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This survey is based on notes taken by Luke Serafin, on lectures given by the
author on June 4th, 6th, 11th and 13th of 2019, at the Workshop on Set Theory,
Recursion Theory and their Interaction, held at the Institute for Mathematical
Sciences at the University of Singapore. It covers an introductory portion of the
classical theory of Woodin’s AD+. There is significant overlap between the material
presented here and in the paper [9]. The lectures were based on parts of the author’s
book in preparation [13].

1. Determinacy axioms and forms of Choice

Woodin’s axiom AD+ is a strengthening of the classical Axiom of Determinacy
(AD), which is inconsistent with the Axiom of Choice (AC). We define AD below,
but refer the reader to [4, 6, 12] for a more thorough introduction, including an
account of the history of this axiom. Before giving the definition of AD+ we will
quickly review AD and its strengthening ADR, and forms of the Axiom of Choice
consistent with AD, such as DC and Uniformization. We will also discuss structural
consequences of determinacy, such as the Wadge hierarchy and Moschovakis Coding
Lemma, and ways of defining subsets of the real line using sets of ordinals, such as
Suslin representations and∞-Borel codes. With these definitions in hand we define
AD+ in Section 3.3. In the same section we list some of the major open questions
surrounding AD+, and discuss some of the original motivation for its study. For
now we note that part of the motivation for studying AD+ is that it allows the
lifting of some of the consequences of AD in L(R) to larger models of determinacy.

Collectively these notes present preliminary material toward some of Woodin’s
major theorems of the 1990’s. Since then significant progress in the study of AD+

has been made by applying the stationary tower and inner model theory; we do not
discuss these results here. Some of the theorems we do discuss are listed in Section
3.3. For the most part we sketch this material at a high level, giving short proofs
when appropriate. Complete proofs of most of the theorems discussed here appear
in the author’s book.

Our base theory throughout the paper is ZF. Additional axioms will be stated
as needed.

1.1. AD and ADR. Let X be an arbitrary set and A ⊆ Xω. In the game GX(A),
two players, I and II, alternate playing elements of X. Player I plays a first
element x(0), player II a second element x(1), and so on, with a play at each
natural number “time”. The entire run of the game produces an x ∈ Xω. Player I
wins if and only if x ∈ A (so player II wins if x ∈ Xω \A).
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I x(0) x(2) x(4) . . .
II x(1) x(3) . . .

The game GX(A); I wins if and only if x is in A.

A strategy is a function σ : X<ω → X, which we think of as determining a move
for a player given the history of the game up to the point where the strategy is
applied. Given a strategy σ and an x ∈ Xω, σ∗x is the result a run of GX(A) where
player I plays according to σ and x lists player II’s moves. That is, (σ∗x)(0) = σ(〈〉)
and, for all k ∈ ω, (σ ∗ x)(2k + 1) = x(k) and (σ ∗ x)(2k + 2) = σ((σ ∗ x) � 2k + 1).
The result of a run where x lists player I’s moves and player II plays according to
σ is defined analogously, and denoted x ∗ σ. A strategy σ is winning for player I if
and only if σ ∗ x ∈ A for all x ∈ Xω, and winning for player II if x ∗ σ 6∈ A, for all
such x. The game GX(A) is said to be determined if and only if one of the players
has a winning strategy.

We list below three forms of determinacy defined in terms of the framework just
given. The first two are consistent with ZF, relative to the consistency of certain
large cardinal axioms (see Theorems 1.1 and 1.2). The second implies the first,
since an integer game can be coded by a game on ωω. The third is refuted by ZF,
as we discuss at the beginning of Section 3.2.

• AD: Gω(A) is determined for all A ⊆ ωω
• ADR: Gωω (A) is determined for all A ⊆ (ωω)ω

• ADω1
: Gω1

(A) is determined for all A ⊆ (ω1)ω

We refer the reader to [4, 6] for discussion of the following standard consequences
of AD. The first two of the these will be used in these notes, at least implicitly, but
not the third.

• All sets of reals have the perfect set property.
• All sets of reals have the property of Baire.
• All sets of reals are Lebesgue measurable.

The assertion that all sets of reals have the perfect set property implies that there
are no injections from ω1 into ωω. We will write this latter statement as ℵ1 6≤ 2ℵ0 .
We will also make use of (generalizations of) Solovay’s theorem that, under AD, ω1

is a measurable cardinal (see [4, 6]).
Large cardinals imply the existence of inner models of AD and ADR, as shown

by the two following theorems (due to Martin, Steel and Woodin; see [15, 21, 11]).

Theorem 1.1. If there are infinitely many Woodin cardinals with a measurable
cardinal above them all, then L(R) |= AD.

Theorem 1.2. If there exists a cardinal κ which is a limit of Woodin cardinals and
of strong-to-κ cardinals and there is a measurable cardinal λ > κ, then there is a
Γ ⊆ P(ωω) such that L(Γ,R) |= ADR.

Since strategies in integer games can be coded by real numbers, AD implies that
AD holds in every inner model containing the reals, for instance, in the inner model
L(R). Similarly, since strategies in real games can be coded by sets of real numbers,
ADR implies that ADR holds in every inner model containing P(R). However, a
model of the form L(A,R), where A is a subset of L(R), can never satisfy ADR,
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since such a model can never satisfy both Uniformization and ℵ1 6≤ 2ℵ0 , which are
consequences of ADR.

1.2. Uniformization. Given a set A ⊆ ωω×ωω, and an x ∈ ωω, we let Ax denote
the section of A at x, i.e., {y ∈ ωω : (x, y) ∈ A}. Uniformization is the assertion
that every subset of the plane contains a function with the same domain:

∀A ⊆ ωω × ωω ∃B ⊆ A∀x ∈ ωω (Ax 6= ∅ ⇒ |Bx| = 1).

Uniformization follows from the Axiom of Choice (AC). It also follows from ADR
via a game with one round, where player I plays x ∈ ωω, player II plays y ∈ ωω,
and II wins if and only if Ax = ∅ or y ∈ Ax. Player I cannot have a winning
strategy in this game, and a winning strategy for player II gives a uniformizing
function for A.

A diagonal argument (given in the proof of Theorem 1.3) shows that the state-
ment Uniformization fails in models of the form L(A,R) for any set A ⊆ L(R),
assuming ℵ1 6≤ 2ℵ0 . It follows that models of this form cannot satisfy ADR. For
any set or class X, we let ODX denote the class of sets which are definable from an
ordinal and a finite sequence from X (i.e., which are ordinal definable from a finite
sequence from X). We write OD for ODX when X = ∅. A standard definability-
order argument shows that if ODX contains a wellordering of X then it contains a
wellordering of each element of ODX.

Theorem 1.3 (Solovay). If ℵ1 6≤ 2ℵ0 and A is a set contained in L(R), then
L(A,R) |= ¬Uniformization.

Proof. For each set a in L(A,R) there is an x ∈ ωω such that a is in OD{A,x}.

Since ℵ1 6≤ 2ℵ0 , each set of the form ωω ∩ OD{A,x} is countable. Let B be the set
of (x, y) ∈ ωω ×ωω such that y is not in OD{A,x}. Any uniformizing function f for
B would be in OD{A,x} for some x ∈ ωω, which would mean that f(x) would also
be in OD{A,x}. �

Uniformization is then one difference between AD and ADR, as it is implied by the
latter and not the former. There is a sense in which it may be the only difference, as
results of Becker, Martin and Woodin show that AD + DC + Uniformization implies
ADR (see Theorem 3.12). We now briefly review DC, which is a weak form of the
Axiom of Choice.

1.3. CCR, DC and DCR. Countable Choice for Reals (CCR) is the restriction of
the Axiom of Choice to countable subsets of P(R). Mycielski [16] proved that
AD implies CCR. For each set X, DCX is the statement that each nonempty tree
T ⊆ X<ω without terminal nodes has an infinite branch. The Axiom of Dependent
Choice, DC, is the statement that DCX holds for every X.

Uniformization implies DCR, since for any such tree T ⊆ (ωω)<ω it implies the
existence of a function choosing a successor for each node. It follows that ADR
implies DCR. Whether or not AD implies DCR is an open question. At the end of
Section 11 we will review Solovay’s theorem showing that ADR does not imply that
DC holds in L(P(R)).

Since an infinite path through a tree on ωω can be coded by a single real, if DCR
holds then it holds in any transitive model M containing R. In particular, it holds
in L(R) if the Axiom of Choice holds in the full universe V .
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While our current goal is the formulation of AD+, we digress briefly to review
some important structural properties of P(ωω) under AD.

2. The Wadge hierarchy

Given A,B ⊆ ωω, we write A ≤W B (and say that A is Wadge below B) to mean
that there is a continuous function f : ωω → ωω such that A = f−1[B]. We write
A ≡W B for the conjunction A ≤W B ∧ B ≤W A. The equivalence class [A]W of
A with respect to ≡W is the Wadge degree of A. The Wadge order gives an almost
linear hierarchy on the set of Wadge degrees, in the following sense

Theorem 2.1 (Wadge). AD implies that, for all A,B ⊆ ωω, A ≤W B or B ≤W
ωω \A.

Proof. Consider the game where players I and II play nonempty finite sequences
of integers in each turn, with I building x ∈ ωω, and II building y. Say that I
wins if and only if the statement x ∈ B ⇔ y ∈ A holds. A winning strategy for I
induces a witness to the statement A ≤W B. A winning strategy for II witnesses
B ≤W ωω \A. �

Determinacy for the class of games in the proof just given is called Wadge De-
terminacy. It is an open question whether Wadge Determinacy implies AD.

Martin proved that the Wadge order is wellfounded, assuming Wadge Determi-
nacy, DCR and the assumption that every set of reals has the Baire property. It is
not known if DCR is needed for this result, or if AD alone implies that the Wadge
hierarchy is wellfounded. The wellfoundedness of the Wadge order induces the no-
tion of Wadge rank, where the Wadge rank of A ⊆ ωω is the ordinal rank of [A]W
in the Wadge order.

A Wadge class [A]W is said to be selfdual if [A]W = [ωω \ A]W. We mention a
few important results from the highly-developed theory of Wadge classes (see, for
instance [22]).

