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Abstract

We show that the statements �(ω3) and �(ω4) both fail in the Pmax

extension of a variation of the Chang model introduced by Sargsyan.

1 Introduction

The Chang model [2] is the smallest inner model of Zermelo-Fraenkel set
theory (ZF) containing every countable sequence of ordinals. Variations of
the Chang model can be produced by adding parameters, restricting to the
countable sequences from some fixed ordinal or by closing under ordinal de-
finability. In this paper we show that (consistently, assuming the consistency
of certain large cardinals) Jensen’s square principles �(ω3) and �(ω4) fail in
extensions of certain Chang models by Woodin’s Pmax forcing. The existence
of Chang models with the required properties is proved in [9] by the second
author, from the existence of a Woodin cardinal which is a limit of Woodin
cardinals.

In combination with the results of [9], the results in this paper have
consequences for the inner model theory program. In particular, we produce
forcing extensions of Chang models satisfying the assumptions of the first
sentence of the following theorem (see Theorems 1.6 and 1.10).

∗2000 Mathematics Subject Classifications: 03E15, 03E45, 03E60.
†Keywords: Square, Pmax, Chang models.
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Theorem 1.1 (Jensen-Schimmerling-Schindler-Steel [5]). Assume that ℵω2 =
ℵ2 and that the principles �(ω3) and �ω3 both fail to hold. Let g ⊆ Col(ω3, ω3)
be a V -generic filter. If V [g] � “Kc

jsss converges” then (Kc
jsss)

V[g] � “there is a
subcompact cardinal”.

Since subcompact cardinals have greater consistency strength than Woodin
limits of Woodin cardinals, this gives the following theorem, where the tran-
sitive model is the model V [g] from Theorem 1.1.

Theorem 1.2. It is consistent relative to the existence of a Woodin cardinal
that is a limit of Woodin cardinals that there is a transitive model of ZFC in
which the Kc

jsss construction does not converge.

This paper does not involve any inner model theory. We refer the reader
to [9] for a discussion of Kc

jsss and Theorem 1.2.

1.1 Square principles

The square principles we consider in this paper were introduced by Ronald
Jensen [4]. We briefly review their definitions.

Definition 1.3. Given a cardinal κ, the principle �κ says that there exists
a sequence 〈Cα : α < κ+〉 such that for each α < κ+,

• each Cα is a closed cofinal subset of α;

• for each limit point β of Cα, Cβ = Cα ∩ β;

• the ordertype of each Cα is at most κ.

For any cardinal κ, �κ implies the statement �(κ+) as defined below.

Definition 1.4. Given an ordinal γ, the principle �(γ) says that there exists
a sequence 〈Cα : α < γ〉 such that

• for each α < γ,

– each Cα is a closed cofinal subset of α;

– for each limit point β of Cα, Cβ = Cα ∩ β;

• there is no thread through the sequence, i.e., there is no closed un-
bounded E ⊆ γ such that Cα = E ∩ α for every limit point α of E.
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A �(γ)-sequence is a sequence 〈Cα : α < γ〉 as in the definition of �(γ).
A potential �(γ)-sequence is a sequence 〈Cα : α < γ〉 satisfying all but the
last condition in the definition. An elementary argument gives the important
fact that if γ has uncountable cofinality, then each potential �(γ)-sequence
has at most one thread.

We will in fact obtain the negation of a weaker version of square, also due
to Jensen.

Definition 1.5. Given an ordinal γ and a cardinal δ, the principle �(γ, δ)
asserts the existence of a sequence

〈Cα | α < γ〉

satisfying the following conditions.

• For each α < γ,

– 0 < |Cα| ≤ δ;

– each element of Cα is club in α;

– for each member C of Cα, and each limit point β of C,

C ∩ β ∈ Cβ.

• There is no thread through the sequence, that is, there is no club E ⊆ γ
such that E ∩ α ∈ Cα for every limit point α of E.

As above, a �(γ, δ)-sequence is a sequence 〈Cα : α < γ〉 as in the defi-
nition of �(γ, δ). A potential �(γ, δ)-sequence is a sequence 〈Cα : α < γ〉
satisfying all but the last condition in the definition. Again, an elementary
argument shows that if the cofinality of γ is greater than |δ|+, then each
potential �(γ, δ)-sequence has at most |δ| many threads. Note that �(γ) is
�(γ, 1) and if δ < η then �(κ, δ) implies �(κ, η).

