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Abstract. In his book on Pmax [6], Woodin presents a collection of partial

orders whose extensions satisfy strong club guessing principles on ω1. In this
paper we employ one of the techniques from this book to produce Pmax vari-
ations which separate various club guessing principles. The principle (+) and

its variants are weak guessing principles which were first considered by the sec-
ond author [3] while studying games of length ω1. It was shown in [1] that the
Continuum Hypothesis does not imply (+) and that (+) does not imply the
existence of a club guessing sequence on ω1. In this paper we give an alternate

proof of the second of these results, using Woodin’s Pmax technology. We also
present a variation which produces a model with a ladder system which weakly
guesses each club subset of ω1 club often. We show that this model does not
satisfy the Interval Hitting Principle, thus separating these statements. The

main technique in this paper, in addition to the standard Pmax machinery, is
the use of condensation principles to build suitable iterations.

In Chapter 8 of his book on Pmax [6], Woodin presents a collection of Pmax

variations whose extensions satisfy strong club guessing principles on ω1, along with
the statement that the nonstationary ideal on ω1 (NSω1) is saturated (see pages
499-500, for instance). In this paper we employ one of the techniques from that
chapter to produce Pmax variations which separate various club guessing principles.
The arguments and results in this paper are significantly simpler than the ones used
there. The separation of club guessing principles is carried out via iterations; no
local forcing arguments are used. We present these iteration arguments in full and
outline the way in which they are incorporated in the standard Pmax machinery.

The principle (+) and its variants are weak guessing principles which were first
considered by the second author [3] while studying games of length ω1. It was
shown in [1] that the Continuum Hypothesis does not imply (+) and that (+) does
not imply the existence of a club guessing sequence on ω1. In this paper we give
an alternate proof of the second of these results, using Woodin’s Pmax technology.
With the Pmax approach it is more natural to produce sequences which weakly
guess clubs at club many points, so our model for (+) satisfies a strengthening of
(+) for which the guessing happens club often. As always with Pmax variations,
the continuum has cardinality ℵ2 in our models. This research was done at the
same time as [1], though the results in that paper were proved first. As a warm-up
we present a variation which produces a model with a ladder system which weakly
guesses each club subset of ω1 club often. We show that this model does not satisfy
the Interval Hitting Principle, thus separating these statements.
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Section 10.2 of [4] outlines a general method for producing Pmax variations rela-
tive to a given Σ2 sentence for H(ℵ2). The variations presented here do not literally
fall inside this framework, but are similar in spirit. One difference is that the varia-
tions presented here use Woodin’s stationary tower in place of the Boolean algebra
P(ω1)/NSω1 , as explained in Section 1. Modulo this difference, the variation pre-
sented in Section 2 would fall inside the framework of [4], except that the sentence
that it preserves, club weak club guessing, is Σ2 in H(ℵ2) with a predicate for
NSω1 , which can easily be added to the framework of [4]. The variation presented
in Section 3 is still further removed, as the sentence it preserves, (+)cω, is not in
general expressible in H(ℵ2).

The main technique in this paper, in addition to the standard Pmax machinery,
is the use of condensation principles to build suitable iterations.

1. Condensation

Given a cardinal κ, we let H(κ) denote the collection of sets whose transitive
closure has cardinality less than κ. Woodin [6, Definition 8.15] defines the strong
condensation principle forH(κ) to be the statement that there is a function F : κ→
H(κ) such that, for all X ≺ ⟨H(κ), F,∈⟩, FX = F �(Ord ∩MX), where FX and
MX are the images of F and M under the transitive collapse of X. We will use a
consequence of strong condensation for H(κ) (for any κ ≥ ℵ2), which we will call
weak condensation for H(ℵ2). For our purposes, a club set of countable subsets of
an uncountable set Z is the set of all countably infinite subsets of Z closed under
a given finitary function on Z. We note that if C is such a club, and A is a set in
Z, then {X ∈ C | A ∈ X} is club, and {X ∩ ω1 | X ∈ C} is a club subset of ω1 in
the usual sense (see [2], for instance).

1.1 Definition. Weak condensation for H(ℵ2) is the statement that there exist να
and Nα = {Nα

β : β < να} (α < ω1) such that for each α < ω1,

• να ∈ ω1;
• for all β < να, N

α
β is the transitive collapse of a countable elementary

submodel of H(ℵ2) with ω
Nα

β

1 = α;
• for all β < γ < να, N

α
β ⊆ Nα

γ ;

and such that for club many countable elementary submodels X of H(ℵ2), the
transitive collapse of X is an element of NX∩ω1 .

