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Abstract. Given a space 〈X,J 〉 in an elementary submodel M of H(θ), define XM to be
X ∩ M with the topology generated by {U ∩ M : U ∈ J ∩ M}. It is established, using
anti-large-cardinals assumptions, that if XM is compact and its regular open algebra is
isomorphic to that of a continuous image of some power of the two-point discrete space,
then X = XM . Assuming CH+SCH (the Singular Cardinals Hypothesis) in addition, the
result holds for any compact XM satisfying the countable chain condition.

1. Introduction

This paper continues the line of research of [10], [11], [6], [8] and [12], in which the ques-
tion of which topological spaces are determined by their compact reflections in elementary
submodels is investigated. A minor technical obstacle results from the fact that we cannot
take elementary submodels of the entire universe, but we want our models to be elementary
in structures much larger than the spaces we are considering. So, we adopt the following
convention: whenever X is a topological space, the elementary submodels we consider have
X as an element and are elementary in H(θ) for some regular cardinal θ of cardinality greater
than all finite iterations of the power-set function starting with X.

Given a space 〈X, T 〉 in an elementary submodel M of H(θ), we define XM to be X ∩M
with the topology generated by {U ∩M : U ∈ T ∩M} [5]. If XM is compact T2 (in fact,
we shall assume all spaces are T2), this constrains X to the point that simple additional
topological hypotheses on XM ensure that XM = X [6]. When powers of the two-point
discrete space D are considered, the situation is more complicated: roughly, for κ below very
large cardinals, XM homeomorphic to Dκ implies XM = X, but this is not the case above
such large cardinals [8], [11], [6]. This was generalized to continuous images of powers of D
in [12]. In Section 5, we generalize the positive results to compact spaces co-absolute with
such spaces. Yet a further generalization is to compact spaces satisfying the countable chain
condition. However, for this we need to assume CH + SCH (where SCH stands for the
Singular Cardinals Hypothesis).

Key words and phrases. compact, countable chain condition, reflection, elementary submodel, co-absolute
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Matemàtica of the Institut d’Estudis Catalan.
The third author acknowledges support from NSERC grant A-7354.

1



In [6] we also considered the contrasting situation of when X compact implies XM compact.
This turned out to be related to whether X is scattered, i.e. each subspace has an isolated
point. Generalizations of scattering play a key role in the two new theorems mentioned
above; as well, we explore in general the relationships between various forms of scattering
and the question of “squashing” a compact space X to a compact XM . Formally,

Definition 1.1. [8] A compact space X is squashable if for some elementary submodel M
containing X, XM is compact but not equal to X.

Kunen [8] noted that squashability does not depend on θ. He also showed:

Lemma 1.2. If Dλ is squashable, λ is greater than the first 1-extendible cardinal.

1-extendible cardinals are reasonably large; in particular, if κ is 1-extendible, κ is the κth
measurable cardinal. For the definition and more on such cardinals, see [7] or [8].

In previous papers, [10], [11], [6], [12], we have used the anti-large-cardinal assumption
“0# does not exist” or, rather, its consequence that “|M | ≥ κ implies M ⊇ κ” to limit the
types of elementary submodels that can exist. Here we introduce a weaker assumption that
will serve our purposes.

Definition 1.3. (B): if θ is a regular cardinal, M is an elementary submodel of H(θ), and
γ is a cardinal in M such that 2γ ∈ M , then |M ∩ γ| ⊆ M .

Note that since M may not satisfy the power set axiom, the condition on γ in the statement
of (B) is not vacuous.

Theorem 1.4. Axiom (B) implies no Dκ is squashable.

Proof. We show the contrapositive. Suppose that κ is a cardinal and M is an elementary
submodel of some H(θ) such that κ and 2κ are in M and (Dκ)M is compact but not equal to
Dκ. Then κ is not included in M , since κ ⊆ M and (Dκ)M compact imply (Dκ)M = Dκ [11],
[6]. Thus we can fix α < κ, the least ordinal not in M . By our convention, since Dκ ∈ M ,
22κ

is also in M . Since (Dκ)M is compact, |2κ ∩M | = 2|κ∩M |. |κ ∩M | ≥ |α|, so 2|κ∩M | > α.
But (B) would imply |2κ ∩M | ⊆ M , so α ∈ M , contradiction. ¤

For any elementary submodel M of any H(θ), we define oM to be the least cardinal κ such
that κ+ 6⊆ M (note that even if oM is a limit cardinal, M must include it). Equivalently, oM

is the cardinality of the least ordinal not in M . If oM 6= θ (which must be the case if M is
part of a counterexample to (B)) one of the following must hold:

• oM ∈ M , in which case o+
M ∩M = η, where η is the least ordinal not in M (since for

every ordinal α in M of cardinality oM there is a bijection between oM and α in M);
• oM 6∈ M , in which case oM is a limit cardinal, and the least ordinal in M greater

than oM is a cardinal (as M is closed under the function α 7→ |α|).
The following reformulation of (B) in terms of oM is immediate.

