
A MODEL OF ZFA WITH NO OUTER MODEL OF ZFAC WITH

THE SAME PURE PART

PAUL LARSON AND SAHARON SHELAH

Abstract. We produce a model of ZFA + PAC such that no outer model of

ZFAC has the same pure sets, answering a question asked privately by Eric
Hall.

1. Models of ZFA

The axiom system ZFA is a natural modification of Zermelo-Fraenkel set theory
(ZF) allowing for the existence of non-set elements, called atoms. We refer the
reader to Chapter 4 of [7], pages 249-261 of [6] or Chapter 7 of [3] for a specific
definition, and background for some of the techniques below. Sets in a model of ZFA
whose transitive closures do not contain atoms are called pure sets. The pure sets
form an inner model of ZF; the axiom PAC asserts that this inner model satisfies the
Axiom of Choice. The theory ZFAC extends ZFA with the statement that Choice
for all sets (given ZFA + PAC, this amounts to asserting that the set of atoms can
be wellordered). In this paper we produce a model of ZFA + PAC such that no
outer model of ZFAC has the same pure sets, answering a question asked privately
by Eric Hall.

Given a nonempty set A disjoint from {∅}, we define the following hierarchy over
A, indexed by ordinals:

• P0,∗(A) = A;
• Pα+1,∗(A) = (Pα,∗(A) ∪ P(Pα,∗(A))) \ {∅};
• Pβ,∗(A) =

∪
α<β Pα,∗(A) when β is a limit ordinal;

• P∞,∗(A) =
∪

α∈Ord Pα,∗(A).

Let us say that an atom set is a nonempty set A such that no member of A is in
the transitive closure of any other member. Letting any one element of an atom set
A represent the emptyset, and the other members of A represent atoms, P∞,∗(A)
is the domain of a model of ZFA.

Remark 1.1. A bijection ρ : A → B between atom sets A and B naturally induces a
class-sized isomorphism πρ : P∞,∗(A) → P∞,∗(B) which restricts, for each ordinal
α to a bijection from Pα,∗(A) to Pα,∗(B).

Our approach to models of ZFA differs from the traditional Fraenkel-Mostowski
method (see [7, 6, 3]), and we do not know how to produce our result in their way.
The models we consider will have as their domains subclasses of classes of the form
P∞,∗(A). We concentrate on subclasses of P∞,∗(A) (for a given atom set A) which
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are constructed using certain elements of P∞,∗(A) as predicates. This is in analogy
with inner models of the form L[A] (for some set A) in atomless set theory. One
could naturally define models analogous to those of the form L(A) (which denotes
the smallest transitive proper class model of ZF containing the transitive closure
of {A}), but we find the approach below easier. For the arguments in this paper
these two constructions would give the same model, as our predicates are subsets
of the minimal model of ZFA containing our atom set A.

Given sets X and B in P∞,∗(A), we let DefB(X) denote the collection of
nonempty subsets of X which are definable over X using parameters from X and
predicates corresponding to the members of B. We then define:

• UA,B
0 = A;

• UA,B
α+1 = DefB(U

A,B
α );

• UA,B
β =

∪
α<β U

A,B
α when β is a limit ordinal.

• UA,B
∞ =

∪
α∈Ord U

A,B
α .

Finally, given a ∈ A, we let U(a,A,B) be the model of ZFA with domain UA,B
∞ ,

where a is interpreted as the emptyset. Then U(a,A,B) is (up to isomorphism)
the smallest wellfounded proper class model of ZFA with A \ {a} as its set of atoms
and a as its emptyset which is closed under intersections with the members of B.
A standard proof by induction shows that every element of U(a,A,B) is definable
in U(a,A,B) from a finite set of ordinals, a finite subset of A and finitely many
predicates from B (i.e., restrictions of elements of B to U(a,A,B)).

Remark 1.2. Let A be an atom set, let a be an element of A, let B be a set in
P∞,∗(A) and let ρ : A → A be a permutation. By Remark 1.1, ρ induces a class-
sized automorphism πρ of P∞,∗(A). If ρ(a) = a and πρ(b) = b for each b ∈ B, then
we have the following standard facts.

• The restriction of πρ to U(a,A,B) is an automorphism of U(a,A,B).
• If X is a set in U(a,A,B) which is definable from sets which are fixed by
πρ, then X is fixed by πρ.

The following is one version of our main theorem.