The club guessing principles which hold in the models in this article are not
preserved by the usual forcings to make the nonstationary ideal on ω1 precipitous,
as they guess club often. For this reason, we use Woodin’s stationary tower to
generate the elementary embeddings which are used to define the order on our
partial orders. We will be using the so-called countable tower Q<δ, where δ is
presumed to be a Woodin cardinal, see [2], for instance). Given a model M of ZFC
and a Woodin cardinal δ of M , an iteration of (M,QM

<δ) (see [6, Definition 5.19])
consists of a family of models Mα (α ≤ ω1) and a commuting system of elementary
embeddings jα,β (α ≤ β ≤ ω1) such that

• M0 =M ;
• each embedding jα,β maps from Mα to Mβ ;
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• each jα,α+1 is a generic embedding derived from forcing over Mα with

QMα

<j0,α(δ), andMα+1 is the corresponding generic ultrapower (replaced with

its Mostowski collapse if it is wellfounded);
• for each limit ordinal β ≤ ω1, Mβ is the direct limit of the models Mα

(α < β) under the maps jα,γ (α ≤ γ < β) and each map jα,β (α < β) is
induced by this directed system.

We often use j to indicate the embedding j0,ω1
derived from an iteration, and

sometimes refer to the iteration itself as j. If M is a countable transitive model of
ZFC and δ is a Woodin cardinal of M , an iteration

j : (M,QM
<δ) → (M∗,QM∗

<j(δ))

is full if every member a of QM∗

<j(δ) is stationary in M∗ (i.e., a = jα,ω1(aα) for some

α < ω1 and some

aα ∈ QMα

<j0,α(δ),

and the set of β ∈ [α, ω1) such that jα,β(aα) is in the generic filter at stage β
is a stationary subset of ω1). If M is a countable transitive model of ZFC and
δ is a Woodin cardinal in M , we say that the pair (M,QM

<δ) is iterable if M∗ is
wellfounded for every iteration

j : (M,QM
<δ) → (M∗,QM∗

<j(δ))

of (M,QM
<δ). If A is a set of reals, we say that (M,QM

<δ) is A-iterable if it is iterable

and if A ∩ M∗ = j(A ∩ M) for every iteration j : (M,QM
<δ) → (M∗,QM∗

<j(δ)) of

(M,QM
<δ).

The proof of Theorem 8.42 from [6] shows that the conditions in the partial
orders defined in this paper exist in suitable generality.

Theorem 1.2 (Woodin). If AD holds in L(R) and A is a set of reals in L(R) then
there exist a countable transitive model M of ZFC and an ordinal δ ∈M such that

• δ is a Woodin cardinal in M ;
• (M,QM

<δ) is A-iterable;
• ⟨Vω+1 ∩M,A ∩M,∈⟩ ≺ ⟨Vω+1, A,∈⟩;
• strong condensation holds for H(κ) in M , where κ is the least strongly
inaccessible cardinal of M .

2. Club weak club guessing

This section is mostly a warm-up for the next section, in which our main result
is proved. We prove one separation result here, mainly to illustrate our approach
in a simpler setting. It is likely that other separation results can be proved in a
similar fashion.

We let club weak club guessing denote the statement that there is a sequence
⟨aα : α < ω1⟩ such that each aα is a cofinal subset of α of ordertype at most ω,
and such that for every club C ⊆ ω1, aα ∩ C is infinite for club many α. In this
section we present a Pmax variation for the existence of a club weak club guessing
sequence. We drop the conventional naming system for variations of Pmax and call
the partial order in this section P0.

2.1 Definition. The partial order P0 consists of all pairs ⟨M,A, δ,X⟩ such that
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(1) M is a countable transitive model of ZFC;
(2) δ is a Woodin cardinal in M ;
(3) (M,QM

<δ) is iterable;
(4) A is a club weak club guessing sequence in M ;
(5) X is a set in M consisting of iterations j : (N,QN

<κ) → (N∗,QN∗

<j(κ)) which

are full in M , for some ⟨N,B, κ, Y ⟩ ∈ P0, with j(B) = A and j(Y ) ⊆ X,
such that no two distinct members of X are iterations of the same pair.

The order on P0 is as follows: ⟨M,A, δ,X⟩ < ⟨N,B, κ, Y ⟩ if there exists a full
iteration j : (N,QN

<κ) → (N∗,QN∗

<j(κ)) in X.

The following statement was introduced by Kunen in unpublished work.

2.2 Definition. The Interval Hitting Principle (IHP) is the statement that there
exists a set {bα : α < ω1} such that each bα is a cofinal subset of α of ordertype at
most ω and such that for every club C ⊆ ω1 there is a limit ordinal α < ω1 such
that for all but finitely many β ∈ bα, C ∩ [β,min(bα \ (β + 1)) is nonempty.