A standard diagonalization along the lines of Cantor’s theorem shows that there
is no largest Wadge degree. The proof below uses the following notation, which
appears also in the next section. Using a fixed recursive bijection between ω and
ω<ω × ω<ω, we can think of an element c of ωω as listing a sequence of basic open
sets in ωω × ωω, and let fc be the complement of the union of these open sets.
Letting CF be the (projective) set of c for which fc is a continuous function from
ωω to ωω, we have that {fc : c ∈ CF} is the set of all such functions. In particular
there is a surjection from ωω to the set of continuous functions from ωω to ωω.

Theorem 2.2. There is no largest Wadge degree.

Proof. Given A ⊆ ωω, let B be the set of c ∈ CF for which fc(c) 6∈ A. Then B is
not Wadge below A. �

For each pair of complementary non-selfdual degrees there is a minimal selfdual
degree above them.

Theorem 2.3. For a non-selfdual class [A]W , there is a minimal Wadge degree
above A and ωω \A.

Proof. Let B be the set of x ∈ ωω of the form 0_x for x ∈ A or 1_x for x /∈ A. Then
A ≤W B and (ωω \A) ≤W B and, for any C ⊆ ωω, if A ≤W C and (ωω \A) ≤W C
then B ≤W C. �
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The corresponding fact for selfdual degrees follows from the wellfoundedness of
the Wadge hierarchy.

Theorem 2.4. If AD + DCR holds then each selfdual Wadge degree has a non-
selfdual successor in the Wadge order.

Theorem 2.5 (whose proof includes contributions from Steel and Van Wesep)
says when a Wadge degree of limit rank is selfdual.

Theorem 2.5. Assuming Wadge Determinacy and that all subsets of ωω have the
property of Baire, limit classes under the Wadge order are selfdual precisely when
the Wadge order below them has countable cofinality.

2.1. The ordinal Θ. The ordinal Θ is defined to be the least ordinal which is
not a surjective image of ωω. Clearly, Θ is a cardinal; the Moschovakis Coding
Lemma (see Section 4) implies that it is a limit cardinal if AD holds. Assuming
that A ⊆ ωω has Wadge rank α, there is a surjection from ωω to α + 1, assigning
each c ∈ CF the Wadge rank of f−1

c [A]. Thus, assuming AD + DCR, each A ⊆ ωω
has Wadge rank less than Θ. Similarly, one can use a surjection from ωω to an
ordinal α to build a set of reals of Wadge rank at least α. In fact, ZF proves that
for every ordinal α < Θ there is a <W-increasing sequence of length α, where <W

is the Wadge order. This gives the following theorem, where we let WR(A) denote
the Wadge rank of a set A ⊆ ωω.

Theorem 2.6 (Solovay). Assuming AD + DCR, Θ = {WR(A) : A ⊆ P(R)}.

We return now to our goal of defining AD+.

3. The AD+ Axioms

In Sections 3.1 and 3.2 we define∞-Borel sets and <Θ-Determinacy. With these
definitions in hand we finally define AD+ in Section 3.3. Section 3.4 discusses strong
partition cardinals, which can be used to show that <Θ-Determinacy follows from
AD plus the assumption that every subset of ωω is Suslin.

3.1. Suslin sets and ∞-Borel sets. Given a set X and a tree T ⊆ X<ω, [T ]
denotes the set of infinite paths through T . Given sets X and Y and a tree T ⊆
(X × Y )<ω, the projection p[T ] is defined to be the set of x ∈ Xω for which there
exists an f ∈ Y ω such that (x, f) ∈ [T ].

Definition 3.1. Given an ordinal γ and a set X, a set A ⊆ Xω is γ-Suslin if
A = p[T ] for some tree T ⊆ (X × γ)<ω. The set A is Suslin if it is γ-Suslin for
some ordinal γ, and co-Suslin if its complement in Xω is Suslin.

Continuous preimages of γ-Suslin sets are γ-Suslin, so the Suslin sets form an
initial segment of the Wadge hierarchy.

If A ⊆ ωω × ωω (identified with the corresponding subset of (ω × ω)ω) is Suslin
then it can be uniformized. To see this, suppose that A = p[T ], where T ⊆
(ω × ω × γ)<ω. For each x ∈ A one can recursively find the lexicographically least
y ∈ (ω × γ)<ω such that (x, y) ∈ [T ]. Models of the form L(A,R) for A ⊆ L(R)
will not satisfy the assertion that all sets of reals are Suslin as they don’t satisfy
Uniformization.

The following theorems, whose proofs are beyond the scope of these notes, relate
the Suslin property and Uniformization with ADR. The first is a combination of
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results of Becker and Woodin. The second is due to Martin and Woodin indepen-
dently.

Theorem 3.2. AD + DC + Uniformization implies all subsets of ωω are Suslin.

Theorem 3.3. If AD holds and all subsets of ωω are Suslin, then ADR holds.

We say that a tree T is wellfounded if it does not have an infinite path, i.e., if [T ]
is the emptyset. Assuming DC (or the wellorderability of T ), wellfoundedness of a
tree T is witnessed by a ranking function ρ from T to the ordinals, where ρ(s) > ρ(t)
whenever t extends s. If T is wellfounded, then a ranking function witnessing this
can be constructed recursively in the model L[T ]. It follows that, given an ordinal
γ, a tree T on ω × γ, and an x ∈ ωω, x ∈ p[T ] if and only if L[T, x] |= x ∈ p[T ].
This property is generalized in the following definition. In Section 6.1 we discuss
an equivalent definition which is more closely related to the usual notion of Borel
set.

Definition 3.4. A set A ⊆ ωω is ∞-Borel if and only if there exist a formula φ
and a set S ⊆ Ord such that A = {x ∈ ωω : L[S, x] |= φ(S, x)}. We call the pair
(S, φ) an ∞-Borel code for A.

Again, Suslin sets are ∞-Borel. As with the Suslin sets, the ∞-Borel sets form
an initial segment of the Wadge hierarchy, which can be seen as follows. If (S, φ) is
an ∞-Borel code for A, and c is in CF , then there is an ∞-Borel code for f−1

c [A]
of the form (S′, φ′), where S′ codes the pair (S, c) and φ′(S′, x) is the formula
φ(S, fc(x)) (phrased in terms of the coding of fc by c).

If A ⊆ ωω is ∞-Borel, then this is witnessed by a pair (S, φ) with S a bounded
subset of Θ. This can be shown by mapping ωω onto an elementary submodel
(containing ωω) of a suitable model of the form Lα(T,R), where (T, φ) is a given
∞-Borel code for A. Since every element of Lα(T,R) is definable in Lα(T,R) from
T , an ordinal and an element of ωω, such a submodel can be built assuming only
ZF.

If A is ∞-Borel and ℵ1 6≤ 2ℵ0 , then A has the property of Baire and is Lebesgue
measurable. To see this for the property of Baire, let P be Cohen forcing and let
ċ be the canonical P-name for the generic Cohen real. Suppose that (S, φ) is an
∞-Borel code for A. Since ℵ1 6≤ 2ℵ0 and L[S] |= AC, ωω ∩L[S] is countable, so the
set of reals which are Cohen-generic over L[S] is comeager. For each such real x, let
gx be the filter for which ċgx = x. Let A′ be the set of x which are Cohen-generic
over L[S] for which there is a condition p ∈ gx forcing that L[S, ċ] |= φ(S, ċ). Then
A′ is Borel, and the symmetric difference A 4 A′ is contained in the set of reals
which are not Cohen-generic over L[S]. For Lebesgue measurability the argument
is the same, using random forcing instead of Cohen forcing. One can use the
same argument with Mathias forcing to show that A (under the same assumptions)
satisfies the Ramsey property. Unlike the cases of the Baire property and Lebesgue
measurability, it is still unknown whether AD alone implies that every subset of 2ω

has the Ramsey property.
One part of AD+ is the statement that all A ⊆ ωω are ∞-Borel. We discuss

proofs of the following theorems (due to Woodin) in Sections 5 and 6.2.

Theorem 3.5. AD + V = L(R) implies that all subsets of ωω are ∞-Borel.

Theorem 3.6. If AD+DCR holds and A is ∞-Borel then it is ∞-Borel in L(A,R).
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We list three theorems of Woodin from the 1990’s on∞-Borel sets, whose proofs
are too involved to include in these notes. Proofs of the first two appear in the
author’s book in preparation. Since DCR implies that DC holds in models of the
form L(S,R) whenever S is a set of ordinals, Theorem 3.9 implies Theorem 3.8.

Theorem 3.7. AD + Uniformization implies that all subsets of ωω are ∞-Borel.

Theorem 3.8. Assuming AD+DCR, for A ⊆ ωω, A is ∞-Borel if and only if there
is an S ⊆ Ord with A ∈ L(S,R).

Theorem 3.9. Assuming AD + DC, for every ordinal λ < Θ, all subsets of ωω in
L(P(λ)) are ∞-Borel.

There is still one part of AD+ left to be defined, concerning the determinacy of
games on the ordinals.

3.2. γ-Determinacy. Let γ be an ordinal, and f : γω → ωω be a continuous func-
tion, where γω is given the product topology induced by the discrete topology on
γ. Given A ⊆ ωω, we let G(f,A) be the game where players I and II alternately
choose the values of some x ∈ γω, with player I winning if and only if f(x) ∈ A.
We let γ-Determinacy be the statement that each such game G(f,A) is determined.
For all γ ≥ 2, γ-Determinacy implies AD.

I x(0) x(2) x(4) . . .
II x(1) x(3) . . .

The game G(f,A); I wins if and only if f(x) is in A.

Although we call this statement γ-Determinacy, we do not consider arbitrary
subsets of γω as payoff sets. The reason for this is that ZF implies the existence
of a nondetermined game on ωω1 (ie., that ADω1

is false, as mentioned above). To
see this, consider the game where player I plays a countable ordinal α in round 1
and makes no subsequent plays, and player II in her turns plays natural numbers
xi (i ∈ ω) collectively forming x ∈ ωω, with player I wins if x codes a wellordering
of ω in ordertype α. Since player I cannot have a winning strategy, determinacy
of this game implies the existence of an injection from ω1 to ωω, which implies the
existence of a set of reals without the perfect set property, and therefore contradicts
AD, as noted in Section 1.1. One interesting aspect of this argument is that it does
not produce a single game on ω1 which is provably undetermined (in particular,
player II has a winning strategy in the game just described if AC holds). Building
on work of Neeman [17], Woodin has shown that in fact determinacy can hold for
all definable games on ω1.