Theorem 1.5. Axiom (B) is equivalent to the assertion that if θ is a regular cardinal and
M is an elementary submodel of H(θ), then |M ∩ γ| = oM for every γ ≥ oM in M such that
2γ ∈ M .

Axiom (B) is essentially the principle |M | = oM weakened so that, while it suffices for all
of our applications, its failure implies a certain form of Chang’s Conjecture (it is for this that
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we require 2γ ∈ M). Recall that for cardinals λ > κ and δ > η, the expression 〈λ, κ〉 → 〈δ, η〉
says that the set of Z ⊆ λ of cardinality δ with |Z∩κ| = η is stationary in P(λ) (equivalently,
that for every function F from the finite subsets of λ to λ there exists a Z ⊆ λ of cardinality δ
closed under F with |Z∩κ| = η). Another equivalent form of 〈λ, κ〉 → 〈δ, η〉 is the following:
there is an elementary substructure M of H(λ+) of cardinality δ with |M ∩ κ| = η. Chang’s
Conjecture is the statement 〈ω2, ω1〉 → 〈ω1, ω〉.

Supposing that (B) fails, fix the smallest θ for which there exists a counterexample, and
let ζ be the least cardinal for which there exists an M ≺ H(θ) witnessing the failure of (B)
with oM = ζ. Let γ be the least ordinal such that there exists an M ≺ H(θ) with

• γ, 2γ ∈ M ,
• γ ≥ ζ,
• |M ∩ γ| > oM ,

and fix such an M . Now, let η be the least cardinal in M greater than oM . Either η = o+
M

or η ∩M = oM , so in particular |η ∩M | = oM . By the minimality of γ, |γ ∩M | = o+
M . Since

2γ ∈ M , if oM ∈ M then we have the following version of Chang’s Conjecture: 〈γ, o+
M〉 →

〈o+
M , oM〉. To see this, note that otherwise there would be a function F : [γ]<ω → γ for which

there exists no set Z ⊆ γ closed under F with |Z| = o+
M and |Z ∩ o+

M | = oM . Then since γ,
oM and o+

M are in M there must be such a function in M , but since M ∩ γ is closed under
any function F ′ : [γ]<ω → γ in M , we have a contradiction. If oM 6∈ M , we have the weaker
statement that for every function F : [γ]<ω → γ there exists a Z ⊆ γ closed under F such
that η ≥ |Z ∩ γ| = |Z ∩ η|+. This weaker statement is implied by the version of Chang’s
Conjecture from the first case, and in fact is equivalent to the failure of (B). The failure of (B)
then has consistency strength somewhere in between Chang’s Conjecture and the existence
of the sharp of every real (see [7]). In particular, (B) is weaker than the assumption “0#

does not exist”, which has been used in other papers in the references, and (B) suffices for
those arguments.

We will frequently be using the following consequence of (B):

Lemma 1.6. Assume (B) and suppose φ is a cardinal function on topological spaces such
that φ(X) is bounded by some finite iteration of the exponential function applied to |X|, and
|φ(X) ∩M | ≥ φ(XM). Then M ⊇ φ(XM).

Proof. Suppose φ(X) ≤ 22...2
|X|

. By (B), it suffices to show |φ(X) ∩M | ≥ φ(XM) which we
have assumed. ¤

2. Examples

The following example shows that we can have, modulo an inaccessible, two different
elementary submodels M and N of the same size and a compact space X such that XM is
compact but XN is not compact. We do not think the inaccessible is necessary, but we do
not have another example.

Example 2.1. A space X and elementary submodels M and N containing X such that
|M | = |N |, XM is compact, but XN is not.