We will show that, assuming that AD holds in L(R), the P0-extension of L(R)
satisfies club weak club guessing but not IHP. The following lemma is the key step
in proving each of these facts. The lemma shows, assuming weak condensation for
H(ℵ2), that it is possible to iterate a countable transitive model in such a way that
a given club weak club guessing sequence in the countable model is mapped to such
a sequence in V (i.e., in the model constructing the iteration) while simultaneously
mapping a witness to IHP to a sequence which fails to witness IHP.

Lemma 2.3. Suppose that (M,QM
<δ) is an iterable pair, and that

A = {aα : α < ωM
1 }

is a club weak club guessing sequence in M . Suppose that

B = {bα : α < ωM
1 }

is a set in M such that each bα is a cofinal subset of α of ordertype at most
ω. Suppose that weak condensation holds for H(ℵ2). Then there is an iteration
j : (M,QM

<δ) → (M∗,QM∗

<j(δ)) such that j(A) witnesses club weak club guessing and

the critical sequence of j shows that j(B) does not witness IHP.

Proof. We let the usual iteration construction determine cofinally many members
of each generic filter, including the first member. This guarantees the genericity of
each filter and fullness of the iteration.

For each α < ω1, we let a∗α and b∗α be the unique members of j(A) and j(B)
respectively which are cofinal subsets of α. Each a∗α and each b∗α are determined by
j0,γ , where γ < ω1 is minimal such that j0,γ(ω

M
1 ) > α.

Let Nα = {Nα
β : β < να} (α < ω1) witness weak condensation for H(ℵ2).

In order to ensure that the critical sequence of j shows that j(B) does not witness
IHP, we include in the construction of Gα (for each limit α < ω1) a stage for each
β < α, where we ensure that the interval between some consecutive pair of elements
of b∗

ωMα
1

above β will be disjoint from the critical sequence of j. At the stage for

each such β, some set d ∈ QMα

<j0,α(δ) has been chosen to put into Gα. Since each bη
is a cofinal subset of η of ordertype at most ω, there must be some n ∈ ω such that
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for cofinally many γ < ωMα
1 there exist dγ ≤ d such that for all Y ∈ dγ , the n-th

element of b∗
Y ∩ωMα

1

exists and is greater than γ. Let n0 be the least such n. There

exist an ordinal of the form ξ + 1 < α and a

d′ ∈ QMξ+1

<j0,ξ+1(δ)

such that jξ+1,α(d
′) = d and ω

Mξ

1 > β. Then n0 satisfies the same definition in

Mξ+1 with d′ in place of d, so there is a condition d′′ ≤ d′ in QMξ+1

<j0,ξ+1(δ)
such that

the n0-th and (n0+1)-st elements of b∗
Y ∩ω

Mξ+1
1

are the same values ζ and ζ ′ (greater

than ω
Mξ

1 and less than ω
Mξ+1

1 ) for all Y ∈ d′′. Then jξ+1,α(d
′′) ≤ d forces that

ζ and ζ ′ are the n0-th and (n0 + 1)-st elements of b∗
ωMα

1

, and no member of the

critical sequence is in the interval [ζ, ζ ′), as desired.
In order to guarantee that j(A) is a club weak club guessing sequence, the new

part of the construction of each Gα includes a stage for each pair (β,C), where

β < ωMα
1 and C is a club subset of ωMα

1 in some member of NωMα
1

. At this stage,

some set d ∈ QMα

<j0,α(δ) has been chosen to put into Gα. If there is a d′ ≤ d forcing

that γ ∈ a∗
ωMα

1

for some γ ∈ C \ β, then we choose such a d′ to put into Gα (and

we say that we have met the challenge (β,C)). Otherwise, we do nothing at this
stage.

Having completed the construction, suppose that C is a club subset of ω1. Let
X ≺ H(ℵ2) be in the club corresponding to Nα (α < ω1), with j and C in X. Let

α = X ∩ ω1, and note that ωMα
1 = α. We will show that we met every challenge

(β,C ∩α) in the construction of Gα, which implies that aα ∩C is cofinal in α. The

transitive collapse of X, call it N , is in Nα. Since j is full, every member of QMω1