A typical game of the type considered in the statement of γ-Determinacy is when
A is a subset of ωω, τ is a Col(ω, γ)-name for an element of ωω, and players I and
II play a descending sequence of (codes for) conditions in Col(ω, γ) collectively
realizing τ , with player I winning if and only if the given realization of τ is in the
set A.

We let <Θ-Determinacy be the statement that γ-Determinacy holds for every
ordinal γ < Θ.
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3.3. AD+. Having defined all the parts of AD+ we finally state its definition.

Definition 3.10. AD+ is the conjunction of the following three statements.

• DCR
• Every subset of ωω is ∞-Borel.
• <Θ-Determinacy

Some authors (including Woodin) do not include DCR in the statement of AD+,
but consider AD+ (defined instead as the conjunction of the other two parts) only
in the context of DCR. The axiom DCR is different from the other two parts of AD+

in that it is witnessed by individual real numbers, as opposed to bounded subsets
of Θ.

Here is a brief listing of implications, known non-implications, and open questions
regarding the statements discussed so far.

• ADR implies AD+Uniformization (Sections 1.1 and 1.2), which implies that
all subsets of ωω are ∞-Borel (Theorem 3.7).
• ADR + DC implies that all subsets of ωω are Suslin (Theorem 3.2).
• AD plus “all subsets of ωω are Suslin” implies AD+ (Theorem 3.19 for
<Θ-Determinacy).
• If all subsets of ωω are Suslin, then Uniformization holds (Section 1.2).
• Uniformization implies DCR (Section 1.2).
• <Θ-Determinacy implies AD, so AD+ does, too (Section 3.2).
• AD+ does not imply Uniformization (Theorem 1.3 and Section 5).
• It is open whether AD implies any or all of the parts of AD+.
• It is open whether ADR implies <Θ-Determinacy (it does imply the other

two parts of AD+).
• It is open whether <Θ-Determinacy implies the other two parts of AD+

(the other two parts are consequences of AC, so they don’t imply <Θ-
Determinacy).

The study of AD+ was inspired by the following question. Suppose that M ⊆ N
are models of ZF+AD with the same reals, and that every set of reals in M is Suslin
in N . What consequences does this entail for M? As a partial answer, we have
that in this situation M |= AD+. To see this for the case of <Θ-Determinacy, we
use the Moschovakis Coding Lemma and the fact that AD implies the existence of
cofinally many strong partition cardinals below Θ (see Sections 4 and 3.4). Similar
arguments give the following theorem. As seen above, the corresponding theorem
fails for ADR.

Theorem 3.11 (Woodin). If AD+ holds, then it holds in every inner model con-
taining ωω.

More generally, for all three parts of AD+, if A ⊆ ωω and L(A,R) ⊆M where A
satisfies the given part of AD+ in M , then it satisfies this part in L(A,R) also. For
DCR this follows from the fact, observed above, that DCR is witnessed by individual
real numbers. For <Θ-Determinacy, this is discussed at the end of Section 4. The
corresponding fact for ∞-Borel sets is covered in Section 6.2.

Combining these remarks with Theorems 3.2 and 3.3, we have the following.

Theorem 3.12. Each of the following statements implies the ones below it, and
the first two are equivalent. Assuming DC all four statements are equivalent.
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(1) AD + “all subsets of P(ωω) are Suslin”
(2) AD+ + “all subsets of P(ωω) are Suslin”
(3) ADR
(4) AD + Uniformization

While the question of whether AD implies AD+ is open, it is known that the
consistency strength of AD + ¬AD+ is greater than that of AD. To illustrate this,
let Γ+ be the set of A ⊆ ωω for which L(A,R) |= AD+. By Theorem 3.11, Γ+ is an
initial segment of the Wadge hierarchy. Since the implication AD⇒ AD+ is known
to hold in L(R) (see Section 5), AD implies that Γ+ is nonempty. The following
theorem (whose proof we will not discuss in these notes) shows that a model of
AD + ¬AD+ would contain a model of ADR.

Theorem 3.13 (Woodin). Assuming AD+DCR, L(Γ+,R) |= AD+. If Γ+ 6= P(ωω)
then L(Γ+,R) |= DC + ADR.

Woodin’s Derived Model Theorem (Theorem 3.14) is the standard method for
producing models of AD+. The model L(Γ,R∗) from the statement of the theorem
is called the derived model. For any set or class X, the inner model HODX is the
class of all sets a such that the transitive closure of {a} is contained in ODX . When
X is ordinal definable from a finite sequence from X, HODX is a model of ZF. If
a wellordering of X is ordinal definable from a finite sequence from X, HODX is a
model of ZFC. A proof of an early version of the theorem below can be found in
[21].

Theorem 3.14 (Woodin). Let δ be a limit of Woodin cardinals and let G be a
V -generic filter for Col(ω,< δ). Let

R∗ =
⋃
{RV [G�λ] : λ < δ}

and
Γ = {A ⊆ R∗ : A ∈ HODV,R∗ , L(A,R) |= AD+}.

Then L(Γ,R∗) |= AD+.

This is the standard way to produce models of AD+, and in a sense it is the only
way, since the following theorem, a reversal of the Derived Model Theorem, says
that every model of AD+ arises as a derived model.

Theorem 3.15 (Woodin). Assuming AD+DCR, L(Γ+,R) is the derived model of
some inner model which exists in some forcing extension of V .

Finally we mention Theorem 3.16 below, which is a generalization of the Solo-
vay Basis Theorem (Theorem 5.3). Among other things, the forward direction of
the theorem enables one to carry out the basic analysis of Woodin’s Pmax forcing
assuming AD+ (see [23]).

Theorem 3.16 (Woodin). Assuming AD, AD+ is equivalent to the statement that
every true Σ∼

2
1 statement has a witness which is Suslin and co-Suslin.

In the theorem above, a sentence is Σ∼
2
1 if it has the form ∃A ⊆ ωωφ(A, a), where

a is an element of ωω and all quantifiers in φ range over ωω (i.e., φ is projective).
More generally, given a set B ⊆ ωω, a set X of some Polish space Y is Σ∼

2
1(B) if

there exist a projective formula φ and an a ∈ ωω such that

X = {y ∈ Y : ∃A ⊆ ωωφ(A,B, x, a)}.



10 PAUL B. LARSON

When B = ∅ we write Σ∼
2
1. The set X is ∆∼

2
1(B) if X and Y \X are both Σ∼

2
1(B).

The ordinal δ∼
2
1(B) is defined to be the supremum of the ordertypes of the ∆∼

2
1(B)

prewellorderings, where a prewellordering is a reflexive, transitive, and wellfounded
binary relation.

3.4. Strong Partition Cardinals. Given ordinals α and β, we let [α]β be the
collection of subsets of α of ordertype β. The existence of an infinite κ satisfying
the following definition contradicts the Axiom of Choice. It appears to be an open
question whether one gets an equivalent definition by restricting to the case γ = 2.

Definition 3.17. A cardinal κ is a strong partition cardinal if for every γ < κ
and every f : [κ]κ → γ there is an A ∈ [κ]κ such that f�[A]κ is constant.

The converse of the following theorem holds in L(R), but not in general [3]. The
proof of the theorem involves a deep analysis of pointclasses under AD.

Theorem 3.18 (Kechris-Kleinberg-Moschovakis-Woodin [8]). The Axiom of De-
terminacy implies that the strong partition cardinals are cofinal in Θ, and in par-
ticular that, for each A ⊆ ωω, δ∼

2
1(A)L(A,R) is a strong partition cardinal.

The existence of strong partition cardinals, in conjunction with Suslin represen-
tations, can be used to prove <Θ-Determinacy. In particular, assuming AD+DCR,
<Θ-determinacy holds for games G(f,A) where A is Suslin and co-Suslin.

Theorem 3.19 (Moschovakis, Woodin). Suppose that AD + DCR holds. Let γ <
κ < λ be ordinals, with λ a strong partition cardinal. Let A ⊆ ωω be such that A
and ωω \ A are both κ-Suslin and let f : γω → ωω be continuous. Then G(f,A) is
determined.

The proof of Theorem 3.19 uses the Moschovakis Coding Lemma, which is dis-
cussed in Section 4. With the Coding Lemma in hand we will outline in Section 5
a proof that the implication AD⇒ AD+ holds in L(R).

4. The Moschovakis Coding Lemma

A prewellordering of a set X is the order induced by a surjection from X to some
ordinal. We call this ordinal the length of the prewellording. For each x ∈ X, the
image of x under this surjection is called the rank of x in the prewellordering. We
write rank≤(x) for the rank of x in ≤ when ≤ is a prewellordering of a set with
x as a member. We shall be interested in prewellorderings of subsets of ωω. Note
that Θ is the supremum of the lengths of prewellorderings of ωω.

The following simplified version of the Moschovakis Coding Lemma is sufficient
for our purposes. A more precise version replaces “projective” with a Σ1

1 condition
in parameters derived from the prewellordering ≤.

Theorem 4.1 (Moschovakis). Assume that AD holds and let ≤ be a prewellordering
of ωω of length γ. Then there is a projective formula φ with ≤ as its only parameter
such that for every A ⊆ γ there is x ∈ ωω such that

A = {rank≤(y) : y ∈ ωω ∧ φ(x, y)}.

One important corollary of the Moschovakis Coding Lemma is that, assuming
AD, whenever A ⊆ ωω and γ is an ordinal below ΘL(A,R), every subset of γ is in
L(A,R). Moreover, P(γ) is a surjective image of ωω in L(A,R), which implies that
Θ is a limit cardinal (under AD).
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Corollary 4.2. Assuming AD, if A ⊆ ωω and γ < ΘL(A,R) then P(γ) ⊆ L(A,R)
and there is a surjection from ωω to P(γ) in L(A,R).

Suppose now that AD holds, ≤ is a prewellordering of ωω of length γ and f : γω →
ωω is continuous and A ⊆ ωω. Strategies in the game G(f,A) can be coded by
subsets of γ. It follows from the Moschovakis Coding Lemma then that any winning
strategy for the game G(f,A) exists in L(≤,R). This gives the <Θ-Determinacy part
of Theorem 3.11.