3



Let κ be an inaccessible cardinal smaller than the first 1-extendible. Take X to be the
one-point compactification of the disjoint sum of Dγ, for γ < κ. Let M be an elementary
submodel of a suitable H(θ) with the property that M ∩ κ is an ordinal less than κ, and
such that all subsets of γ are in M whenever γ ∈ M ∩ κ. Then XM is compact. To get
such an M , build an increasing sequence of elementary submodels Mn (n < ω) of cardinality
less than κ such that for each even n, Mn ∩ κ is an ordinal, and such that for each odd n,
Mn contains the powerset of γ whenever γ ∈ Mk ∩ κ, for k < n. Then

⋃
n∈ω Mn will be as

desired. Note that for this construction to work we need κ to be a strong limit, but we also
need κ to be regular: if not, we would have cf κ ∈ M , and therefore cf κ ⊆ M ; but then a
cofinal subset of κ would be in M , so M ∩ κ would have to be κ.

Now take N to be another elementary submodel such that |N | = κ, X ∈ M and κ ∈ N .
Then 2κ ∈ N but 2κ 6⊆ N . Therefore, XN is not compact, since (by Lemma 1.2) Dκ is not
squashable and is not included in N , yet (Dκ)N is a closed subspace of XN .

We know that compact scattered spaces are squashable [6]. It is easy to get examples of
non-scattered spaces that are squashable, like the previous one, taking perfect pre-images of
scattered spaces in the correct way. (A map is perfect if it is continuous, closed, and points
have compact inverses.) However not all squashable spaces are like that, even assuming there
are no large cardinals.

Example 2.2. Let X be the long closed interval of length κ + 1, κ > 2ℵ0 . Then X is a
connected squashable space – just pick M countably closed such that |M | < κ. Since X is
connected, X cannot be a perfect pre-image of a scattered space.

Problem. Assuming say (B), characterize topologically the class of squashable spaces.

3. κ-scattered and strongly κ-scattered spaces

We shall look at two generalizations of scattered spaces:

Definition 3.1. For p ∈ F ⊆ X, χ(p, F ) is the least cardinality of a neighbourhood base
for p in the subspace F . χ(X) = sup {χ(p,X) : p ∈ X}. χ(F, X) is the least cardinality of a
neighbourhood base about F in X. πχ(x,X) is the least cardinality of a collection of non-
empty open sets such that every open set about x includes one. πχ(X) = sup {πχ(x,X) :
x ∈ X}. Clearly πχ(X) ≤ χ(X).

Definition 3.2. [2]. A space X is κ-scattered if for every closed subset F of X, there is a
p ∈ F such that χ(p, F ) < κ.

Definition 3.3. A space X is strongly κ-scattered if for every closed subset F of X, there is
a p ∈ F and an neighbourhood V of p such that |V ∩ F | < κ.

In [6] it is shown that if X is compact and scattered, then XM is compact. One could hope
to generalize this result to κ-scattered, assuming maybe that κ ⊆ M . But this is consistently
not true:

Example 3.4. Let κ be a cardinal and suppose κ+ < 2κ. Let θ be a regular cardinal greater
than 2κ, and let M be an elementary submodel of H(θ) of cardinality κ+ including κ+ + 1.
Then (Dκ)M is not compact. Let X be the one-point compactification of κ+ disjoint copies
of Dκ. Then X is κ+-scattered, but XM is not compact.
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However we can still improve some results in [6].

If X is any topological space and ≤X is a well-ordering of a basis for X, then the minimal
decomposition of X according to ≤X is the sequence 〈Pα, Oα, Xα : α < γ〉 defined as follows.
For each α < γ, let Xα = X \ ⋃{Oβ : β < α} (so X0 = X; the construction continues
as long as the Xα’s are non-empty), let Oα be the ≤X-least member of the basis for X
such that Oα ∩ Xα is non-empty and has the smallest possible cardinality, and let Pα be
Oα ∩Xα. If X is compact, this construction must end at a successor stage (and so we write
〈Pα, Oα, Xα : α ≤ γ〉).
Theorem 3.5. Let X be a compact space, let θ be a regular cardinal greater than 2|X| and
let M be an elementary submodel of H(θ). Let ≤X be a well-ordering in M of a basis for
X, and let 〈Pα, Oα, Xα : α ≤ γ〉 be the minimal decomposition of X according to ≤X . If M
is closed under sequences of length |Pα| for each α ∈ (γ + 1) ∩M , then XM is compact.

Proof. Let D be an open cover of XM , and let γ∗ be the least α ∈ (γ + 1) ∩M such that
(Xγ∗)M can be covered by a finite subcover D0 of D. Then X \⋃

D0 is compact, and D0 is in
M , so γ∗ must be a successor ordinal or 0. Towards a contradiction, suppose that γ∗ = η∗+1.
Now, Xη∗ \

⋃
D0 is compact, and since Xη∗ \

⋃
D0 ⊆ Pη∗ , Xη∗ \

⋃
D0 = (Xη∗ \

⋃
D0)M .