<j(δ)

is stationary in V , so every member of QMα

<j0,α(δ) is stationary in N . Fix β < α and

let d ∈ QMα

<j0,α(δ) be the condition which was put into Gα just before the stage of

the construction of Gα corresponding to (β,C ∩ α). The set f consisting of those

γ < ωMα
1 which are forced by some b′ ≤ b to be in a∗α is stationary in Mα. To see

this, note that j0,α(A) = {a∗γ : γ < α} is a club weak club guessing sequence inMα.
Let e be a club subset of α in Mα. Then there is in Mα a club set e′ ⊆ α \ (β + 1)
such that e ∩ a∗γ is cofinal in γ for all γ ∈ e′. Let d0 be the set of Y ∈ d such

that Y ∩ α ∈ e′. Then d0 ≤ d in QMα

<j0,α(δ). There is a regressive function g on

d0 such that each g(Y ) is an element of a∗Y ∩α ∩ (e \ β). This function is constant

on a condition d′ ≤ d in QMα

<j0,α(δ). If γ is this constant value, then d′ forces that

γ ∈ a∗α ∩ e, which shows that γ ∈ f ∩ e. Since Mα is stationarily correct in N , f
is stationary in N , which means that (f ∩ C) \ β is nonempty. Thus we could and
did meet the challenge at every stage of the construction of Gα corresponding to a
pair (β,C ∩ α), for some β < α. It follows that a∗α ∩ C is cofinal in α. �

Assuming ADL(R), the basic analysis of the P0 extension requires only Lemma 2.3
in addition to standard Pmax arguments. Theorem 1.2 implies that P0 conditions
exist, and Theorem 1.2 and Lemma 2.3 together imply that every P0 condition
has a stronger condition below it (the version of this fact corresponding to P1 is
sketched after the proof of Lemma 3.3).

The ω-closure of P0 is proved using the adaptation of Lemma 2.3 to limit struc-
tures (minus the part of the argument regarding IHP, which is not necessary).
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Lemma 2.4. If ADL(R) holds, then every descending chain of P0 conditions of
length ω has a lower bound in P0.

Aside from notational complications, the iteration argument needed to prove
Lemma 3.4 is essentially the same as the proof of Lemma 2.3. Briefly, given a
descending sequence of conditions pi = ⟨Mi, Ai, δi, Xi⟩, one forms a limit sequence
⟨M∗

i , δ
∗
i : i < ω⟩ by composing the embeddings witnessing the order on these

conditions. The images of the sets Ai under this composition are all the same set
A∗. One then applies Theorem 1.2 to find a suitable iterable pair (N,QN

<κ) with
⟨M∗

i , δ
∗
i : i < ω⟩ ∈ H(ℵ1)

N and, working in N , constructs a full iteration j of
⟨M∗

i , δ
∗
i : i < ω⟩ (in the corresponding sense) for which the image of A∗ is a club

weak club guessing sequence in N . Again, the construction of j is just like the
argument for Lemma 2.3. The condition ⟨N, j(A∗), κ, Y ⟩ is then below each pi,
where Y is the union of the images of the sets Xi under the composition of the
relevant embeddings.

Suppose that AD holds in L(R), and let G ⊂ P0 be an L(R)-generic filter. For
each p = ⟨M,A, δ,X⟩ ∈ G, if we consider all the stronger conditions ⟨N,B, κ, Y ⟩ in
G, we see that the iterations of (M,QM

<δ) in these sets Y must be initial segments
of one another, and must in fact all be proper initial segments of one iteration jp
of (M,QM

<δ) of length ω1. We let P(ω1)G denote the union of all sets of the form

jp(P(ω1)
M ) for all p = ⟨M,A, δ,X⟩ ∈ G. The definition of the order on P0 implies

that jp(A) is the same set for all p = ⟨M,A, δ,X⟩ ∈ G; we call this set AG.
The following theorem gives the basic analysis of the P0 extension. Again, the

proof of the following theorem involves only the modification of the corresponding
proof for Pmax, using the version of Lemma 2.3 for building a descending ω1-
sequence of conditions. We refer the reader to [6] for the definition of ψAC . For
our purposes, the only relevant fact about ψAC is that we can deduce the Axiom
of Choice from ψAC in the P0 extension.

Theorem 2.5. Assume ADL(R). Then the following hold in the P0-extension of
L(R).

(1) P(ω1) = P(ω1)G;
(2) ω1-DC;
(3) NSω1 is saturated;
(4) ψAC ;
(5) AG is a club weak club guessing sequence;
(6) ¬ IHP.