5. AD+ in L(R)

The fact that, in L(R), AD implies AD+ follows from several classical results
from the Cabal Seminar. First, we have Kechris’s theorem, giving DCR.

Theorem 5.1 (Kechris [7]). L(R) |= (AD⇒ DC).

The following theorem of Martin and Steel characterizes the Suslin sets of L(R)
under AD.

Theorem 5.2 (Martin-Steel [14]). Assuming AD + V = L(R), the Suslin subsets
of ωω are exactly the Σ∼

2
1 sets.

Finally, we have the Solovay Basis Theorem, which reflects potential counterex-
amples to AD+ into the Suslin, co-Suslin sets (see Section 2.4 of [10] for further
discussion).

Theorem 5.3 (Solovay). In L(R), Σ∼
2
1 facts have ∆∼

2
1 witnesses.

By the Moschovakis Coding Lemma, the assertion that there exist a pair (f,A)
giving a counterexample to <Θ-Determinacy is equivalent to a Σ2

1-statement. If
<Θ-Determinacy fails in L(R), then, the Solovay Basis Theorem implies that there
is a counterexample where A is Suslin and co-Suslin. Theorem 3.19 however implies
that this is impossible. We have then that AD implies <Θ-Determinacy in L(R).
A similar argument applies to the statement that every subset of ωω is ∞-Borel,
using the material in Section 6.2.

6. Reflecting ∞-Borel codes

In this section we introduce an alternate notion ∞-Borel code, and use it to
prove that for every ∞-Borel set A ⊆ ωω there is an ∞-Borel code for A in the
inner model L(A,R).

6.1. Infinitary ∞-Borel codes. In this section we give an alternate (equivalent)
definition of ∞-Borel set which corresponds to the classical notion of Borel set.
This definition defines the ∞-Borel subsets of 2ω using an infinitary propositional
language.

Definition 6.1. For γ an infinite ordinal, Lγ,0 is the language with propositional
variables {pn : n ∈ ω} which is closed under the unary connective of negation and
under wellordered disjunctions and conjunctions indexed by subsets of γ. We let
L∞,0 be the union over all ordinals γ of the languages Lγ,0.

An element x ∈ 2ω may be viewed as an L∞,0-structure, where x |= pn if and
only if x(n) = 1.
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Definition 6.2. A set A ⊆ 2ω is γ-Borel if there is a formula φ ∈ Lγ,0 such that
A = {x ∈ 2ω : x |= φ}.

We let Aφ denote the set of x ∈ 2ω such that x |= φ. Then φ gives a description of
a construction of A in terms of negations and wellordered unions and intersections,
starting with the basic open sets in 2ω. Using a definable paring function on the
ordinals we can code elements of L∞,0 by sets of ordinals, and for each suitable
S ⊆ Ord we let φS be the sentence coded by S. When κ is an infinite cardinal each
φ in Lκ,0 is φS for some S ⊆ κ. Then there is a first-order formula ψ such that
(S, ψ) is an ∞-Borel code for Aφ in the sense defined previously. Our two notions
of ∞-Borel set are in fact equivalent in ZF.

Theorem 6.3 (Woodin). For all A ⊆ 2ω the following are equivalent:

(1) There exist S ⊆ Ord and a first-order formula φ such that

A = {x ∈ 2ω : L[S, x] |= φ(S, x)}.
(2) There is S ⊆ Ord such that A = {x ∈ 2ω : x |= φS}.

We have just sketched the reverse direction of this theorem. The proof of the
forward direction is more involved, and proceeds by induction on γ (observing
that if A = {x ∈ 2ω : L[S, x] |= φ(S, x)} then there is an ordinal γ such that
A = {x ∈ 2ω : Lγ [S, x] |= φ(S, x)}) and a second induction on the complexity of φ.

There are several ways to consider subsets of (finite powers of) ωω as∞-Borel in
our new sense. For instance, we can assume instead that the propositional variables
in L∞,0 can take arbitrary values in ω. We skip the details here and treat both
notions of ∞-Borel set as equivalent and meaningful for subsets of (ωω)n for any
n ∈ ω \ {0}.

The ∞-Borel sets are not always the same as the smallest class containing the
open sets and closed under negations and wellordered unions. In particular, it is
consistent with ZF that the collection of∞-Borel sets is not closed under wellordered
unions. In order to show that a given wellordered union of∞-Borel sets is∞-Borel
one must be able to choose the codes, which is not possible in general.

In general∞-Borel sets cannot be uniformized. In particular, models of the form
L(A,R) (where A is a subset of L(R)) can satisfy the statement that every subset
of ωω is ∞-Borel, even though they cannot satisfy Uniformization. Similarly (and
again, unlike the case of Suslin representations), it can be that S is an ∞-Borel
code for a nonempty set of reals which has no members in the model L[S]. For
instance, the set of reals which are Cohen-generic over L has an ∞-Borel code in
L.

In [9] and [13] the type of ∞-Borel code defined in Definition 3.4 is called an
∞-Borel∗ code; here we will not make a distinction, and hope that the intended
meaning will be clear from context. In practice one needs both definitions for the
∞-Borel sets, both types of ∞-Borel code and the ability to translate between
them.

6.2. Local ∞-Borel codes. In this section we show that, assuming AD + DCR,
each∞-Borel set A ⊂ ωω has an∞-Borel code which is is projective in a parameter
for A. This fact will complete the argument from Section 5 that AD implies AD+

in L(R).
We define the following ordinals, all of which are at most Θ:

• χB, the least χ such that all ∞-Borel sets are χ-Borel;
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• κB, the supremum of the lengths of wellordered sequences of∞-Borel codes
for nonempty disjoint sets;
• λB, the supremum of the lengths of ∞-Borel prewellorderings.
• ρB, the supremum of the Wadge ranks of ∞-Borel sets.

Assuming AD + DCR (or just Wadge Determinacy plus the wellfoundedness of
the Wadge hierarchy), ρB = Θ is equivalent to the statement that every subset of
ωω is ∞-Borel. We will see below that AD + DCR implies that all four ordinals are
the same. Our proof of this fact will use Theorem 3.9, whose proof is not discussed
in these notes. It may be that there is an easier proof.

Our goal in this section is to prove Theorem 6.7 below assuming only AD+DCR.
We begin make a few preliminary observations on the four ordinals defined above.
We first prove that χB ≤ κB ≤ λB, using a function φ 7→ φ∗ on L∞,0 sentences,
defined recursively as follows:

• p∗n = pn;
• (¬φ)∗ = ¬φ∗;
• whenever Y is a set of ordinals,( ∨

α∈Y
φα

)∗
=
∨
α∈X

φ∗α,

where X = {α ∈ Y : Aφα 6⊆
⋃
β∈Y ∩αAφβ}, and( ∧

α∈Y
φα

)∗
=
∧
α∈X

φ∗α,

where X = {α ∈ Y : Aφα 6⊇
⋂
β∈Y ∩αAφβ}.

This function recursively removes from each conjunction and disjunction any terms
which do not affect the final result. In particular, for any φ ∈ Lκ,0, Aφ = Aφ∗ .

Parts of the proofs of Theorem 6.4 and 6.5 will be reused in the proof of Theorem
6.7.

Theorem 6.4 (Woodin). Assuming AD + DCR, χB ≤ κB ≤ λB.

Proof. To see that χB ≤ κB, let φ be any sentence in Lκ,0. For any disjunction∨
α<γ ψα in φ∗ the sentences ψα ∧ ¬(

∨
β<α ψβ) are ∞-Borel codes for nonempty

disjoint sets. A similar remark applies to the conjunctions. It follows that φ∗ is in
LκB,0.

To see that κB ≤ λB, note that one can convert a sequence of ∞-Borel codes
for nonempty disjoint sets to an ∞-Borel code for a prewellordering in a uniform
fashion by means of uniformly coding the product. Consider 〈φα : α < γ〉 with the
Aφα ’s disjoint and nonempty. Then∨

α≤β<γ

Aφα ×Aφβ

is a prewellordering of length γ. If ξ ≥ ω is such that each φα is in Lξ,0, then the
resulting code is in Lξ∪|γ|,0. �

We observed above that ρB = Θ if and only if all subsets of ωω are∞-Borel. The
same is true for λB (and, as well shall see, for all four ordinals). Given A ⊆ ωω, we
let δA be the supremum of the lengths of the prewellorderings which are Wadge-
below either A or ωω \A
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Theorem 6.5 (Woodin). Assuming AD+DCR, λB = Θ if and only if every subset
of ωω is ∞-Borel.

Proof. By definition, Θ is the supremum of the lengths of the prewellorderings of
ωω, so if every subset of ωω is ∞-Borel then λB = Θ. For the other direction,
suppose that A ⊆ ωω is not ∞-Borel and that P is an ∞-Borel prewellorder. Then
A 6≤W P as the∞-Borel sets form an initial segment of the Wadge hierarchy. Thus
either P ≤W A or P ≤W ωω \A, and in either case the length of P is less than δA,
which is less than Θ. �

Putting together the results above, we have the following.

Theorem 6.6 (Woodin). Assuming AD+DCR, the following statements are equiv-
alent.

• At least one of χB, κB, λB and ρB is Θ.
• All subsets of ωω are ∞-Borel
• χB = κB = λB = ρB = Θ

Proof. All that remains to be shown is that if all subsets of ωω are ∞-Borel then
χB = Θ. This follows from the Moschovakis Coding Lemma, which implies that for
each χ < Θ there is a surjection from ωω to P(χ), and therefore one from ωω to
the χ-Borel sets. �

Finally, we have the existence of local ∞-Borel codes.

Theorem 6.7 (Woodin). Assume that AD + DCR holds. If A ⊆ ωω is ∞-Borel
then it is δA-Borel.

