ∈

E ∩ β′ (since β′ is a successor ordinal).
Finally, for each α < λ+, let Cα = {β ∈ C2

α : ot(C2
α∩β) < γ}. Then the sequence

⟨Cα : α < λ+⟩ is as desired. �

Condition (4) implies that for stationary many α is S there is an element of
E between any two consecutive elements of Cα. By removing the least element
of Cα we can also assume that min(Cα) ∩ E ̸= ∅ whenever α ∈ gd(E) and E is
a club. Observe that coherence condition (2) implies that for any α, β ∈ S, if
δ = sup(Cα ∩ Cβ) then Cα ∩ δ = Cβ ∩ δ.

Remark 47. Suppose C̄ and γ are as in Theorem 46, and that γ is a limit ordinal.
Define C ′

α, for α < λ+ by letting each C ′
α be the set of β ∈ Cα for which the

ordertype of Calpha ∩ β has the form δ + n, for δ either 0 or a limit ordinal, and
n ∈ ω even. Then {C ′

α : α < λ+} also satisfies the conclusion of the theorem, with
part 4 strengthened so that

gd′(E) = {α ∈ S ∩ E : ∀β ∈ Cα (β, nextCα(β)) ∩ E ̸= ∅}

is stationary. The corresponding strengthened version of Theorem 46 for nonlimit γ
can be obtained similarly, starting from a sequence C̄ corresponding to some γ′ ≥ γ.
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8. The ZFC result

In this section we will prove Theorem 39, and the second half of Theorem 5
in the corresponding case. Since these follow easily from CH (since K is nowhere
dense), we assume otherwise.

To each sequence C̄ as in Theorem 46 (for notational purposes, we may assume
that γ is the maximal ordertype of elements of C̄, and thus that γ is determined by
C̄) we associate an ideal JC̄ on S (also determined by C̄) generated by {S \gd(E) :
E ⊆ λ+ club}.
Lemma 48. The additivity of JC̄ is λ+. In particular, cov(JC̄) = λ+.

Proof. Suppose that {Iα : α < λ} ⊆ JC̄ . Find clubs Eα ⊆ λ+ such that Iα ⊆
S \ gd(Eα) for α < λ. Note that

∪
α<λ Iα ⊆ S \ gd(

∩
α<λEα) ∈ JC̄ . �

For each countable ordinal γ we define an ideal Jγ on 2ℵ0 as follows. If 2ℵ0 is a
successor of an uncountable cardinal, that is if 2ℵ0 = λ+ for some uncountable λ
then Jγ = JC̄ , where C̄ is any sequence as in Remark 47 (so with the strengthened
version of part 4) with respect to γ.

If 2ℵ0 is a limit cardinal then we fix an increasing sequence of uncountable
cardinals {λη : η < cf(2ℵ0)} converging to 2ℵ0 together with guessing sequences
{C̄λ+

η
: η < cf(2ℵ0)} as in Remark 47, with respect to γ. The ideal Jγ is then

defined on
∏

η<cf(2ℵ0 ) λ
+
η as follows:

X ∈ Jγ ⇐⇒ ∀η (X)η ∈ JC̄
λ
+
η

,

where (X)η = {α : (η, α) ∈ X}. Observe that in either case cov(J ) = 2ℵ0 .
We say that a set A ⊆ 2ω is Jγ-small if there exists a set Y = {yα : α < 2ℵ0}

such that for every z ∈ 2ω {α < 2ℵ0 : yα ∈ z + A} ∈ Jγ . If A is Jγ-small, then 2ω

is not covered by fewer than 2ℵ0 many translations of A.
We can now rephrase Theorem 39 as follows.

Theorem 49. Let K be a compact subset of 2ω. If for some γ < ω1 there is p⃗ ∈ Qγ

such that rkp⃗(0) < ω1 then K is Jγ-small.

Let γ < ω1, p⃗ ∈ Qγ be such that rkp⃗(0) < ω1. Without loss of generality we can
assume that p⃗ = ((2ω)γ , F, T ) for some tree T and homeomorphism F .

Fix a cardinal λ such that 2ℵ0 > λ ≥ ℵ1, and a set of distinct reals

X = {xξ : ξ < λ+} ⊆ 2ω.

Let C̄ = ⟨Cα : α ∈ λ+⟩ and S be as in Remark 47, with respect to γ. For each
α ∈ S let

yα = F (⟨xβ : β ∈ Cα⟩),
and let Y = {yα : α < λ+}. Since each Cα for α ∈ S has order type γ,

⟨xβ : β ∈ Cα⟩) ∈ (2ω)γ ,

so the reals yα are well defined.
Now the reals yα are defined in such a way that∪

{projδ(yα � n) : n ∈ ω} = xξ,

where ξ is the δ-th element of Cα. In other words, reals from X pretend to be Sacks
reals.

For each z ∈ 2ω let Sz = {α ∈ S : yα ∈ K + z}.
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Theorem 50. For every z ∈ 2ω, Sz ∈ JC̄ .