Briefly, the proofs of the first two parts of Theorem 2.5 involve coding a given
P0-name for a set of reals (below a given condition) with a set of reals B, and then
applying Theorem 1.2 to obtain an B-iterable pair (M,QM

<δ) (this the the use of B-
iterability). Working inside M , one builds a descending ω1-sequence of conditions
which realizes ℵ1-much of this name (from the perspective of M). The standard
argument for doing this requires only choosing the first element of each generic
filter correctly. The new steps from the proof of Lemma 2.3 can be worked in to
preserve the selected club weak club guessing sequences. The last four parts of the
theorem use the fact that P(ω1)G = P(ω1) in the P0-extension. As with the other
parts of the theorem, the standard proofs of the third and fourth parts require only
choosing the first element of each generic filter correctly, so the new steps can be
worked in. That AG witnesses club weak club guessing in the extension follows from
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P(ω1)G = P(ω1) and the fact that the selected club weak club guessing sequence A
is preserved from one condition to the next. That IHP fails in the extension is due
to Lemma 2.3, which in conjunction with Theorem 1.2 says that any IHP-sequence
in any condition can be mapped to a sequence which fails to witness IHP in a
stronger condition.

The Optimal Iteration Lemma [5] for the existence of a club weak club guessing
sequence is the version of Lemma 2.3 obtained by replacing the hypothesis of weak
condensation with the assumption of a club weak club guessing sequence (and
removing the part concerning IHP). We do not know whether this lemma holds.
As a result, we do not know if P0 extensions are Π2-maximal for H(ℵ2) relative
to the existence of a club weak club guessing sequences, or whether this form of
Π2-maximality is even possible. Similarly, we do not know if P0 is homogeneous.

3. (+) and its variants

The original principle (+) asserts the existence of a stationary (i.e., intersecting
each such club) family F consisting of countable elementary submodels of H(ℵ2),
with the property that whenever M , N are in F and M ∩ ω1 = N ∩ ω1, all club
subsets of ω1 in M intersect all club subsets of ω1 in N cofinally below M ∩ ω1.
This was reformulated by Justin Moore as the following statement: there exist
⟨fα : α < ω1⟩ such that each fα is a (possibly empty) set of club subsets of α which
pairwise have intersection cofinal in α, such that for every club subset C of ω1 there
is an α with C ∩ α ∈ fα. Here we consider a strengthening of this principle.

3.1 Definition. The principle (+)cω asserts the existence of a sequence

⟨fα : α < ω1⟩

such that

• for each α < ω1,
– each element of fα is a club subset of α;
– fα is closed under finite intersections;

• for every club C ⊆ ω1, {α < ω1 | C ∩ α ∈ fα} contains a club.

Our goal in this section is to produce a Pmax variation in whose extension (+)cω
holds yet there is no club guessing sequence on ω1.

3.2 Definition. The partial order P1 consists of all pairs ⟨M,F, δ,X⟩ such that

(1) M is a countable transitive model of ZFC + CH;
(2) δ is a Woodin cardinal in M ;
(3) (M,QM

<δ) is iterable;

(4) F = ⟨fα : α < ωM
1 ⟩ witnesses (+)cω in M ;

(5) X is a set inM , each element ofX is an iteration j : (N,QN
<κ) → (N∗,QN∗

<j(κ))

such that
• j is full in M ,
• there exist H, Y such that ⟨N,H, κ, Y ⟩ ∈ P1;
• j(Y ) ⊆ X;
• letting j(H) = ⟨h∗α : α < ωN

1 ⟩, h∗α ⊆ fα for all α < ωM
1 ;

and no two distinct members of X are iterations of the same pair.
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The order on P1 is as follows: ⟨M,F, δ,X⟩ < ⟨N,H, κ, Y ⟩ if there exists an iteration
j : (N,QN

<κ) → (N∗,QN∗

<j(κ)) in X.

As in the previous section, we use weak condensation to prove our iteration
lemma.

Lemma 3.3. Suppose that

• ⟨Nα
β : α < ω1, β < να⟩ witnesses weak condensation for H(ℵ2);

• (M,QM
<δ) is an iterable pair such that M |= CH;

• ⟨fα : α < ωM
1 ⟩ witnesses (+)cω in M ;

• ⟨aα : α < ωM
1 ⟩ is such that for each limit α < ω1, aα is a cofinal subset of

α of ordertype at most ω.

Then there exist a full iteration

⟨Mα, Gβ , jα,γ : β < ω1, α ≤ γ ≤ ω1⟩

of (M,QM
<δ) and a function e : ω1 → ω1 such that, letting

⟨f∗α : α < ω1⟩ = j0,ω1(⟨fα : α < ωM
1 ⟩)

and

⟨a∗α : α < ω1⟩ = j0,ω1(⟨aα : α < ωM
1 ⟩),

(1) for every α < ω1,
(a) e(α) ≤ να;
(b) the intersection of any member of f∗α with any club subset of α in∪

β<e(α)N
α
β is cofinal in α;

(c) if α is a limit ordinal, then a∗
ωMα

1

\ {ωMβ

1 : β < α} is infinite;

(2) for each club C ⊆ ω1, the set of α such that C ∩ α ∈
∪

β<e(α)N
α
β contains

a club.