Proof. If δA ≥ χB we are done. Supposing otherwise, there is a φ ∈ L∞,0 such that
φ∗ contains a disjunction or conjunction of length δA. Take a minimal example
and cut it off at length δA. Thus we get 〈φα : α < δA〉 where each φα is in LδA,0
and the sets Aφα are nonempty and disjoint. As in the second half of the proof of
Theorem 6.4, we obtain a δA-Borel prewellordering P of length δA. Then P is not
Wadge-below A or ωω \A. Hence A ≤W P , and since P is δA-Borel A is too. �

With the Coding Lemma and the fact that δA < ΘL(A,R) we have that AD+DCR
implies that if A is ∞-Borel then it is ∞-Borel in L(A,R), and moreover that the
assertion that A ⊆ ωω is ∞-Borel is projective in A. In particular, the assertion
that there is a subset of ωω which is not ∞-Borel is Σ2

1. With Theorems 5.2 and
5.3, and the fact that Suslin sets are ∞-Borel, we get that AD implies that in L(R)
every subset of ωω is ∞-Borel.

We conclude this section by showing that the four ordinals defined above are all
the same under AD+DCR. The proof uses Woodin’s Theorem 3.9, whose prove we
do not discuss in these notes.

Theorem 6.8. Assume that AD + DCR holds. Then

χB = κB = λB = ρB = ΘL(P(χB)).

Proof. By Theorem 6.6, the theorem holds in the case where all subsets of ωω are∞-
Borel. Suppose then that some A ⊆ ωω is not ∞-Borel. Since DCR holds, L(A,R)
satisfies DC. Since the∞-Borel sets form an initial segment of the Wadge hierarchy,
they are all in L(A,R). By Theorem 6.7, every∞-Borel subset of ωω is∞-Borel in
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L(A,R). By the Moschovakis Coding Lemma, L(A,R) contains all bounded subsets

of its Θ. It follows that χB = χ
L(A,R)
B , λB = λ

L(A,R)
B and ρB = ρ

L(A,R)
B .

By Theorem 3.9 (applied in L(A,R)), every subset of ωω in L(P(χB)) is∞-Borel.
It follows then that the ∞-Borel sets are exactly the subsets of ωω in L(P(χB)),

all of which are ∞-Borel in L(P(χB)). Moreover, χB = χ
L(P(χB))
B , λB = λ

L(P(χB))
B

and ρB = ρ
L(P(χB))
B . By Theorem 6.6, applied in L(P(χB)),

L(P(χB)) |= χB = κB = λB = ρB = Θ.

The theorem then follows from Theorem 6.4 (applied in V ). �

7. Cone Measures

This section begins by presenting Martin’s theorem that under AD the cone
measure on the Turing degrees is an ultrafilter. This result lifts to larger degree
notions, in particular those induced by contructibility relative to a fixed set of
ordinals. This in turn induces the partial order ≤D on degree notions, which turns
out to be connected to Uniformization and the Suslin property (see Theorems 8.5
and 9.7).

7.1. Turing reducibility. Let HF denote the set of hereditarily finite sets. Given
subsets x and y of HF, we say that x is Turing-reducible to y if x is ∆0

1 definable
over HF with a predicate for y. For x and y in ωω we write x ≤Tu y to indicate
that x is Turing-reducible to y, and x ≡Tu y to mean that x ≤Tu y and y ≤Tu x.

Given x ∈ ωω, we let [x]Tu = {y ∈ ωω : x ≡Tu y}. Sets of the form [x]Tu (for
some x ∈ ωω) are called Turing degrees. We write DTu for the set of Turing degrees.
The sets {y ∈ ωω : y ≥Tu x} or {[y]Tu : y ∈ ωω, y ≥Tu x} are both referred to as
the Turing cone above x (for any x ∈ ωω, which is called a base for the cone).

Given an equivalence relation E on a set X, we say that a set A ⊆ X is E-
invariant if it is a union of E-classes, that is, if, for all x, y ∈ X such that xEy,
x ∈ A if and only if y ∈ A. A subset of ωω is said to be Turing-invariant if it is
≡Tu-invariant.

The following theorem of Martin shows that, under AD, every Turing-invariant
subset of ωω either contains or is disjoint from a Turing cone.

Theorem 7.1 (Martin). Let A ⊆ ωω be Turing-invariant, let σ be a strategy in
Gω(A) and let x ∈ ωω be such that σ is Turing-reducible to x. If σ is a winning
strategy for player I then A contains the Turing cone above x. If σ is a winning
strategy for player II then A is disjoint from the Turing cone above x.

We let Turing Determinacy (TD) be the statement that each Turing-invariant
subset of ωω either contains or is disjoint from a cone. A theorem of Peng and Yu
[18] shows that CCR follows from TD. It is an open question whether TD implies
AD. Woodin has shown that this implication does hold in L(R) (see [2]).

We let µTu be the set of A ⊆ DTu which contain a Turing cone. Martin’s theorem
implies µTu is an ultrafilter on the Turing degrees, and CCR implies this ultrafilter is
countably complete. The following theorem shows that TD implies that ℵ1 6≤ 2ℵ0 .

Theorem 7.2. If TD holds then ω1 is measurable.

Proof. Let U be the set of A ⊆ ω1 for which the set

{[x]Tu : x ∈ ωω, ωL[x]
1 ∈ A}
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is in µTu. Then U is a countably complete ultrafilter on ω1. �

The results above apply to a larger class of equivalence relations, including those
described by the following definition. We will use a nonstandard definition.

Definition 7.3. An equivalence relation E on ωω is good if it contains ≡Tu and
there exists a preorder ≤E on ωω such that

• E = ≤E ∩ ≥E;
• for every x ∈ ωω the set {y ∈ ωω : y ≤E x} is countable;
• for all x, y ∈ ωω, if x ≤E y then there is z ≥Tu x such that z ≡E y.

In particular, for S ⊆ Ord the following equivalence relations are good.

• x ≡S y ⇔ L[S, x] = L[S, y] (induced by setting x ≤S y to be x ∈ L[S, y]);
• x ≡HODS y ⇔ HOD{S,x} = HOD{S,y} (induced by setting x ≤HODS y to

be x ∈ HOD{S,y}).

Under AD, Martin’s theorem implies that if E is a good equivalence relation,
then every set of E-degrees either contains or is disjoint from a ≤E-cone, and
that the corresponding cone measures for these relations are (countably complete)
ultrafilters. We let DS be the set of ≡S-degrees, and µS be the corresponding cone
measure. We call the corresponding cones S-cones. In the next section we will
consider ultraproducts by these measures.

7.2. Cone Measures and Ultrapowers. We have seen that AD implies TD and
that the Turing measure µTu is countably complete, and that the same holds for
any good equivalence relation, including the relations ≡S and ≡HODS . We will be
looking at ultraproducts of the form∏

d∈DTu

Md/µTu

or ∏
d∈DS

Md/µS ,

for S a set of ordinals.
If the ultraproduct by the Turing measure µTu is wellfounded, then so is the

ultraproduct by any good equivalence relation, since any ultraproduct for a good
equivalence relation embeds into the corresponding ultraproduct by µTu. By count-
able completeness, these ultraproducts are wellfounded provided TD + DC holds.
Recall that the implication DCR ⇒ DC holds in models of the form L(A,R) when
A is a subset of L(R). The following theorem of Solovay shows that DCR follows
from the wellfoundedness of the ultrapower of the ordinals by the cone measure for
a good equivalence relation. The theorem is essentially proved in [19]. A proof is
also given in [13].

Theorem 7.4 (Solovay). If (E,≤E) is a good equivalence relation, µE is the cor-
responding cone measure and the ultrapower of the ordinals by µE is wellfounded,
then DCR holds.

The assertion that the ultrapower of the ordinals by µTu is wellfounded was orig-
inally one of the axioms of AD+. Woodin later showed however that this ultrapower
is wellfounded if V = L(P(R)) and AD+ (as currently stated) holds. The proof uses
his reversal of the Derived Model Theorem.
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Theorem 7.5 (Woodin). If V = L(P(R)) and AD+ holds then the ultrapower of
the ordinals by µTu is wellfounded

We will eventually (in Theorem 9.5) be interested in the ordinal represented by

the function x 7→ ω
L[S,x]
2 in the µS-ultrapower, for a fixed set S ⊆ Ord. First we

look at functions of the form x 7→ ω
L[S,x]
1 . Given a set S of ordinals, and function

f on ωω, we say that f is S-invariant if f(x) = f(y) whenever x ≡S y.
Let WO be the set of wellorderings of ω. The proof of Theorem 7.6 uses the

following classical fact, known as Σ∼
1
1 boundedness: for every analytic A ⊆ WO

there is β < ω1 such that for every x ∈ A, the ordertype of x is less than β. We
write otp(x) for the ordertype of a wellordering x.

Theorem 7.6 (Woodin). Assume that AD holds. Let S be a set of ordinals, and

define the function f : ωω → ω1 by setting f(x) to be ω
L[S,x]
1 . Then f represents ω1

in the ultrapower
∏

Ord/µS.

Proof. Let [f ]S denote the element of
∏

Ord/µS represented by f . The countable
completeness of µS implies that ωV1 is (isomorphic to) an initial segment of the
ultrapower

∏
Ord/µS . For each α ∈ ω1, {[x]S : f(x) > α} ∈ µS , so [f ]S ≥ α.

To see that [f ]S ≤ ω1 suppose that g : ωω → ω1 is S-invariant and that for

every x ∈ ωω we have that g(x) < ω
L[S,x]
1 . We want to find an α < ω1 such that

{[x]S : g(x) < α} ∈ µS .
Consider the game where

• player I plays x(i) in round i, collectively defining x ∈ ωω;
• player II plays (y(i), z(i)) ∈ ω × (ω × ω) in round i, collectively defining
y ∈ ωω and z ⊆ ω × ω;

• player II wins if and only if y ≥S x, z ∈ WO, and the ordertype of z is
greater than g(y).

If σ is a strategy for player I, player II can defeat it by playing a y ∈ ωω such
that σ is Turing reducible to y, and a z ∈ WO ∩ L[S, y] with ordertype greater

than g(y) (such a z exists since g(y) < ω
L[S,y]
1 ). Thus by AD we may fix a winning

strategy σ for player II. For each x ∈ ωω, let yσ(x) denote the y ∈ ωω that σ
produces when player I plays x, and let zσ(x) denote the set z ⊆ ω × ω that σ
produces when player I plays x. Then {zσ(x) : x ∈ ωω} is analytic and included in
WO, so there is α < ω1 such that for every x ∈ ωω, the ordertype of zσ(x) is less
than α. The set of x ∈ ωω such that σ is Turing-reducible to x contains an S-cone.
For any such x, yσ(x) ≡S x, and

α > otp(zσ(x)) > g(yσ(x)) = g(x).