Theorem 49 follows immediately. If 2ℵ0 = λ+ for some uncountable λ then
Jγ = JC̄ . If 2

ℵ0 is a limit cardinal then Jγ =
∏

η<cf(2ℵ0 ) JC̄λ
η+

and the component

JC̄λ
η+

witnesses that at least λ+η translations of K are needed. Since sup{λ+η : η <

cf(2ℵ0)} = 2ℵ0 we are done.
The rest of this section is devoted to the proof of Theorem 50. Supposing that

the theorem is false, we let z⋆ ∈ 2ω be such that Sz⋆ ̸∈ JC̄ .

Lemma 51. The set gd′(E) ∩ Sz⋆ is stationary for every club E ⊆ λ+.

Proof. If gd′(E) ∩ Sz⋆ ∩ E′ = ∅ for some club E′ then gd′(E ∩ E′) ∩ Sz⋆ = ∅. In
particular Sz⋆ ∈ JC̄ . �

Lemma 52. There exists a perfect tree Q ⊆ 2<ω such that for every node t ∈ Q

{α ∈ Sz⋆ : t ⊆ yα} ̸∈ JC̄ .

Proof. Let Z0 = {yα : α ∈ Sz⋆} = {yα : yα ∈ z⋆ +K}. By the Cantor-Bendixon
theorem there exists a perfect tree Q0 ⊆ 2<ω and a countable set C0 such that
cl(Z0) = [Q0] ∪ C0. For t ∈ Q0 let St = {α ∈ Sz⋆ : t ⊆ yα} and let

Q1 = {t ∈ Q0 : St ̸∈ JC̄}.

Note that Q1 is a tree without terminal nodes.
Let Z1 = [Q1]. If Z1 is uncountable then by applying the Cantor-Bendixon

theorem again we get a perfect tree Q such that Z1 = [Q]∪C1. The tree Q has the
required property.

Suppose otherwise and let E0 = λ+ \ {α : yα ∈ Z1 ∪C0} and for t ∈ Q0 \Q1 let
Et be a club of λ+ such that Et ∩ St = ∅. Put E = E0 ∩

∩
t∈Q0\Q1

Et. It follows

that Sz⋆ ∩ E = ∅, a contradiction. �

Lemma 53. There exists a sequence ⟨Eξ, N̄ξ : ξ < ω1⟩ such that for each ξ < ω1,

(1) Eξ is a club subset of λ+,
(2) Eξ ⊆

∩
ζ<ξ Eζ ,

(3) N̄ξ is a sequence ⟨Nξ,α : α ∈ Eξ⟩ such that for each α ∈ Eξ,
(a) Nξ,α ≺ H(λ++),

(b) λ+ 1 ⊆ Nξ,α, z
⋆, C̄, T̃ , Y ∈ Nξ,α,

(c) |Nξ,α| = λ,
(d) for all β ∈ α ∩ Eξ, Nξ,β ⊆ Nξ,α, and if α is a limit point of Eξ then

Nξ,α =
∪

β∈α∩Eξ
Nξ,β,

(e) for all β < α, ⟨Nξ,δ : δ ∈ β ∩ Eξ⟩ ∈ Nξ,α,
(f) {Eζ : ζ < ξ} ∈ Nξ,α,
(g) Nξ,α ∩ λ+ = α.

Observe that (3)(f) is the only condition imposing dependence between different
sequences N̄ξ.

Proof of Lemma 53. Suppose that ⟨N̄ζ , Eζ⟩ for ζ < ξ are already given. Let {Nα :
α < λ+} be a continuous sequence of models satisfying condition (3)(a)-(f). Let C
be

{α : Nα ∩ λ+ = α}.
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Since ⟨Nα : α < λ+⟩ is continuous, C is a club. Put Eξ = C ∩
∩

ζ<ξ Eζ and let

N̄ξ = {Nα : α ∈ Eξ}. Observe that Eξ and N̄ξ are as required. �
Definition 54. Suppose that p⃗ = (p, F, T ) ∈ Qγ . A triple (x, ξ, ᾱ) is suitable if

(1) x = (nx, tx, sx) ∈ obj(T ),
(2) sx = z⋆�nx,
(3) rkp⃗(x) < ξ,
(4) ᾱ = ⟨αv : v ∈ tx ∩ 2nx⟩ is such that

(a) for each v ∈ tx ∩ 2nx , αv ∈ gd′(Eξ) ∩ Sz⋆ ,
(b) v ⊆ yαv .

Recall that αv ∈ Sz⋆ means that yαv ∈ z⋆ +K. Observe that if rkp⃗(0) < ξ then
(0, ξ, α⟨⟩) is suitable whenever α⟨⟩ ∈ gd′(Eξ) ∩ Sz⋆ . The following lemma gives the
desired contradiction.

Lemma 55. If (x, ξ, ᾱx) is suitable then there exists a suitable (y, ζ, ᾱy) such that
y ≥ x and ζ < ξ.

Proof of Lemma 55. Suppose that (x, ξ, ᾱx) is suitable. Since rkp⃗(x) < ξ there
exist ζ < ξ and a (p⃗, x)-challenge (v, δ) such that rkp⃗(y) < ζ for every y ∈ obj(T )
responding to (v, δ). To finish the proof it suffices to find one such y, and a sequence
ᾱy as in item (4) above such that (y, ζ, ᾱy) is suitable.