Proof. We construct the iteration in the usual way, with the following modifica-
tions. We allow the ordinary construction to determine cofinally many members of
each Gβ , including the first one, and fill in the intervening steps ourselves. This
guarantees the genericity of each filter and the fullness of the iteration.

To ensure conclusion (1c), when α is a limit ordinal we include a stage for each

ξ < ωMα
1 , as follows. When we come to this stage, we have some

b ∈ QMα

<j0,α(δ)

which we have decided to put into Gα. Let d = {ωMξ

1 : ξ < α}. Then d \ e is

bounded in ωMα
1 for each club e ∈ P(ω1)

Mα . Let

x = {ρ ∈ (ξ, ωMα
1 ) | {Y ∈ b | ρ ∈ a∗

Y ∩ωMα
1

} ∈ QMα

j0,α(δ)}.

This set is cofinal in ωMα
1 , and its closure cannot be contained in d. Since d is

closed, that means that x is not contained in d. Pick an ordinal ρ ∈ x \ d, and put

{Y ∈ b | ρ ∈ a∗
Y ∩ωMα

1

}

in Gβ . This condition forces that ρ ∈ a∗
ωMα

1

. Collectively, then, these stages of the

construction ensure that a∗
ωMα

1

\ d is cofinal in ωMα
1 .
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It remains to describe the parts of the iteration which ensure the others parts of
the conclusion of the lemma. Note that each f∗α will be of the form jβ+1,ω1(f), for

some f in Mβ+1, where β is minimal such that ω
Mβ+1

1 > α. In fact, f∗α will be of
the form ∪

γ∈[β+1,ω1)

jβ+1,γ(f).

We refer to each jβ+1,γ(f) as f
∗
α ∩Mγ . This is a slight (but unambiguous) abuse of

notation, as the sets of the form f∗α∩Mγ will be determined onceMγ is determined,
but f∗α, being in general an uncountable subset of P(α), will not be defined until
the entire construction is completed.

While constructing Gα, we include a stage for each tuple (h, ξ, ζ, c) of the fol-
lowing type:

• ζ < ξ ≤ ωMα
1 ;

• h is a function inMα whose domain bh is an element of QMα

<j0,α(δ) compatible

with every such element (i.e., a club of countable sets in VMα

j0,α(δ));

• in the case ξ < ωMα
1 , the codomain of h is f∗ξ ∩Mα;

• in the case ξ = ωMα
1 , for all Y ∈ bh, Y ∩ωMα

1 ∈ ωMα
1 and h(Y ) ∈ f∗Y ∩ω1

∩Mα;

• c is a club subset of ξ in N
ωMα

1

β , for some β < νωMα
1

.

When we come to the stage for a given (h, ξ, ζ, c), we have some b ∈ QMα

<j0,α(δ) which

we have decided to put into Gα. Since bh is a club, we may assume that b ≤ bh. If
possible, we find some γ ∈ (ζ, ξ) ∩ c such that

{Y ∈ b | γ ∈ h(Y ∩
∪
bh)}

is in QMα
<j0,δ

, and we put this set in Gα. If there is no such δ, we do nothing at this
stage.

Having completed the construction of the iteration, for each α < ω1, let zα be
the set of β < να such that there exists a countable elementary substructure X of
H(ℵ2) with the iteration ⟨Mα, Gβ , jα,γ : β < ω1, α ≤ γ ≤ ω1⟩ as a member, such
that the transitive collapse of X is Nα

β . If zα is empty, let e(α) = 0. If zα has a

maximal element βα, let e(α) = βα + 1. Otherwise, let e(α) be the supremum of
zα. In all cases, e(α) ≤ να, and conclusions (1a) and (2) are satisfied.

It remains to check that conclusion (1b) is satisfied, i.e., that for each ξ < ω1,

the intersection of any member of f∗ξ with any member of
∪

β<e(ξ)N
ξ
β is cofinal in

ξ. We need check only those ξ for which e(ξ) > 0. For these ξ, ω
Mξ

1 = ξ. Fix such a

ξ, and fix a club subset c of ξ in
∪

β<e(ξ)N
ξ
β . We show by induction on α ∈ (ξ, ω1)

that the intersection of any member of f∗ξ ∩Mα with c is cofinal in ξ. Note that
this is preserved automatically at limit stages.