We use Todorcevic’s theorem [11] that if γ has cofinality at least ω2 then
the restriction of the Proper Forcing Axiom (PFA) to partial orders of car-
dinality γω implies the failure of �(γ, ω1). For γ < ω3 this fragment of PFA
follows from MM++(c) (a technical strengthening of the restriction of Mar-
tin’s Maximum to partial orders of cardinality at most the continuum), since
MM++(c) implies that c = ℵ2 by the results of [3]. We will not need the
definition of MM++(c) in this paper, as our only use of it will be to apply
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Todocevic’s theorem, and Woodin’s theorems on obtaining MM++(c) in Pmax

extensions (see Subsection 1.4).
Theorem 1.6 is one version of the main theorem of this paper. A more

explicit version is given in Theorem 1.10 below. In light of Todorcevic’s
theorem it should be possible to replace ¬�(ω3, ω) and ¬�(ω4, ω) below
with ¬�(ω3, ω1) and ¬�(ω4, ω1), but this remains open.

Theorem 1.6. The consistency of ZFC plus the existence of a Woodin limit
of Woodin cardinals implies the consistency of

ZFC + ℵω2 = ℵ2 + ¬�(ω3, ω) + ¬�(ω4, ω).

1.2 Chang models and 1λ

We let H represent the class of pairs of ordinals (α, β) such that the αth
element of the standard definability order of HOD is an element of the βth.
This is just a technical convenience that allows us to give a concise statement
of results from [9]; the only property of H we use in this paper is that it is
a definable class of pairs of ordinals. Given an ordinal γ, we write H�γ for
H ∩ (γ × γ). Given an ordinal γ, we write C−γ for the structure Lγ(H, γω),
which is constructed relative to the predicate H, adding (for each ordinal
α < γ) all ω-sequences from α at stage α + 1. Note that γ is the ordinal
height of this structure. We also write Cγ for L(H�γ, γω) and C+

γ for HODγω .
We let w(A) denote the Wadge rank of a set A ⊆ ωω, and for any ordinal

α let ∆α denote the set of subsets of ωω of Wadge rank less than α. We
will work with models of AD+ (an extension of the Axiom of Determinacy
due to Hugh Woodin; see for instance [6]) in which some ordinal satisfies the
following statement (we refer the reader to [10, 12, 6] for the definition of the
Solovay sequence).

Definition 1.7. For an ordinal λ, 1λ is the statement that, letting κ be ΘCλ,

• κ is a regular member of the Solovay sequence below Θ,

• C+
λ � λ = κ+ + cf(λ) = λ,

• C−λ ∩ P(R) = C+
λ ∩ P(R) = ∆κ,

• P(κω) ∩Cλ = P(κω) ∩C+
λ ,

• κ ≤ cf(λ).
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Since AD+ implies that successor members of the Solovay sequence below
Θ have cofinality ω (see [6]), AD+ + 1λ implies that κ = ΘCλ is a limit
member of the Solovay sequence. Woodin has shown that AD+ implies each
of the following (see [6]):

• AD+ holds in every inner model of ZF containing R;

• ADR holds if and only if the Solovay sequence has limit length.

It follows that, assuming 1κ+ , L(∆κ) � ADR.
We let ‡ stand for the theory ZF + V = L(P(R)) + ADR + “Θ is regular”.

Results of Solovay from [10] say that ‡ implies DC (the statement that every
tree of height ω without terminal nodes has a cofinal branch) and also the
statement that the sharp of each set of reals exists. By results of Becker and
Woodin (see [6]), ADR + DC implies that all subsets of ωω are Suslin, and
thus that AD+ holds.

Models of ∃λ 1λ are given by the following theorem from [9].

Theorem 1.8. Suppose that there exists a Woodin cardial which is a limit
of Woodin cardinals. Then in a forcing extension there is an inner model
satisfying ‡ + ∃λ 1λ.

1.3 Variants of DC

The principle of Dependent Choice (DC) can be varied by restricting the
nodes of the tree to some set, or by considering trees of uncountable height.