�

The following application of cone measures is used in the proof of Theorem 9.5,
which is the key theorem for producing Suslin representations from∞-Borel codes.
Theorem 7.7 was first proved by Steel assuming AD [20] and later by Woodin from
TD by the proof given below. Almost the same proof gives the corresponding result
for ♦. Whether one can also get � or forms of condensation seems to be open.

Theorem 7.7. Suppose that ℵ1 6≤ 2ℵ0 and let S be a set of ordinals such that µS
is an ultrafilter. Then

{[y]S : L[S, y] ∩ Vω1
|= GCH} ∈ µS .
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Proof. We first prove the theorem with CH in place of GCH. It suffices to show that
for each y ∈ ωω there is an x ∈ ωω such that L[S, y][x] |= CH. Since ℵ1 6≤ 2ℵ0 , for
each y ∈ ωω there exist L[S, y]-generic filters for each partial order in L[S, y]∩Vω1 .
Fix y ∈ ωω and force over L[S, y] with the iteration Col∗(ω1, ω

ω) ∗Q (as defined in
L[S, y]), where Col∗ adds a bijection f from ω1 to ωω by countable approximations
(without adding reals) and Q is the almost disjoint coding forcing (see [5]) to make
the relation

{(a, b) ∈ (ωω)2 : f−1(x) ≤ f−1(y)}
an Fσ subset of (ωω)2. If a ∈ ωω is a real coding this Fσ set (and thus the generic
filter) in the corresponding generic extension, then f is in L[S, y][a]. Since Q is a
c.c.c. partial order of cardinality ℵ1 in L[S, y][f ], L[S, y][a] |= CH.

For the general case of GCH, let x0 ∈ ωω be such that for every y ≥S x0,
L[S, y] |= CH. Fix y ≥S x0 and an L[S, y]-cardinal γ < ωV1 . Let g ⊆ Col(ω, γ) be
an L[S, y]-generic filter. Then L[S, y][g] |= CH so L[S, y] |= 2γ = γ+. �

7.3. A degree notion for sets of ordinals. The proof of Theorem 9.5 uses the
following order on sets of ordinals, induced by their corresponding degree notions.
Given S, T ⊆ Ord, we write S ≤D T to mean that

{[x]Tu : ωω ∩ L[S, x] ⊆ L[T, x]} ∈ µTu.

We write S <D T for S ≤D T ∧ ¬(T ≤D S). A reflection argument shows that for
any set S of ordinals there is a bounded T ⊆ Θ with S ≤D T . Ultimately we will
be concerned only with the restriction of ≤D to bounded subsets of Θ.

Theorem 7.8 shows that ≤D is a total order when µTu is a countably complete
ultrafilter. As with Theorem 7.7, Theorem 7.8 was first proved by Steel in [20]
assuming AD and later by Woodin from TD+CCR. Woodin’s proof uses a variation
of Mathias forcing.

Theorem 7.8. Assume that TD holds. If ¬(T ≤D S) then

{[x]Tu : ωω ∩ L[S, x] ∈ H(ℵ1)L[T,x]} ∈ µTu.

The proof of Theorem 7.10 uses the following classical result of Solovay. In many
of our applications we will have M = M ′, but we will use the general version at
the end of Section 7.4.

Theorem 7.9 (Solovay). If M ⊆ M ′ are both transitive models of ZF, P ∈ M is
a partial order, P(P) ∩M ′ is countable, and x ∈ M [G] for all M ′-generic G ⊆ P,
then x is in M .

Theorem 7.10 lists some consequences of Theorem 7.8 which will be used in
Section 7.4. Parts (1a) and (2a) follow from Theorems 7.8 and 7.9 by a collapsing
argument as in the second half of the proof of Theorem 7.7. Note that both parts

apply to all ordinals γ below ωV1 , not just ω
L[T,x]
1 . Part (1b) follows from part (1a)

and Theorem 7.9, by another collapsing argument. Part (2b) follows from part
(2a). Note also that neither part of the theorem assumes (or implies) that S is in
L[T, y]. A natural application of part (1b) is when S is an ∞-Borel code.

Theorem 7.10. Assume that TD holds, and let S and T be sets of ordinals.

(1) If x is a base of a cone witnessing that S ≤D T , then the following hold for
all y ≥Tu x.
(a) For every γ < ωV1 , P(γ) ∩ L[S, y] ⊆ L[T, y].
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(b) For every formula φ,

{z ∈ ωω : L[S, z] |= φ(S, z)} ∩ L[T, y] ∈ L[T, y].

(2) If x ∈ ωω is a base of a Turing cone witnessing that S <D T , then the
following hold for all y ≥Tu x.
(a) For every γ < ωV1 ,

P(γ) ∩ L[S, y] ∈ H(|γ|+)L[T,y].

(b) ω
L[T,y]
1 is a strongly inaccessible cardinal in L[S, y].

7.4. Forcing with sets of reals. Given a set S of ordinals (and assuming that
µS induces a wellfounded ultrapower), we let δ∞S be the ordinal represented by the

function x 7→ ω
L[S,x]
2 . Theorem 7.13 (in conjunction with part (2b) of Theorem 7.10)

shows that if S is not ≤D-maximal, then δ∞S < Θ, which is one of the hypotheses of
Theorem 9.6. The proof of Theorem 7.13 uses a result of Martin on pointed perfect
trees.

Given a set S of ordinals, a set A ⊆ ωω is S-positive if it intersects every S-cone.
A tree is perfect if each node has an incompatible pair of extensions.

Definition 7.11. For S ⊆ Ord, an S-pointed (perfect) tree is a perfect tree a ⊆
ω<ω such that for every x ∈ [a], a ∈ L[S, x].

Theorem 7.12 (Martin). AD implies that for every B ⊆ ωω and every S ⊆ Ord,
B is S-positive if and only if there is an S-pointed perfect tree a with [a] ⊆ B.

Given a set T of ordinals, we define the relation <c
T on (ωω)2 by setting (x, y) <c

T

(z, w) if x = z, y, w ∈ L[T, x] and y comes before w in the constructibility order
on L[T, x] using T and x as parameters. Theorem 7.13 says (in conjunction with
part (2) of Theorem 7.10) that if S ⊆ Ord is not ≤D-maximal, and f is an S-
invariant function on ωω sending each x to H(γ)L[S,x], for some γ below the least
strongly inaccessible cardinal of L[S, x], then the structure represented by f in the
µS ultrapower is coded by a subset of ωω.

Theorem 7.13 (Woodin). Suppose that AD holds, and let S and T be sets of
ordinals. Suppose that f is an S-invariant function on ωω such that for every
x ∈ ωω, f(x) is a transitive set in H(ℵ1)L[T,x]. Then

∏
f(x)/µS is isomorphic to

a relation projective in ≤S × <c
T .

Let S∞ denote the set represented by the constant function x 7→ S in the ultra-
power given by µS . The countable completeness of µS give that for all x, y ∈ ωω,
x ∈ L[S, y] if and only if x ∈ L[S∞, y]. It follows that a tree is S-pointed if and
only if it is S∞-pointed.

Let PS be the partial order of (not necessarily S-invariant) S-positive sets under
containment. Theorem 7.12 implies that PS is forcing-equivalent to the partial order
of S∞-pointed perfect trees, also under containment. Therefore any xG produced
by a V -generic filter G ⊆ PS is also generic over L(S∞,R) for this partial order
(which is in L(S∞,R) while PS may not be).

Since µS is countably complete, whenever A is an S-positive set and n is in ω
there exists an s ∈ ωn such that {x ∈ A : x�n = s} is S-positive. It follows that
if G is a V -generic filter for PS then there is a unique x ∈ ωω such that, for each
n ∈ ω the set {y ∈ A : y�n = x�n} is in G. We let xG denote the unique such x. A
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standard genericity argument shows that xG will be Turing-above every element of
ωω ∩ V . This shows that PS collapses every cardinal below ΘV .

A generic filter G for PS induces an ultrapower
∏
x∈ωω V/G, whose elements are

represented by functions with domain ωω. Although we will not prove it here, it
turns out that, assuming AD plus the wellfoundednes of the µS-ultrapower, the
models

∏
x∈ωω L[S, x]/G and L[S∞, xG] are isomorphic.

Now suppose that A ⊆ ωω is such that A∩L[S, x] ∈ L[S, x] for all x ∈ ωω. Then
the function A 7→ A∩L[S, x] represents in

∏
x∈ωω L[S, x]/G a set A∗ ⊆ ωω in V [G]

such that A∗ ∈ L[S∞, xG] and A∗ ∩ (ωω)V = A. It follows that for any V -generic
xG we have A ∈ L(S∞,R)[xG], so A ∈ L(S∞,R) by Theorem 7.9. Along with part
(1b) of Theorem 7.10, this gives Theorem 7.14.

Theorem 7.14 (Woodin). Assume that AD holds, S is a set of ordinals, and the
µS-ultrapower of the ordinals is wellfounded. If S is a ≤D-maximal set of ordinals,
then every ∞-Borel set is in L(S∞,R).

Theorem 9.7 below shows that, assuming AD+, the existence of a ≤D-maximal
set of ordinals is equivalent to the failure of Uniformization.

By Theorem 6.7, the ∞-Borel sets are all ∞-Borel in L(S∞,R), assuming the
hypotheses of Theorem 7.14. Wellfoundedness of the µS-ultrapower follows from
AD + DC, and also from AD+, by Theorem 7.5. If AD holds and A ⊆ ωω is not ∞-
Borel, then every ∞-Borel set is ∞-Borel in L(A,R) by Theorem 6.7, and one can
apply Theorem 7.14 in L(S,A,R) assuming only AD + DCR. That is, under these
assumptions the model L(S,A,R) satisfies the statement that the µS-ultrapower is
wellfounded. In this case, however, the S∞ in the statement of the theorem is as
computed in L(S,A,R).

8. The Vopěnka Algebra

In this section we present a version of Vopěka’s theorem that every set of ordinals
is generic over HOD, and Woodin’s applications of this theorem in analyzing the
∞-Borel sets. We start with some technical formalities.