First consider the case α = ξ + 1. When we reach the stage for a tuple of

the form (h, ξ, ζ, c) in the construction of Gξ, we have some b ∈ QMξ

<j0,ξ(δ)
which

we have chosen to put into Gξ. Since bh and b are compatible, we may assume
by shrinking b if necessary that b ≤ bh. Consider the set E consisting of those

γ ∈ (ζ, ω
Mξ

1 ) for which there exists a condition b′ ≤ b such that γ ∈ h(Y ∩
∪
bh)

for all Y ∈ b′. Suppose towards a contradiction that E is nonstationary in Mξ.
Then there is a club D ∈ P(ω1)

Mξ disjoint from E, and, since ⟨f∗β ∩Mξ : β < ξ⟩
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witnesses (+)cω in Mξ, there is a club D′ ∈ P(ω1 \ (ζ + 2))Mξ such that for all
ρ ∈ D′, D ∩ ρ ∈ f∗ρ ∩ Mξ. Then there is a condition b0 ≤ b such that for all

Y ∈ b0, Y ∩ωMξ

1 ∈ D′, and there is a regressive function on b0 which picks for each
such Y an element of D ∩ h(Y ∩

∪
bh) greater than ζ. Thinning b0 to make this

regressive function constant gives a contradiction to the claim that D is disjoint

from E. Then E is stationary in Mξ, and also in N ξ
β for all β < e(ξ), since Mξ

is stationarily correct in these models. Since E ∩ c is cofinal in ξ, we may choose
γ ∈ E ∩ c∩ (ζ, ξ) and b′ ≤ b such that b′ forces the element of f∗ξ ∩Mα represented
by h to intersect c above γ. Applying this argument for every tuple of the form
(h, ξ, ζ, c) takes care of the case α = ξ + 1.

Now suppose that α > ξ and the induction hypothesis holds for all members of
(ξ, α]. We show that it holds for α+1. When we reach the stage for a tuple of the

form (h, ξ, ζ, c) in the construction of Gα, we have some b ∈ QMα

<j0,α(δ) which we have

chosen to put into Gα. We may assume that b ≤ bh and that Y ∩ ωMα
1 ∈ ωMα

1 \ ξ
for all Y ∈ b. We need to see that there exists a γ ∈ (ζ, ξ) ∩ c such that the set of
Y ∈ b such that γ ∈ h(Y ∩

∪
bh) is stationary in Mα. Supposing that there is no γ

as desired, then let d be the set of γ ∈ (ζ, ξ) such that b forces in Mβ that γ is not
in [h]Gβ

. Then c\ (ζ+1) ⊆ d. By our induction hypothesis, all elements of f∗ξ ∩Mα

have cofinal intersection with c. So for each Y ∈ b there is a ρ(Y ) ∈ d such that
ρ(Y ) ∈ h(α), and we get a contradiction again by thinning b to make this function
constant. This completes the proof. �

The remainder of this section is similar to the end of the previous section. As-
suming ADL(R), the basic analysis of the P1 extension requires only Lemma 3.3
in addition to standard Pmax arguments. Theorem 1.2 implies that P1 conditions
exist, and Theorem 1.2 and Lemma 3.3 together imply that every P1 condition
has a stronger condition below it. That is, if p = ⟨M,F, δ,X⟩ is a P1 condition,
Theorem 1.2 says that there is an iterable pair (N,QN

<κ) such that p ∈ H(ℵ1)
N and

N satisfies weak condensation for H(ℵ2). Letting ⟨Nα
β : α < ωN

1 , β < να⟩ witnesses
weak condensation for H(ℵ2) in N , apply Lemma 3.3 in N to obtain a full iteration
j of (M,QM

<δ) and a function e : ωN
1 → ωN

1 such that, letting j(F ) = ⟨f∗α : α < ω1⟩,
• for every α < ω1,

– e(α) ≤ να;
– the intersection of any member of f∗α with any club subset of α in∪

β<e(α)N
α
β is cofinal in α;

• for each club C ⊆ ωN
1 in N , the set of α such that C ∩ α ∈

∪
β<e(α)N

α
β

contains a club.

Let Y = j(X) ∪ {j}. For each α < ωN
1 , let h0α be the collection of club subsets

of α in
∪

β<e(α)N
α
β , and let hα be the set of all finite intersections of members of

f∗α ∪ h0α. Let H = ⟨hα : α < ωN
1 ⟩. Then ⟨N,H, κ, Y ⟩ is a P1 condition stronger

than p.
The ω-closure of P1 is proved using the adaptation of Lemma 3.3 to limit struc-

tures (minus the part of the argument regarding club guessing, which is not neces-
sary).