Given a binary relation R on a set X and an ordinal δ we say that
f : δ → X is an R-chain if f(α)Rf(β) holds for all ordinals α < β below δ.
Given an ordinal η we say that R is η-closed if for every δ < η and for every
R-chain f : δ → X there is an r ∈ X such that for every α < δ, f(α)Rr. We
then say that DCγ holds for a cardinal γ if for every cardinal η ≤ γ and every
η-closed binary relation R there is an R-chain f : γ → X. We write DC for
DCω.

Given a set X and a cardinal γ, we write DCγ�X for the restriction of
DCγ to binary relations on X, which we also call DCγ for relations on X.

1.4 Pmax

The partial order Pmax was introduced by Woodin in [12]. We list here the
facts about Pmax (all from [12]) that we will need.
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• Pmax conditions are elements of H(ℵ1) and the corresponding order is
definable in H(ℵ1).

• Pmax is σ-closed.

• Forcing with Pmax over a model of AD+ + DC preserves the property
of having cofinality at least ω2 (this follows from a combination of
Theorems 3.45 and 9.32 of [12], as outlined in Section 2 below).

• If M is a model of ZF+AD+ and G ⊆ PMmax is an M -generic filter, then
the following hold in M [G]:

– 2ℵ0 = ℵ2;

– ΘM = ω3;

– P(ω1) ⊆ L(R)[G].

• Forcing with Pmax over a model of ADR + V = L(P(R)) + “Θ is
regular” produces a model of ZF + DCℵ2 + MM++(c).

Forcing with Pmax over a model of ADR cannot wellorder P(R) (since a
name for such a wellorder would induce a failure of Uniformization), but
DCℵ2 + 2ℵ0 = ℵ2 implies that P(R) may be wellordered by forcing with
Add(ω3, 1) (where, for any ordinal γ, Add(γ, 1) is the partial order adding a
generic subset of γ by initial segments). Since (by DCℵ2) Add(ω3, 1) does not
add subsets of ω2, MM++(c) is preserved. This gives the following theorem,
which is essentially Theorem 9.39 of [12].

Theorem 1.9 (Woodin). Forcing with Pmax∗Add(ω3, 1) over a model of ADR
+ V = L(P(R)) + “Θ is regular” produces a model of ZFC + MM++(c).

Again, it follows from Todorcevic’s theorem that �(ω2, ω1) fails in such
an extension.

By the results mentioned at the end of Section 1.2, the following hold in
the context of ‡ + 1λ:

• ADR + V = L(P(R)) + “Θ is regular”;

• the sharp of each subset of R exists;

• C+
λ � ADR + “Θ is regular”.
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However, C+
λ is not a model of “V = L(P(R))”, since, being closed under

ordinal definability, it contains the sharp of its version of P(R) (i.e., ∆κ).
So we cannot just cite Theorem 1.9 for our main result. As we shall see,
it suffices, however, to wellorder λω, which can be done by forcing with
Add(ω4, 1).

The following then is our main theorem. The theorem builds upon [1]
and, of course, [12]. As we shall see in Section 2, the proof uses an argument
from the proof of [1, Theorem 7.3].

Theorem 1.10. Suppose V � ‡ and that λ is an ordinal for which 1λ holds.
Let κ = ΘCλ. Let (G,H,K) be a V -generic filter for the forcing iteration

(Pmax ∗ Add(κ, 1) ∗ Add(λ, 1))C
+
λ .

Then

C+
λ [G,H,K] � ZFC + MM++(c) + ¬�(ω3, ω) + ¬�(ω4, ω).

For the rest of the paper we fix κ, λ, G, H and K as in the statement of
Theorem 1.10. Since Pmax ⊆ H(ℵ1), and κ is both regular and equal to ΘC+

λ ,

(Pmax ∗ Add(κ, 1))L(∆κ)

is the same as (Pmax ∗ Add(κ, 1))C
+
λ . In addition the partial orders

(Pmax ∗ Add(κ, 1) ∗ Add(λ, 1))Cλ

and (Pmax ∗Add(κ, 1)∗Add(λ, 1))C
+
λ are the same, from which it follows that

the theorem implies the corresponding version with Cλ in place of C+
λ .