Theorem 1.3. In a c.c.c. forcing extension L[G] of L there is a model U of ZFA
of the form U(a,A,B), for some atom set A in L, some element a of A and some
B in P∞,∗(A), such that the pure part of U is isomorphic to L and such that in
no outer model of L[G] is there a model of ZFAC containing U whose pure part is
isomorphic to L.

More specifically, the model U in the statement of Theorem 1.3 will contain a
set such that any outer model of U wellordering this set will contain an injection
from ωL

3 to P(ωL
1 ), and therefore will have a subset of ωL

3 which is not in L.
In Section 2 we give a proof of Theorem 1.3. Our proof uses a result of Hjorth,

which we briefly discuss in Section 3. The need for Hjorth’s result is discussed in
Section 4.

2. The proof

Our proof requires sets (in a model of ZFA) which are not wellordered (and
moreover admit sufficiently many automorphisms) and fixed upper or lower bounds
for the cardinalities of these sets in outer models of ZFAC. In Section 4 we show
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that simply choosing a large or small set of atoms does not suffice for this. In our
proof we use a partition into ℵ3 many infinite sets to get a lower bound of ℵ3 for
one set (K), and a model-theoretic theorem of Hjorth to get an upper bound of ℵ1

for another (Q). A result of Gao [2] shows that the same approach could not be
used to get an upper bound of ℵ0.

Hjorth’s theorem appears in [4], although it does not appear in the literature in
the form we need. We discuss in Section 3 how to get our statement of Theorem 2.1
from the arguments in [4]. We refer the reader to pages 25-27 of [5] for a definition
of Lℵ1,ℵ0 .

Theorem 2.1 (Hjorth [4]). There exist a countable relational vocabulary τ con-
taining a unary predicate Q and a sentence ϕ in Lℵ1,ℵ0

(τ) such that, in every model
of ZF,

• ϕ has a unique countable model, up to isomorphism,
• ϕ has no model of cardinality greater than ℵ1,
• if M is a countable model of ϕ and M is the domain of M, then QM is
infinite, and for each finite M ′ ⊆ M there is a finite Q′ ⊆ QM such that
every permutation of QM fixing Q′ pointwise extends to an automorphism
of M fixing M ′ pointwise.

We fix a sentence ϕ and a countable model M of ϕ as in the statement of
Theorem 2.1. We let M denote the domain of M, and assume that M is disjoint
from {∅}∪(ωL

3 ×ω) (we make one additional assumption on M below for notational
convenience). We let C be the set of M-interpretations of the relations in τ .
Treating finite sequences as iterated ordered pairs, each element of C is in P∞,∗(M).

We let I be the set

{∅} ∪ (ωL
3 × ω) ∪M

and fix an atom set A = {ai : i ∈ I} in L. We assume that M and I have been
chosen so that ai = i for each i ∈ M (this is the additional assumption referred to
in the previous paragraph). For each x ∈ L, we let x∗ denote π{(∅,a∅)}(x) (i.e., the
copy of x in P∞,∗({a∅}); see Remark 1.1). We let

• K− denote {ai : i ∈ ωL
3 × ω},

• K denote the set of pairs {(α∗, aα,i) : α < ωL
3 , i ∈ ω},

• for each α < ωL
3 , Kα denote the set {(α∗, aα,i) : i ∈ ω} and

• for some enumeration ⟨Tn : n ∈ ω⟩ in L of the relation symbols in τ , T be
the set of pairs (n∗, c) for which c is in the M-interpretation of Tn.

Let B0 = C ∪ {K,M,T}. The model U0 = U(a0, A,B0) is definable in L, and
therefore has the same pure sets as L. The model M is a member of U0.

We let P be the forcing whose conditions are finite partial functions

p : K × QM → 2∗,

ordered by containment.
Let G ⊂ P be a U0-generic filter. Let F =

∪
G, and let B = B0 ∪ {F}. Then

the model U(a0, A,B) (which we will call U) is equivalent to U0[G].
The following lemma is the key step in the proof of our main theorem.

Lemma 2.2. The model U has the same pure sets as L.

Proof. Suppose that τ is a P-name in U0 for a set of ordinals, and some condition
p0 ∈ P forces the realization of τ not to be an element of L. Then for each condition
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p below p0 there exist an ordinal γ and conditions q, q′ below p such that q  γ̌ ∈ τ
and q′  γ̌ ̸∈ τ . Using this one can find a sequence Ȳ = ⟨Yi : i ∈ ω⟩ in U0 such that
each Yi is a nonempty set of P conditions below p0, closed under strengthenings,
and such that members of distinct Yi’s are incompatible. We aim to show that such
a sequence cannot exist.