Therefore, some finite subcover D1 of D covers (Xη∗ \
⋃

D0)M . Then D0 ∪ D1 is a finite
subcover of D covering (Xη∗)M , giving a contradiction. ¤

Theorem 3.5 has the following corollary.

Corollary 3.6. If M is κ-closed (i.e. subsets of M of size ≤ κ are in M) and X is strongly
κ+-scattered and compact, then XM is compact.

We next relate characters to squashability. A key concept in Kunen’s work [8] is the
following:

Definition 3.7. A λ-Čech-Posṕı̌sil tree in a space X is a tree K = {Ks : s ∈ ≤λ2}
satisfying:

i) Each Ks is non-empty and closed in X;
ii) s ⊆ t implies Ks ⊇ Kt;
iii) Kŝ0 ∩Kŝ1 = ∅;
iv) if the length of s is γ, a limit ordinal, then Ks =

⋂
α<γ Ks¹α.

Čech and Posṕı̌sil proved (see e. g. [3, 3.16]):

Lemma 3.8. If X is compact and for each x ∈ X, χ(x,X) ≥ λ, then there is a λ-Čech-
Posṕı̌sil tree in X, and hence |X| ≥ 2λ.

We have the following results. We first use a proof from [8] to show:

Lemma 3.9. If XM is compact, κ+1 ⊆ M and χ(x,X) ≥ κ, for every x ∈ X, then 2κ ⊆ M .

Proof. Let {Ks : s ∈ ≤κ2} be a κ-Čech-Posṕı̌sil tree in X. By elementarity, we can suppose
it is in M . We will prove by induction that 2γ ⊆ M , for every ordinal γ ≤ κ. If γ is a
sucessor ordinal, this is immediate. So suppose γ is a limit ordinal. Note that γ ∈ M since
κ + 1 ⊆ M . Fix s ∈ 2γ. By the induction hypothesis, we have s¹α ∈ M , for every α < γ.
Thus Ks¹α ∈ M . Also, by elementarity, (Ks¹α)M is closed in XM , for every α < γ. Since XM
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is compact and {(Ks¹α)M : α < γ} is centered, we have that there is an x ∈ ⋂
α<γ(Ks¹α)M .

Note that x ∈ M , and therefore

s =
⋃
{t : x ∈ Kt and length (t) < γ} ∈ M,

and we are done. ¤

By induction, we can now get as far as the first inaccessible, without assuming κ ⊆ M .

Theorem 3.10. If XM is compact, κ ∈ M is less than the first inaccessible, and χ(x,X) ≥ κ
for every x ∈ X, then 2κ ⊆ M .

Proof. Let κ be the least counterexample. By the previous lemma, κ cannot be ℵ0. Also,
κ cannot be λ+, else λ ∈ M and hence 2λ ⊆ M , so κ ⊆ M and we can apply the previous
lemma. A similar argument gives us that κ cannot be a limit cardinal that is not a strong
limit. Finally, if cf(κ) = λ < κ, then λ ∈ M and there is a sequence {λα}α<λ of cardinals in
M with supremum κ. By the minimality of κ, we have that λ is included in M and that each
2λα ⊆ M . Since κ is the supremum of the 2λα ’s, we have that κ ⊆ M , so by the previous
lemma, 2κ ⊆ M . ¤

We suspect that 3.10 can be improved, replacing “inaccessible” by “1-extendible”, but we
have been unable to prove that.

The following result from [6] will be useful:

Lemma 3.11. If χ(X) ≤ κ ⊆ M and XM is compact, then X = XM .

From this we deduce:

Theorem 3.12. Assume (B). Suppose that a topological space X is squashed by an ele-
mentary submodel M such that |P(X) ∩ M | ∈ M . Then there is an x ∈ X such that
χ(x,X) < |P(X) ∩M | and there is a y ∈ X such that χ(y,X) > |P(X) ∩M |.
Proof. By (B), |P(X)∩M | = |X ∩M | = oM . If χ(x,X) ≥ oM , for every x ∈ X, then by the
definition of oM , oM ⊆ M and thus by Lemma 3.9, we would have 2oM ⊆ M , a contradiction.
If χ(x,X) ≤ oM , for every x ∈ X, by Lemma 3.11, we would have that XM is not compact,
also a contradiction. ¤

Using 3.9, we can also show:

Theorem 3.13. Assume (B). Suppose that a topological space X is squashed by an elemen-
tary submodel M such that |P(X) ∩M | ∈ M . Then X is |P(X) ∩M |-scattered.
Proof. Fix X and M as in the statement of the theorem. Let κ denote |P(X)∩M |. By (B),
oM = κ ⊆ M . Suppose that X is not κ-scattered. Then there is a closed subset F of X such
that χ(x, F ) ≥ κ, for every x ∈ F . By elementarity we can take F ∈ M and we will also
have that FM is a closed subspace of XM . Since XM is compact, FM will also be compact.
Now using Lemma 3.9 for F , we would have 2κ ⊆ M , a contradiction. ¤

By Example 2.2, the hypothesis |P(X) ∩ M | ∈ M cannot be removed in the previous
theorems. Since ω is included in every elementary submodel of every H(θ), the same proof
shows the following result from [6]:

Corollary 3.14. If X is compact and squashed by a countable elementary submodel, then
X is scattered.
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The following cardinal functions will be useful now and later:

Definition 3.15. c(X) is the sup of cardinalities of disjoint collections of open sets. d(X) is
the least cardinality of a dense subset of X. πw(X) is the least cardinality of a collection P
of non-empty open sets such that each non-empty open set includes a member of P . w(X)
is the least cardinality of a basis for X. Clearly c(X) ≤ d(X) ≤ πw(X) ≤ w(X).

Now we quote the following result from [12]:

Lemma 3.16. Suppose XM is compact and either χ(XM) ≤ λ or d(XM) ≤ λ. If 2λ ⊆ M ,
then X = XM .

We will also need the following result from [4]:

Lemma 3.17. If XM is compact, then there is a perfect map from X onto XM , and hence
X is compact.

In investigating whether or not a compact space is squashable, a natural dichotomy occurs
between the κ-scattered and non-κ-scattered cases. We will first consider the non-κ-scattered
case.

Theorem 3.18. Suppose κ ∈ M is less than the first inaccessible cardinal or suppose κ+1 ⊆
M . Suppose XM is compact and X (or XM) is not κ-scattered. If χ(XM) ≤ κ or d(XM) ≤ κ,
then XM = X.

Proof. We first deal with the case when X is not κ-scattered. Then there is a closed F ⊆ X,
F ∈ M , such that χ(p, F ) ≥ κ for every p ∈ F . By 3.10 or by 3.9 , 2κ ⊆ M , and by 3.16,
X = XM .

Now suppose instead that XM is not κ-scattered. Then by 3.8, there is a κ-Čech-Posṕı̌sil
tree in XM . Pulling back via the perfect map, we get a κ-Čech-Posṕı̌sil tree in X, hence by
the proof of 3.9 and 3.10, we again get 2κ ⊆ M . ¤

If we assume (B), we do not have to worry about inaccessibility provided our knowledge
of XM ’s cardinal functions is sharp:

Theorem 3.19. Assume (B). Suppose XM is compact and χ(XM) = κ or d(XM) = κ or
πw(XM) = κ, for some κ ∈ M . If either X or XM is not κ-scattered, then X = XM .

Proof. Assuming (B), by the previous theorem, we just have to show that κ ⊆ M . To see
this, it suffices to note that since X is compact, χ(X) ≤ |X|, so we can apply 1.6, since
|χ(X) ∩M | ≥ χ(XM) = κ. A similar argument works for d or for πw. ¤

The following structure lemma for κ-scattered compact spaces will be used in the next
two sections. It slightly strengthens a result of Efimov [2].

Lemma 3.20. Suppose X is a κ-scattered compact space with πw(X) = κ, cf(κ) = ω,
κ > ω. Then for any increasing sequence of cardinals {κn}n<ω, with supn<ω κn = κ, κn

regular, there exist regular closed subspaces {Xn}n<ω of X such that:

(a)
⋃

n<ω

Xn is dense in X;

(b) {y ∈ Xn : χ(y,X) < κn} is dense in Xn;
(c) πw(X) =

∑
n∈ω πw(Xn).
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Proof. Fix an increasing sequence of cardinals {κn : n ∈ ω} as in the hypothesis and define

En = {x ∈ X : χ(x,X) < κn}.
First note that since X is κ-scattered, then D = {x ∈ X : χ(x,X) < κ} is Gδ-dense in

X (see e.g. [12]). We give the proof here for completeness. Let V be a non-empty Gδ set.
Then there is a non-empty closed Gδ set F ⊆ V . Since X is κ-scattered, there is an x ∈ F
such that χ(x, F ) < κ. But then

χ(x,X) ≤ χ(x, F ) · χ(F,X) ≤ χ(x, F ) · ω < κ.