Let X be a set with X ∈ ODX , let z be an element of HODX and let λ be the
least ordinal such that P(P(z)) ∩ODX ⊆ ODVλ

X . We let PX,z be the set of triples
(n, x̄, ᾱ) such that

• n is the Gödel number of a formula φn of arity |x̄|+ |ᾱ|+ 1,
• x̄ ∈ X<ω,
• ᾱ ∈ λ<ω and
• the set bn,x̄,ᾱ = {C ⊆ z : Vλ |= φn(C, x̄, ᾱ)} is nonempty.

Order PX,z by setting (n, x̄, ᾱ) ≤ (m, ȳ, β̄) to hold if bn,x̄,ᾱ ⊆ bm,ȳ,β̄ . We write
[(n, x̄, ᾱ)] for the corresponding equivalence class of (n, x̄, ᾱ) and let VX,z denote
the corresponding partial order on the equivalence classes. Then VX,z ∈ HODX .
Furthermore, for each a ∈ z, the set TX,z consisting of the pairs (a, [(n, x̄, ᾱ)]) for
which bn,x̄,ᾱ = {C ⊆ z : a ∈ C} is in HODX .

For each C ⊆ z, we let GX,zC be the set of [(n, x̄, ᾱ)] for which Vλ satisfies
φn(C, x̄, ᾱ). Vopěnka’s Theorem says that under these assumptions on X and z,

each set GX,zC is a HODX -generic filter for VX,z. The key point in the proof is that
union of the sets bn,x̄,ᾱ corresponding to any maximal antichain in VX,z is all of
P(z).
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Theorem 8.1 (Vopěnka). Let X be a set with X ∈ ODX , and let z be an element

of HODX . For each C ⊆ z the set GX,zC is a HODX-generic filter in VX,γ , and C

is in HODX [GX,zC ].

For the rest of this section we restrict to the case where X = {S}, for some set
S of ordinals, and z = ω, and consider the Vopěnka algebra in models of the form

L[S, x], where x ∈ ωω. Using the definability order in HOD
L[S,x]
{S} we can definably

copy VL[S,x]
{S},ω and T

L[S,x]
{S},ω to a partial order QSx on some ordinals and a corresponding

set KS
x ⊆ ω × Ord, both in HOD

L[S,x]
{S} . Thus for every c ∈ P(ω) ∩ L[S, x] there

exists a L[S,QSx ,K
S
x ]-generic filter G ⊆ QSx with c ∈ L[S,QSx ,K

S
x ][G].

It follows immediately from either definition that the collection of ∞-Borel sets
of ωω (which generalizes naturally to subsets of (ωω)n for any n ∈ ω) is closed
under complements. We will now outline a proof (assuming TD + DCR) that it is
also projectively closed. This amounts to showing that if A ⊆ (ωω)2 is an ∞-Borel
set, and B = {x ∈ ωω : ∃y (x, y) ∈ A}, then B is also ∞-Borel. We start with the
following lemma.

Lemma 8.2 (Woodin). Let S be a set of ordinals, and suppose that ℵ1 6≤ 2ℵ0 . Let
φ be a ternary formula. Then for all x ∈ ωω,

∃y ∈ ωω L[S, x, y] |= φ(S, x, y)

if and only if, for a µS-cone of z ∈ ωω, the model L[S,QSz ,K
S
z , x] satisfies the

statement that some partial order of cardinality at most 2|Q
S
z | forces the existence

of a y ∈ ωω such that L[S, x, y] |= φ(S, x, y).

Proof. The reverse direction follows from the fact that each partial order of cardi-

nality at most 2|Q
S
z | in L[S,QSz ,K

S
z , x] is countable in V , so L[S,QSz ,K

S
z , x]-generic

filters exist.
For the other direction, fix x ∈ B and y ∈ ωω such that L[S, x, y] |= ϕ(S, x, y).

Let z ∈ ωω be ≤S-above both x and y. There is an L[S,QSz ,K
S
z ]-generic filter

G ⊆ QSz such that z is in the model L[S,QSz ,K
S
z ][G]. Then L[S,QSz ,K

S
z ][G] is a

generic extension of L[S,QSz ,K
S
z , x] by a quotient of the regular open algebra of

QSz . �

The µS-ultrapower now gives an∞-Borel code for the projection of the set coded
by the pair (S, φ).

Theorem 8.3 (Woodin). Let S be a set of ordinals, and suppose that DCR holds
and µS is an ultrafilter. Let φ be a ternary formula and let

B = {x ∈ ωω : ∃y ∈ ωω L[S, x, y] |= φ(S, x, y)}.

Then there exist a binary formula ψ and a set T of ordinals such that T ∈ OD{S}
and

B = {x ∈ ωω : L[T, x] |= ψ(T, x)}.

Proof. Work in L(S,R), and let

S∞ =
∏

S/µS ,

Q∞S =
∏

QSz /µS
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and
K∞S =

∏
KS
z /µS .

For each x ∈ ωω, the constant function y 7→ x represents x in the ultrapower by
µS . By Lemma 8.2, then, we have that for every x ∈ ωω, x ∈ B if and only
if L[S∞, Q∞S ,K

∞
S , x] satisfies the statement that there exists a partial order of

cardinality at most 2|Q
∞
S | forcing the existence of a y ∈ ωω such that

L[S∞, x, y] |= φ(S∞, x, y).

�

Restating Theorem 8.3, we have the following.

Theorem 8.4. If TD + DCR holds, then the set of ∞-Borel subsets of (ωω)<ω is
projectively closed.

The proof of the reverse direction of the following theorem (which we do not
give) uses material from this section.

Theorem 8.5 (ZF+TD+DCR). Suppose that every subset of ωω is∞-Borel. Then
Uniformization is equivalent to the assertion that ≤D has no greatest element.

The forward direction of the theorem requires only that ℵ1 6≤ 2ℵ0 and every
subset of ωω is∞-Borel. Let S be a set of ordinals, and let f : ωω → ωω uniformize
the set {(x, y) ∈ (ωω)2 : y 6∈ L[S, x]}. Let (T, φ) be an ∞-Borel code for {(x, i, j) :
(i, j) ∈ f(x)}. Then for all (x, i, j), (i, j) ∈ f(x) if and only if L[T, x] |= φ(T, x, i, j),
which shows that f(x) ∈ L[T, x] \ L[S, x] for all x.

9. Strong generic codes

In this section we show how to combine ∞-Borel codes, the Vopenka algebra
and <Θ-Determinacy to produce Suslin representations. Theorem 9.5 is the key
technical result. A summary of results so far accumulated is given in Theorem 9.7.
Again, we begin with some technical preliminaries.

Given a P-name τ for an element of ωω, we let, for each n ∈ ω, Dτ,n be the set

{p ∈ P : ∃m ∈ ω p  (n,m) ∈ τ}.
For any set B, we say that a filter G contained in a partial order P is B-generic if it
intersects every dense open subset of P in B. When {Dτ,n : n ∈ ω} ⊆ B, we write
AP,B,τ for the set of values τg, where g ranges over the set of all B-generic filters
contained in P.

When P is a partial order, we write dom(P) for the underlying set. Similarly, if
B is a sequence, we write dom(B) for the corresponding index set, and range(B)
for the set indexed by B. A nice P-name for a subset of ω2 is a set of pairs of the
form (p, (ň, m̌)), where p ∈ P and n,m ∈ ω.

Definition 9.1. Given A ⊆ ωω, an ordinal α, a partial order P, a sequence B of
dense open subsets of P and a nice P-name τ for an element of ωω, we say that
(P, B, τ) is a generic code for A if {Dτ,n : n ∈ ω} ⊆ range(B) and

AP,range(B),τ = A.

If we say that C is a generic code, then we mean that C is a triple of the form
(PC , BC , τC), and write AC for APC ,range(BC),τC . If in addition α is an ordinal
containing dom(P)∪ dom(B), then we say that (P, B, τ) is a generic α-code for A.
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We say that (P, B, τ) is a generic ∞-code if it is a generic α-code for some ordinal
α.

Theorem 8.1 (with C as ω and X as {S}) shows that if (S, ψ) is an∞-Borel code
for a set A ⊆ ωω, then (V{S},ω2�p,B, τ�p) is a generic code for A, where, letting τ
be the V{S},ω2-name for the associated generic real,

• p is the V{S},ω-condition corresponding to the set

{x ∈ ωω : L[S, x] |= ψ(S, x)},

• V{S},ω2�p and τ�p are the corresponding restrictions of V{S},ω2 and τ below
p and
• B lists the set of dense open subsets of V{S},ω2�p in HOD{S}.

Using the definability order on HOD{S}, one can convert this generic code to a
generic ∞-code. The proof of Theorem 9.5 below uses the fact that, by Theorem

7.7, for a Turing cone of x ∈ ωω there exists in L[S, x] a generic ω
L[S,x]
2 -code for

A ∩ L[S, x].
Definition 9.3 below defines a game, relative to a generic code C for a set A, in

which player I attempts to build a countable subcode for a subset of A. Theorem 9.4
shows that a winning strategy for player I in this game gives a Suslin representation
for A. The following definition gives the relevant notion of subcode.

Definition 9.2. Suppose that (P, B, τ) is a generic ∞-code. For any set X of
ordinals, we let PX be P�dom(P) ∩ X, BX be 〈B(β) ∩ X : β ∈ X ∩ dom(B)〉 and
τX be ((dom(P) ∩X)× ω2) ∩ τ . If C = (P, B, τ), we write CX for (PX , BX , τX).

Definition 9.3. Suppose that C = (P, B, τ) is a generic α-code for a set A, for
some ordinal α. We associate to (P, B, τ) a game on dom(P) ∪ dom(B), called
GP,B,τ or GC , where I and II collaborate to build a countable subset σ ⊆ α, and I
wins if Cσ = (Pσ, Bσ, τσ) is a generic code for a subset of A. We say that (P, B, τ)
is a strong generic code (or strong α-generic code) for Aφ if II does not have a
winning strategy in GP,B,τ .

For any infinite cardinal κ and κ-generic code (P, B, τ), κ-Determinacy implies
the determinacy of the game GP,B,τ , since a run of the game continuously builds a
subset of ω coding a generic ω-code. Unlike ∞-Borel codes, strong generic codes
witness Suslinity, in the context of <Θ-Determinacy.