The sequence Ȳ is ordinal definable in U0 from a finite subset of

A ∪ C ∪ {K,M,T},

which implies that it is definable from

• a finite set of U0-ordinals,
• K,M,T ,
• a finite set M ′ ⊆ M and
• a finite set K ′ ⊆ K.

Let Q′ = M ′ ∩ QM. Expanding Q′ if necessary, we may assume (using the fact
that ϕ witnesses Theorem 2.1) that every permutation of QM fixing Q′ pointwise
extends to an automorphism of M fixing M ′ pointwise. For each i ∈ ω let Y ∗

i be
the set of p ∈ Yi whose domain contains K ′ × Q′. Since each Yi is closed under
strengthening, the sets Y ∗

i are also nonempty.
Let Z be the set of permutations of A which

• fix the members of {a∅} ∪K ′ ∪M ′ pointwise,
• fix K,M and the members of C setwise (i.e., restrict to automorphisms of
M) and

• for each α < ωL
3 , fix Kα setwise.

Each member of Z induces an automorphism of the model U0 which maps the
sequence ⟨Yi : i ∈ ω⟩ to itself. As no two members of different Yi’s are compatible, it
follows that no permutation in Z induces an automorphism which moves a member
of one Yi to a condition compatible with a member of another. We will derive a
contradiction by finding an element of Z which does this.

Let us say that the type of a condition p ∈ P is its restriction to K ′ × Q′. As
there are only finitely many possible types, the following claim finishes the proof of
the lemma.

Claim 2.3. If P-conditions p and q have the same type, then there is a permutation
ρ in Z mapping p to a condition compatible with q.

We fix p and q and prove the claim. We have that ρ must fix the members of
{a∅}∪K ′∪M ′ pointwise and restrict to an automorphism of M. The rest of ρ � K
can be chosen so that each Kα (α < ωL

3 ) is fixed setwise and (ρ(a), c) ̸∈ dom(q), for
all (a, b) ∈ dom(p)∩ ((K \K ′)×QM) and c ∈ QM. Now we can choose ρ � (QM \Q′)
so that for all (a, b) ∈ dom(p) ∩ (K × (QM \Q′)) there is no (a′, b′) ∈ dom(q) with
ρ(b) = b′. Finally, we can extend ρ to M to form an automorphism of M. Any
permutation ρ satisfying these conditions witnesses the claim. �

Now suppose that U+ is an outer model of U satisfying ZFAC and having the
same pure sets as U. By Theorem 2.1, the set QM has cardinality at most ℵ1 in U+.
SinceK is partitioned into ℵL

3 many nonempty disjoint sets inU0, K has cardinality
at least |ℵL

3 | in U+. For each pair of distinct elements a, a′ of K, however, there
exists by the genericity of G a b ∈ QM such that F (a, b) ̸= F (a′, b). This gives |ℵ3|L
many distinct functions from ωL

1 to 2 in U+, and thereby a contradiction.
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3. Hjorth’s theorem

In this section we briefly discuss the proof of Theorem 2.1. The model is intro-
duced (without the Q-part) in [4], and discussed in [1] (with the Q-part), both of
which we follow.

The vocabulary τ consists of

• a unary relation symbol Q,
• binary relation symbols P and Sn (n ∈ ω),
• (k + 2)-ary relation symbols Rk for each k ∈ ω.

Modifying Hjorth’s argument slightly, we define a preliminary sentence ϕ0 consisting
of the conjunction of the following assertions:

• ∀x, y (P(x, y) → (¬Q(x) ∧ Q(y)),
• ∀x (¬Q(x) → ∃!yP(x, y)),
• (for each n ∈ ω) ∀x, y (Sn(x, y) → ¬Q(x) ∧ ¬Q(y) ∧ x ̸= y),
• for each k ∈ ω, the assertion that for all x0, . . . , xk+1

Rk(x0, . . . , xk+1) → ((x0 ̸= x1) ∧ (
∧

i<k+2

¬Q(xi)),

• the sentence asserting that for all x ̸= y such that ¬Q(x) and ¬Q(y), there
is a unique n ∈ ω such that Sn(x, y) holds,

• the sentence asserting that for each k ∈ ω and all x0, x1, y1, . . . , yk−1, if
Rk(x0, x1, y0, . . . , yk−1) holds, then {y0, . . . , yk−1} has size k and is the set
of z such that for some n ∈ ω, Sn(x0, z) ∧ Sn(x1, z) holds,

• the sentence asserting that for all x0 ̸= x1 such that ¬Q(x0) and ¬Q(x1),
there exist k ∈ ω and y0, . . . , yk−1 such that Rk(x0, x1, y0, . . . , yk−1) holds.