Thus x ∈ D ∩ V and we are done.

Let Fn = En. Since D is Gδ-dense in X, we have that X =
⋃

n∈ω

Fn. Indeed, if X \ ⋃
n∈ω

Fn =
⋂

n∈ω X \ Fn 6= ∅, then it would have to intersect D, a contradiction. Define Xn = intFn.

Note that Xn ⊇ intXn ⊇ intFn = Xn, so Xn is a regular closed subspace of X. By the
Baire Category Theorem, some Fn, hence all Fn from some n0 onward have non-empty
interiors. It follows that

⋃
n∈ω

intFn and, a fortiori,
⋃

n∈ω

Xn is dense in X. To see this, suppose

there were a non-empty open V ⊆ X − ⋃
n<ω

intFn. Then V =
⋃

n<ω

Fn ∩ V . Again by

Baire Category, for some n, Fn ∩ V has non-empty interior in V and hence in X. But
int(Fn ∩ V ) ⊆ intFn ⊆ X − V , contradiction. Also, since π-weight is inherited by and from
dense sets, πw(X) = πw(

⋃
n∈ω

Xn), so πw(X) ≤ ∑
n∈ω πw(Xn). On the other hand, since

πw(intFn) ≤ πw(X), we have πw(X) =
∑

n∈ω πw(Xn).

Note that since En is dense in Fn, En ∩ intFn is dense in intFn and hence in intFn = Xn.
Thus Xn has a dense subspace of points of character < κn. ¤

4. The countable chain condition case

In [4], [6], [8], [10], [11], [12] it is shown that if XM is compact and satisfies various
properties stronger than the countable chain condition, then X = XM , if |X| is small or anti-
large-cardinal assumptions are made. It is therefore a natural question whether assuming
XM is compact and satisfies the countable chain condition is enough to get that X is not
squashable. We will show this question is undecidable. First we have a consistent example.

Example 4.1. “Ψ-space” is any space obtained by taking a maximal almost disjoint family
A of subsets of ω, and putting a topology on A ∪ ω as follows. Each point in ω is isolated.
For each A ∈ A, a neighbourhood of A is {A} union a cofinite piece of A.

Assume ¬CH. Then the one-point compactification X of Ψ-space satisfies the countable
chain condition and is scattered and compact. Then XM is compact, but it is different from
X if |M | < |X|. So X is squashable.

Problem. Is there a consistent example without assuming large cardinals which is not
scattered?

On the way to proving a consistent theorem, we first show a partial positive result:
8



Theorem 4.2. Assume (B) and κ ∈ M . Suppose XM is compact and satisfies the countable
chain condition, and d(XM) = κ or χ(XM) = κ, where κω = κ. Then XM = X.

The following lemma of Šapirovskĭi (see e.g. [3]) will be useful.

Lemma 4.3. w(X) ≤ πχ(X)c(X).

We also need the following lemma proved in [6, Theorem 4.9] (there we have the assumption
2ω ⊆ M , but just ω1 ⊆ M is used for this fact):

Lemma 4.4. If c(XM) = ℵ0 and ω1 ⊆ M , then c(X) = ℵ0.

Proof of 4.2. By 1.6 we have κ ⊆ M . Since κω = κ, κ is uncountable, so by 4.4, X satisfies
the countable chain condition. If X is not κ-scattered we are done by Theorem 3.19, so we
can suppose X is κ-scattered. But then as we saw before,

D = {x ∈ X : πχ(x, X) < κ}
is dense in X.

We will have that w(D) ≤ κω = κ, since πχ(D) ≤ κ and D by density also satisfies the
countable chain condition. But then πχ(X) ≤ πw(X) = πw(D) ≤ w(D) ≤ κ (since X is
regular), whence by 4.3 again, w(X) ≤ κω = κ.

Since κ ⊆ M , this implies that XM = X. ¤
We can now show a consistent positive result. Let SCH stand for the Singular Cardinals

Hypothesis, namely that for every singular cardinal κ, if 2cf(κ) < κ, then κcf(κ) = κ+.

Theorem 4.5. Assume (B) and CH + SCH. Then if XM is uncountable and compact,
χ(XM) ∈ M and XM satisfies the countable chain condition, then XM = X.

Proof. Let κ = χ(XM). The case when κ ≤ ℵ0 was done in [6] in ZFC, so we may assume
κ ≥ ℵ1. Then, as before, since we are assuming (B), we have κ ⊆ M . Therefore, by lemma
4.4, X satisfies the countable chain condition.