Lemma 3.4. If ADL(R) holds, then every descending chain of P1 conditions of
length ω has a lower bound in P1.
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Aside from notational complications, the iteration argument needed to prove
Lemma 3.4 is essentially the same as the proof of Lemma 3.3. Briefly, given a
descending sequence of conditions pi = ⟨Mi, Fi, δi, Xi⟩, one forms a limit sequence
⟨M∗

i , δ
∗
i : i < ω⟩ by composing the embeddings witnessing the order on these

conditions. The images of the sequences Fi induce via coordinatewise union a
sequence F ∗ whose members are all closed under finite intersections. One then
applies Theorem 1.2 to find a suitable iterable pair (N,QN

<κ) with

⟨M∗
i , δ

∗
i : i < ω⟩ ∈ H(ℵ1)

N

and, working in N , constructs a full iteration j of ⟨M∗
i , δ

∗
i : i < ω⟩ (in the corre-

sponding sense) for which the image of F ∗ satisfies the conclusion of Lemma 3.3.
Again, the construction of j is just like the argument for Lemma 3.3. Then there is
a set H as discussed above (after the proof of Lemma 3.3) such that the condition
⟨N,H, κ, Y ⟩ is below each pi, where Y is the union of the images of the sets Xi

under the composition of the relevant embeddings.
Suppose that AD holds in L(R), and let G ⊂ P1 be an L(R)-generic filter. For

each p = ⟨M,F, δ,X⟩ ∈ G, if we consider all the stronger conditions ⟨N,H, κ, Y ⟩ in
G, we see that the iterations of (M,QM

<δ) in these sets Y must be initial segments
of one another, and must in fact all be proper initial segments of one iteration jp
of (M,QM

<δ) of length ω1. As before, we let P(ω1)G denote the union of all sets

of the form jp(P(ω1)
M ) for all p = ⟨M,A, δ,X⟩ ∈ G. We also get a sequence

FG = ⟨fGα : α < ω1⟩ such that each fGα is the union of all sets of the form f∗α,
where p = ⟨M,F, δ,X⟩ ∈ G, and jp(F ) = ⟨f∗α : α < ω1⟩. The definition of the order
on P1 implies that each fGα is a collection of club subsets of α closed under finite
intersections.

The following theorem gives the basic analysis of the P1 extension. Again, the
proof of the following theorem involves only the modification of the corresponding
proof for Pmax, using the version of Lemma 3.3 for building a descending ω1-
sequence of conditions. Again, for our purposes, the only relevant fact about ψAC

is that we can deduce the Axiom of Choice from ψAC in the P1 extension.

Theorem 3.5. Assume ADL(R). Then the following hold in the P1-extension of
L(R).

(1) P(ω1) = P(ω1)G;
(2) ω1-DC;
(3) NSω1 is saturated;
(4) ψAC ;
(5) FG witnesses (+)cω;
(6) there is no club guessing sequence.

Again, the proofs of the first two parts of Theorem 3.5 involve coding a given
P1-name for a set of reals (below a given condition) with a set of reals A, and then
applying Theorem 1.2 to obtain an A-iterable pair (M,QM

<δ). Working inside M ,
one builds a descending ω1-sequence of conditions which realizes ℵ1-much of this
name (from the perspective of M). The standard argument for doing this requires
only choosing the first element of each generic filter correctly. The new steps from
the proof of Lemma 3.3 can be worked in ensure that the image of the selected
witness to (+)cω can be extended to a witness to (+)cω in the larger model. The last
four parts of the theorem use the fact that P(ω1)G = P(ω1) in the P1-extension.
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As with the other parts of the theorem, the standard proofs of the third and fourth
parts require only choosing the first element of each generic filter correctly, so the
new steps can be worked in. That FG witnesses (+)cω in the extension follows from
P(ω1)G = P(ω1) and the fact that the members of the selected sequence F are
extended from one condition to the next. That club guessing fails in the extension
is due to Lemma 3.3, which in conjunction with Theorem 1.2 says that any club
guessing sequence in any condition can be mapped to a sequence which fails to
witness club guessing in a stronger condition.

Again, the Optimal Iteration Lemma for (+)cω is the version of Lemma 3.3 ob-
tained by replacing the hypothesis of weak condensation with (+)cω itself (and
removing the part concerning club guessing sequences). We do not know whether
this lemma holds. As a result, we do not know if P1 extensions are Π2-maximal
for H(ℵ2) relative to (+)cω, or whether this form of Π2-maximality is even possible.
Similarly, we do not know if P1 is homogeneous.
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