We list some examples of finite models of ϕ0:

• the unique τ -structure with empty domain;
• for any finite set M , the τ -structure M with domain M such that QM = M
and all other relations in τ are interpreted as ∅;

• a τ -structure M with two elements a and b, with PM = {(a, b)}, QM = {b}
and all other relations in τ interpreted as ∅.

Lemma 3.1 below is essentially Lemma 3.1 of [4]. The only difference is that in
in Lemma 3.1 of [4] there is no predicate Q, so in effect the models there are simply
the ¬Q part of the models here. Extending the argument there to accommodate
the predicate Q causes no additional difficulties, and no additional work, as we can
take QM2 to be QM0 ∪QM1 and π1 and π2 to be identity functions in the case where
M0 ∩ M1 = M . We note that the lemma holds even in the case where M = ∅.
The lemma shows that we can build a countable limit model M∗ (in the sense of
Section 7.1 of [5]) with the following properties:

• every finite subset of the domain of M∗ is contained in a finite substructure
of M∗ satisfying ϕ0;

• every isomorphism between finite substructures satisfying ϕ extends to to
an automorphism of M∗.

The sentence ϕ from the statement of Theorem 2.1 is the Scott sentence of the
limit model M∗, which characterizes cM∗ up to isomorphism (see [5], for instance).
Lemma 3.3 of [4] shows that ϕ has no model of cardinality ℵ2 or greater (briefly,

if N ≺ N ′ are models of ϕ, and b ∈ (¬Q)N ′ \ (¬Q)N , then the map that sends

each a ∈ (¬Q)N to the unique n such that (a, b) ∈ SN
′

n is injective). Theorem 2.1
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then follows from Lemma 3.1, since for each finite M ′ we need only to find a finite
substructure M′ of M∗ satisfying ϕ0 with domain containing M ′, and let Q′ be
QM

′
.

Lemma 3.1. If M is a finite model of ϕ0 with domain M and M0, M1 are finite
models of ϕ extending M with domains M0 and M1 respectively, then there exist a
finite model M2 of ϕ and, letting M2 be the domain of M2, τ -embeddings

π0 : M0 → M2, π1 : M1 → M2

such that π0 � M = π1 � M . Moreover, if M = M0 ∩M1 then M2 can be taken to
be M0 ∪M1.

4. Cardinality is not enough

Let κ < λ be infinite cardinals in L, let A and B be atom sets in L of cardinality
κ and λ respectively. Fix a0 ∈ A and b0 ∈ B, and let f : κ → A \ {a0} and
g : λ → B \ {b0} be bijections. For each ordinal α, let αa0

be π{(∅,a0)}(α) and let
αb0 be π{(∅,b0)}(α). Let fa be the set of pairs (αa0

, a) for (α, a) ∈ f , and let gb0 be
the set of pairs (αb0 , b) for (α, b) ∈ g. Then U(a0, A, {fa0

}) is an outer model of
U(a0, A, ∅) with L as its class of pure sets, and U(b0, B, {gb0}) is an outer model
of U(a0, B, ∅) with L as its class of pure sets. The cardinality of A \ {a0} is κ in
U(a0, A, {fa0

}) and the cardinality of B \ {b0} is λ in U(b0, B, {gb0}). However, in
any outer model of L in which |κ| = |λ|, the inner modelsU(a0, A, ∅) andU(b0, B, ∅)
are isomorphic. It follows that in a model containing f and g in which |κ| = |λ|,
U(a0, A, ∅) has an outer model with the same pure sets in which the cardinality of
A is λ, and U(b0, B, ∅) has an outer model with the same pure sets in which the
cardinality of A is κ. The point being that the cardinality of the set of atoms A
in L has no effect on the cardinality of A in outer models of U(a0, A, ∅) with the
same pure part.
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