If X is not κ-scattered, then, again, we are done by Theorem 3.19. If cf(κ) > ω, then by
CH + SCH we have κω = κ (CH takes care of κ = ω1 = 2ω and and SCH of the others),
and therefore, by the previous theorem, we are also done.

Suppose then that X is κ-scattered and that cf(κ) = ω. The proof uses ideas from [12].

Fix {κn}n∈ω, En and Xn as in the proof of Lemma 3.20. It will then suffice to show
each (Xn)M = Xn. Note that each Xn satisfies the countable chain condition since they are
regular closed subspaces of X. We can also assume that κ0 > ω1.

Fix n ∈ ω. To show that (Xn)M = Xn we can now repeat the same argument done in
the proof of 4.2. We know that En = {x ∈ X : χ(x,X) < κn} is dense in Xn and that
πχ(En) ≤ χ(En) ≤ κn. Since Xn satisfies the countable chain condition, so does En and
therefore w(En) ≤ κω

n = κn, by CH + SCH (since κn is regular and > ω1 = 2ω). But then
as before we can conclude that πχ(Xn) ≤ κn and therefore w(Xn) ≤ κω

n = κn. Since κ ⊆ M ,
we have κn ⊆ M and we are done by 3.11. ¤
Problem. Is CH + SCH necessary? Are there ZFC + CH + SCH results below some
large cardinal?

Note the hypothesis of XM being uncountable is essential; otherwise just pick X to be any
uncountable compact T2 scattered space and M any countable elementary submodel. By [6],
XM will be compact. Also it satisfies the countable chain condition, but XM 6= X.
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5. XM ’s co-absolute with dyadic spaces

Definition 5.1. Two spaces are co-absolute if they have isomorphic regular-open algebras.
A compact space is dyadic if it is the continuous image of some power of the two-point
discrete space.

In [2] it is shown that:

Theorem 5.2. If λ is an infinite cardinal with cf(λ) ≥ ω1 and X is a compact space
co-absolute with a dyadic one with πw(X) = λ, then X is not λ-scattered.

We then have:

Theorem 5.3. Assume (B) or that κ < the first inaccessible cardinal and κ ∈ M . If XM is
co-absolute with a dyadic compactum with πw(XM) = κ, where cf(κ) ≥ ω1, then X = XM .

Proof. If XM is co-absolute with a dyadic compactum, then XM is compact. By the previous
theorem, XM is not κ-scattered. Since d(XM) ≤ πw(XM) = κ, by Theorem 3.18 or 3.19 we
then have that X = XM . ¤

To show the general result we will need the following lemmas:

Lemma 5.4. [9]. If X is co-absolute with a dyadic compactum, then X is co-absolute with
either a finite disjoint sum of powers of D or else with the one-point compactification of a
countable disjoint sum of powers of D.

Lemma 5.5. Each regular closed subspace of a compact space co-absolute with a dyadic
compactum is itself co-absolute with a dyadic compactum.

Proof. Let X be a compact space co-absolute with K, a dyadic compactum. Let Z be a
regular closed subspace of X. Let i be an isomorphism between the algebra of regular closed
subspaces of X and the algebra of regular closed subspaces of K. Such an isomorphism
exists, since the dual regular open algebras are isomorphic. Let i(Z) = L. By [1], L is
dyadic, and clearly the algebra of regular closed subspaces of Z is isomorphic to the algebra
of regular closed subspaces of L. It follows that Z and L are co-absolute. ¤
Lemma 5.6. [2]. Suppose X is co-absolute to a dyadic compactum and X has a dense
subspace of points of character, i.e. χ(p, X), less than λ, where λ is an uncountable regular
cardinal. Then πw(X) < λ.

Efimov [2] states this for “δ-character” rather than character, but the former does not
exceed the latter.

We are now ready to show our main result:

Theorem 5.7. Assume (B) or that κ is less than the first inaccessible cardinal. Suppose
XM is compact and πw(XM) = κ ∈ M , and XM is co-absolute with a dyadic compactum.
Then XM = X.

Proof. It follows from Lemma 5.4 that compact spaces co-absolute with dyadic compacta
have no isolated points, and thus that if XM is such a space, then 2ℵ0 ⊆ M [6]. Such XM ’s
satisfy the countable chain condition; since ω1 ⊆ M , it follows that X does as well.
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If XM is not πw(XM)-scattered, we are done by Theorem 3.19, so assume that it is. Then,
by Theorem 5.2, κ = πw(XM) has countable cofinality. Similarly assume X is πw(XM)-
scattered. We also may assume that πw(XM) is uncountable, else X = XM by Lemma 3.16,
since 2ℵ0 ⊆ M .