Theorem 9.4. Let κ be an infinite cardinal and let C be a generic κ-code for a
set A ⊆ ωω. If player I has a winning strategy in the game GC , then A is κ-Suslin.
Moreover, if Σ is a winning strategy for player I in GC , then A = p[T ], for some
tree T ⊆ (ω × κ× 2)<ω which is definable from C and Σ.

Proof. (Sketch) Let C be (P, B, τ), and fix a winning strategy Σ for player I in
GC . Then for all x ∈ ωω, x ∈ A if and only if there exist a countable σ ⊆
dom(P) ∪ dom(B) produced by a run of GC where I plays according to Σ and a
Bσ-generic filter g ⊆ Pσ such that x = τσ,g.

The set of (x, y, z) such that

• x ∈ ωω,
• y ∈ κω is a run of GC where I plays according to Σ,
• z ∈ 2ω and
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• y[z−1[{1}]] is a filter on y[ω] ∩ P for which the realization of

τy[ω],y[z−1[{1}]]

is x

is the set of paths through a tree on ω × κ× 2 whose projection is A. �

Theorem 9.5 converts ∞-Borel codes into strong generic codes. The terms µS
and DS were defined in Section 7.1, for S a set of ordinals. Recall (from Section

7.4) that δ∞S denotes
∏
ω
L[S,x]
2 /µS .

Theorem 9.5 (ℵ1 6≤ 2ℵ0). Let S be a set of ordinals. Suppose that the following
hold.

• µS is an ultrafilter on DS.
• The ultrapower OrdDS/µS is wellfounded, and δ∞S < Θ.

Then if S is an∞-Borel code for a set A ⊆ ωω, then A has a strong generic δ∞S -code
which is definable from S.

Theorems 7.10, 7.13, 9.4 and 9.5 now combine to give the following.

Theorem 9.6 (ZF + DCR + <Θ-Determinacy). Every subset of ωω which has an
∞-Borel code which is not ≤D-maximal is Suslin.

Proof. Suppose that A ⊆ ωω has an ∞-Borel code which is not ≤D-maximal. A
reflection argument shows that there exist bounded subsets S and T of Θ such that
S <D T and S is an ∞-Borel code for A. Fix B ⊆ ωω such that A, S and T are all
in L(B,R). The hypotheses of Theorem 9.5 (with respect to S) are then satisfied in
L(B,R), and <Θ-Determinacy also holds in L(B,R). Work in L(B,R). By Theorem
7.13, and part (2b) of Theorem 7.10, δ∞S < Θ. Letting C be a strong generic δ∞S -
code for A as given by Theorem 9.5, δ∞S -Determinacy gives a winning strategy for
player I in the game GC . It follows from Theorem 9.4 that A is Suslin. �

In addition, one gets the following equivalences under AD+.

Theorem 9.7 (ZF + AD+). The following are equivalent.

(1) There is no ≤D-maximal set of ordinals.
(2) Every subset of ωω is Suslin.
(3) Uniformization

Proof. By Theorem 9.6, (1) implies (2). The implication from (2) to (3) was dis-
cussed in Section 3.1. The equivalence of (3) and (1) follows from Theorem 8.5. �

There is a natural join operation on wellordered sequences of generic ∞-codes
such that the join is a generic∞-code for the union of the sets coded by the members
of the sequence. We briefly sketch the construction and omit the routine details.

Suppose that ζ is an ordinal and 〈Cα : α < ζ〉 is a sequence of generic ∞-codes.
Let Cα be (Pα, Bα, τα), for each α < ζ. The join of the sequence is a generic∞-code
(P, B, τ) such that P is the disjoint union of the Pα’s, converted to a partial order
on an ordinal via a paring function. The P-name τ is formed from the union of the
copies of the τα’s in the respective Pα-parts of P. Finally each member of each Bα
is copied over to the Pα-part of P, and then extended trivially the other parts of P
to make a dense open set. Then B is the collection of all of these dense open sets.
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Theorem 9.8 shows that the join operation preserves strong generic codes, under
the appropriate form of ordinal determinacy. The proof is a standard strategy-
blending argument. The theorem is used in the proof of Theorem 10.2, which
shows that under AD+ the set of Suslin cardinals is closed below Θ.

Theorem 9.8 (ZF + DCR). Let κ be an infinite cardinal below Θ such that κ-
Determinacy holds, and let C̄ = 〈Cα : α < κ〉 be a sequence of strong κ-codes. Then
the join of C̄ is a strong generic κ-code for

⋃
α<κACα .

In the remaining two sections we will briefly sketch some structural consequences
of AD, AD+ and ADR.

10. Suslin Cardinals

A Suslin cardinal is an ordinal γ for which there exists an A ⊆ ωω which is
γ-Suslin but not η-Suslin for any η < γ. Any such γ must be a cardinal.

A reflection argument shows that if A ⊆ ωω is Suslin, then A is γ-Suslin for
some γ < Θ. It follows that all Suslin cardinals are below Θ. The Moschovakis
Coding Lemma implies that, for each γ < Θ, there is a surjection from ωω onto the
set of γ-Suslin sets. It follows that if every subset of ωω is Suslin, then the Suslin
cardinals are cofinal in Θ. The converse is also true, although its proof is more
involved.

Theorem 10.1. Assuming AD, every subset of ωω is Suslin if and only if the Suslin
cardinals are cofinal in Θ.

A join argument shows that the supremum of a countable sequence of Suslin
cardinals is Suslin. A theorem of Steel and Woodin shows that if AD holds then
the set of Suslin cardinals is closed below its supremum, which by Theorem 10.1 is
below Θ if and only if some subset of ωω is not Suslin. The following theorem of
Woodin shows that under AD+ the supremum of the Suslin cardinals is also Suslin
if it is less than Θ.

Theorem 10.2 (Woodin). Assuming AD+, the set of Suslin cardinals is closed
below Θ.

Woodin has shown the converse as well. The proof is well beyond the scope of
these notes.

Theorem 10.3 (Woodin). If AD + DCR holds, then AD+ holds if and only if the
supremum of the Suslin cardinals is either Θ or a Suslin cardinal.

We will sketch the proof of Theorem 10.2, using Theorems 10.4 and 10.5 below.
The proof of Theorem 10.4, which we will not give, uses a classical pointclass
analysis for the first conclusion, and an analysis of ultrapowers by cone measures
(using Theorem 7.13 and the first conclusion) for the second. We say that a subset
of ωω is <κ-Borel if it is γ-Borel for some γ < κ, and <κ-Suslin if it is γ-Suslin for
some γ < κ.

Theorem 10.4. If AD+ holds and κ is a limit of Suslin cardinals and the cofinality
of κ is uncountable, then every <κ-Borel set is <κ-Suslin, and for all bounded
S ⊆ κ, δ∞S < κ.

The following (ZF) theorem of Kunen and Martin generalizes Σ1
1-boundedness,

and follows from applying Σ1
1-boundedness in a forcing extension by Col(ω, γ).
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Theorem 10.5 (Kunen-Martin). For any cardinal γ, every γ-Suslin prewellorder-
ing of ωω has length less than γ+.

Proof of Theorem 10.2. It suffices to show that if κ < Θ is a limit of Suslin cardinals
of uncountable cofinality, then κ is a Suslin cardinal. Fixing such a κ, there is by
the Moschovakis Coding Lemma a set A ⊆ ωω which is not κ-Borel. Since A is
∞-Borel, the ∗-operation from Section 6.2 applied to an ∞-Borel code (in L∞,0)
for A gives a κ-sequence of <κ-Borel codes for disjoint nonempty subsets of ωω.
The proof of the second half of Theorem 6.4 then produces a κ-sequence of Lκ,0-
sentences such that the union of the sets they define is a prewellordering of length
κ. Theorem 9.5 applied to the members of this sequence (along with Theorem 10.4)
gives a strong κ-generic code for each of these sets. Theorem 9.8 shows that the
join operation on strong generic codes gives a strong κ-generic code for the union of
these sets. Theorem 9.4 then implies that this prewellordering is κ-Suslin. Theorem
10.5 implies that the prewellordering cannot be γ-Suslin for any γ < κ. �

11. The Solovay Sequence

The Solovay sequence [19] is the unique continuous sequence 〈θα : α ≤ β〉 such
that

• θ0 is the least ordinal which is not the surjective image of ωω under an OD
function;
• for every ordinal α such that α + 1 ≤ β, θα+1 is the least ordinal which is

not the surjective image of ωω under an OD{A} function for any A ⊆ ωω of
Wadge rank θα;
• θβ = Θ.

We call β the length of the Solovay sequence. In L(R), θ0 = Θ, so β = 0. For
each α ≤ β, if we let Γα be the set of subsets of ωω of Wadge rank less than θα,
then HODΓα is a model of ZF containing ωω whose subsets of ωω are exactly the
members of Γα. Every successor member of the Solovay sequence below Θ has
cofinality ω ([13] contains a proof).

The proof of Theorem 1.3 shows that if AD+Uniformization holds then β is a limit
ordinal. On the other hand, Theorems 7.14 and 9.6 (noting that every bounded
subset of Θ is in L(A,R) for some A ⊆ ωω, and that the µS ultrapower of a set
S of ordinals ordinal definable from S) give the forward direction of the following
theorem. Recall from Theorem 3.3 that if AD holds and every subset of ωω is Suslin
then ADR holds.

Theorem 11.1 (Woodin). If AD+ holds then the Solovay sequence has limit length
if and only if every subset of ωω is Suslin.

If the length of the Solovay sequence is at least α + 1, then there is a largest
Suslin cardinal below θα+1. The largest Suslin cardinal below θα+1 is either θα or
δ∼

2
1(A) for any A ⊆ ωω of Wadge rank θα.

As a final note, we observe that the length of the Solovay sequence in a model
of AD + DCR + V = L(P(R)) determines whether or not DC holds in the model. If
Θ has countable cofinality, then DC fails. If the Solovay sequence has length 0, or
successor length, then DC holds in L(P(R)) if DCR does. Solovay [19] showed that,
assuming ADR, DC holds in L(P(R)) if and only the cofinality of Θ is uncountable.
In conjunction with Theorem 11.1 we get that under AD+, DC fails in L(P(R)) if
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and only if, in L(P(R)), the length of the Solovay sequence is a limit ordinal of
countable cofinality.
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