Let γ⋆ be the δ-th element of Cαv and γ⋆⋆ the (δ+ 1)-th element of Cαv . Let Z
be the collection of all pairs (γ′, α′) such that

(1) α′ ∈ gd′(Eζ) ∩ Sz⋆ ,
(2) γ⋆ ∈ Cα′ ,
(3) γ′ is the (δ + 1)-th element of Cα′ ,
(4) v ⊆ yα′ .

Then

(1) for all (γ′, α′) ∈ Y , Cα′ ∩ γ⋆ = Cαv ∩ γ⋆ = Cγ⋆ ,
(2) (γ⋆⋆, αv) ∈ Z.

Since αv ∈ gd′(Eξ) it follows that there is γ̄ ∈ (γ⋆, γ⋆⋆) ∩ Eξ. Then all parameters
from the definition of Z are in Nξ,γ̄ .

Lemma 56. Let F = {γ′ : ∃α′ (γ′, α′) ∈ Z}. Then F is unbounded in λ+.

Proof. If F were bounded it would be the same set in Nζ,γ̄ as in H(λ++). However,
γ⋆⋆ ∈ F , and γ⋆⋆ ̸∈ Nζ,γ̄ . �

Fix γ′ ∈ F such that γ′ ̸= γ⋆⋆, and let α′ be such that (γ′, α′) ∈ Y . Since
γ⋆ ∈ Cα′ ∩Cαv it follows that Cα′ ∩ γ⋆ = Cαv ∩ γ⋆ and since γ⋆ is the δ-th element
of Cαv the first δ elements of Cα′ and Cαv are the same. Recall that each yα was
defined to be F (⟨xβ : β ∈ Cα⟩). Consequently,∪

{projη(yα′ � n) : n ∈ ω} =
∪

{projη(yαv � n) : n ∈ ω}

for η ≤ δ. On the other hand since the (δ + 1)-th elements of Cα and Cαv are
different ∪

{projδ+1(yα′ � n) : n ∈ ω} ≠
∪

{projδ+1(yαv � n) : n ∈ ω}.

Define y ≥ x as follows. First find ny ∈ ω such that

projδ+1(yα′)�ny ̸= projδ+1(yαv )�ny.
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Next let sy = z⋆�ny. Let ty = {y′α�ny} ∪ {yαw�ny : w ∈ tx ∩ 2nx}. Finally, let
ᾱy = {αw : w ∈ ty ∩ 2ny} be defined as follows:

αw =

 α′ if w = yα′�ny
αv if w = yαv�ny
αs if w = yαs�ny for s ∈ tx ∩ 2nx \ {v}

By the choice of ny, the node v gets two distinct extensions, y′α�ny and yαv�ny,
and one is assigned α′ and the other αv. All other nodes follow appropriate reals
and have the same ordinals assigned to them. �
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[4] Marton Elekes and Juris Steprāns. Less than 2ω many translates of a compact nullset may

cover the real line. Fund. Math., 181:89–96, 2004.
[5] Marton Elekes and Arpad Toth. Covering locally compact groups by less than 2ω many

translates of a compact nullset. Fund. Math., 193(3):243–257, 2007.
[6] Thomas Jech. Set Theory. Springer, 2003.

[7] Alexander Kechris. Classical Descriptive Set Theory, volume 156 of Graduate Texts in Math-
ematics. Springer Verlag, 1995.

[8] Arnold W. Miller. Mapping a set of reals onto the reals. The Journal of Symbolic Logic,
48(3):575–584, 1983.

[9] Saharon Shelah. Advances in cardinal arithmetic. In Finite and infinite combinatorics in sets
and logic (Banff, AB, 1991), volume 411 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.,
pages 355–383. Kluwer Acad. Publ., Dordrecht, 1993.

[10] Saharon Shelah. Cardinal arithmetic, volume 29 of Oxford Logic Guides. The Clarendon Press

Oxford University Press, New York, 1994. Oxford Science Publications.
[11] Saharon Shelah. Further cardinal arithmetic. Israel J. Math., 95:61–114, 1996.
[12] Saharon Shelah. Proper and Improper Forcing. Perspectives in Logic. Springer-Verlag, 1998.

[13] Jindrich Zapletal. Isolating cardinal invariants. J. Math. Log., 3(1):143–162.

National Science Foundation, Division of Mathematical Sciences, Arlington, Vir-
ginia 22230 U.S.A.

E-mail address: tbartosz@nsf.gov, http://tomek.bartoszynski.googlepages.com

Department of Mathematics, Miami University, Oxford, Ohio 45056
E-mail address: larsonpb@miamioh.edu, http://www.users.miamioh.edu/larsonpb/

Department of Mathematics, Hebrew University, Jerusalem, Israel
E-mail address: shelah@math.huji.ac.il, http://math.rutgers.edu/~shelah/

coverin_perfect39.tex, January 20, 2015 Time: 10: 27