Applying Lemma 3.20 to X and letting {κn}n<ω be a strictly increasing sequence of regular
cardinals approaching κ, we can obtain a sequence of Xn’s. Without loss of generality, assume
the sequence as well as the sequence of κn’s is in M . Then, by elementarity, we can get a
sequence of Xn’s satisfying the following conditions:

(d) each (Xn)M is a regular closed subspace of XM ;
(e)

⋃
n<ω

(Xn)M is dense in XM ;

(f) πw(XM) =
∑

n<ω πw((Xn)M);

(g) πw
(
(Xn)M

)
< κ, for each n ∈ ω.

To get (g), by Lemma 3.20 and elementarity, we have that for each n ∈ ω, {y ∈ (Xn)M :
χ(y,XM) < κn} is dense in (Xn)M . Furthermore, note that for y ∈ (Xn)M , χ(y, (Xn)M) ≤
χ(y,Xn). Applying Lemmas 5.5 and 5.6, we see that πw

(
(Xn)M

)
< κn < κ.

We claim that we can also obtain the Xn’s such that each (Xn)M is not πw
(
(Xn)M

)
-

scattered. Since πw
(
(Xn)M

)
< κ, by 5.2 and 5.5 the claim holds for πw(XM) = ℵω. If the

claim fails, there is a counterexample X with πw(XM) minimal. Then none of the Xn’s,
obtained as above, are counterexamples. Thus for each n we can obtain a sequence (Ynk)k∈ω

satisfying all the conditions we want: for n such that Xn is already not πw
(
(Xn)M

)
-scattered,

we just take Ynk = Xn for each k; for n such that Xn is πw
(
(Xn)M

)
-scattered, we apply

Lemma 3.20 and our induction hypothesis. But then the set of all Ynk’s for all Xn’s is the
desired countable collection of subspaces of X.

Now, since (Xn)M is not πw
(
(Xn)M

)
-scattered, for any n ∈ ω, by the proofs of Theorem

3.18 and Theorem 3.19, we conclude that 2<κ ⊆ M , and so κ ⊆ M . Consider two sub-cases:
κ is or is not a strong limit. In the former sub-case, the proof of Theorem 4.5 works without
(B) and CH + SCH to get that X = XM . In the latter sub-case, there is a regular µ < κ,
such that 2µ = 2κ. Thus 2κ ⊆ M . Then by Lemma 3.16, XM = X. ¤

6. Boolean algebras

One might expect that our topological results should have some implications for Boolean
algebras, and they do. In [6] the following result was proved, where for a Boolean algebra
A, “S(A)” denotes the Stone space of A:

Theorem 6.1. Assume 0# does not exist. Let A be a Boolean algebra. If A∩M is complete
and (S(A))M is compact, then A = A ∩M .

Using our new topological results, we obtain:

Theorem 6.2. Suppose (B) and that A is a Boolean algebra such that (S(A))M is compact.
If the completion of A ∩ M is isomorphic to the completion of some Boolean algebra C
homomorphically embedded in the clopen algebra K of some Dκ, then A = A ∩ M . The
conclusion holds in ZFC for A’s with |A| less than the first inaccessible.
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Proof. In [6] it was shown that if (S(A))M is compact, then (S(A))M = S(A ∩M). To say
that C is homomorphically embedded in K says that S(C) is a continuous image of Dκ.
We are then assuming that (S(A))M is co-absolute with S(C), and that the latter is dyadic.
Therefore (S(A))M = S(A). But then A = A ∩M . ¤
Corollary 6.3. Suppose (B) and that A is a Boolean algebra such that S(A)M is compact.
If the completion of A∩M is isomorphic to the algebra for adding κ many Cohen reals, then
A = A ∩M . The conclusion holds in ZFC for A’s with |A| less than the first inaccessible.

Assuming (B) and CH + SCH, we get a stronger result:

Theorem 6.4. Suppose (B) and CH + SCH and that C is a Boolean algebra such that
S(C)M is compact and satisfies the countable chain condition. Then C = C ∩M .
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Instituto de Matemática e Estat́ıstica, University of São Paulo, Caixa Postal 66281, São
Paulo, SP Brazil, 05315-970

E-mail address: lucia@ime.usp.br

Department of Mathematics, Miami University, Oxford, Ohio, United States, 45056
E-mail address: larsonpb@muohio.edu

Dept of Mathematics, University of Toronto, Toronto, Ontario, Canada, M5S 3G3
E-mail address: tall@math.toronto.edu

13