2 Threading coherent sequences

The material in this section is adapted from [1], and reduces (via Theorem
2.3) the proof of Theorem 1.10 to showing the following:

• Add(κ, 1) ∗ Add(λ, 1) is ω2-closed in C+
λ [G];

• V [G] � ((Add(κ, 1) ∗ Add(λ, 1))C
+
λ [G])ω1 ⊆ C+

λ [G];

• C+
λ [G,H] � DCℵ3 .
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The first of these follows from the fact that C+
λ [G] � DCℵ2 , which is shown

in Lemma 4.5. The second is Lemma 5.2. The third is Lemma 6.2. The first
two facts show that the partial order (Add(κ, 1)∗Add(λ, 1))C

+
λ [G] satisfies, in

V [G], the conditions on the partial order Q from the statement of Theorem
2.3. This gives the failures of �(ω3, ω) and �(ω4, ω) in C+

λ [G,H,K]. The
third is used only to show that C+

λ [G,H,K] is a model of ZFC.
In order to apply Todorcevic’s theorem to show that �(ω3, ω) and �(ω4, ω)

fail, we need to show that κ and λ (from Theorem 1.10) have cofinality ω2

in V [G] (recall that they are less than ΘV , which is ω
V [G]
3 ). To do this, we

use the following covering theorem of Woodin from Section 3.1 of [12]. The
notion of A-iterability in the following theorem is introduced in Woodin [12,
Definition 3.30]. Given X ≺ H(ω2), MX denotes its transitive collapse.

Theorem 2.1 (Woodin [12, Theorem 3.45]). Suppose that M is a proper
class inner model that contains all the reals and satisfies AD + DC. Suppose
that for any A ∈ P(R) ∩M , the set

{X ≺ H(ω2) | X is countable, and MX is A-iterable}

is stationary. Let X in V be a bounded subset of ΘM of size ω1. Then there
is a set Y ∈M , of size ℵ1 in M , such that X ⊆ Y .

We apply Theorem 2.1 in the proof of Lemma 2.2 with M as a model
of the form L(A,R) for some A ⊆ ωω, and the V of Theorem 2.1 as a Pmax

extension of M .

Lemma 2.2. Suppose that M is a model of ZF + AD+ and γ is an ordinal
of cofinality at least ω2 in M . Let G0 ⊂ Pmax be an M-generic filter. Then
γ has cofinality at least ω2 in M [G0].

Proof. Suppose first that γ < ΘM . Let X be a subset of γ of cardinality ℵ1 in
M [G0], and let A ∈ P(ωω) ∩M have Wadge rank at least γ. Since |γ| ≤ 2ℵ0

in M [G0] and P(ω1)M [G0] is contained in L(A,R)[G] by Theorem 9.23 of [12],
X is in L(A,R)[G]. By Theorem 9.32 of Woodin, the hypotheses of Theorem
2.1 are satisfied with L(A,R) as M and L(A,R)[G] as V . Applying Theorem
2.1 we have that X is a subset of an element of L(A,R) of cardinality ℵ1 in
L(A,R).

The lemma follows immediately from the previous paragraph for γ of
cofinality less than ΘM in M . If γ ≥ Θ is regular in M there is no cofinal
function from ωω to γ in M , so there is no such function in M [G0], either.
The theorem then follows for arbitrary γ.
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In conjunction with the facts mentioned at the beginning of this section,
the following theorem (with M1 as V , M0 as C+

λ , γ as either κ or λ and Q
as (Add(κ, 1) ∗ Add(λ, 1))C

+
λ [G]) completes the proof of Theorem 1.10. The

theorem and its proof are taken from [1], except that the specific partial order
used in [1] has been replaced with a more general class of partial orders.

Theorem 2.3. Suppose that M1 is a model of ‡, and that for some set
X ∈ M1 containing ωω ∩M1, M0 = HODM1

X . Suppose also that ΘM0 < ΘM1

and that γ ∈ [ΘM0 ,ΘM1) has cofinality at least ω2 in M1. Let G0 ⊂ Pmax

be M1-generic, and let I ⊂ Q be M1[G0]-generic, for some partial order
Q ∈ M0[G0] which, in M1[G0], is <ω2-directed closed and of cardinality at
most c. Then �(γ, ω) fails in M0[G0][I].

Proof. Suppose that τ is a Pmax ∗ Q̇-name in M0 for a �(γ, ω)-sequence. We
may assume that the realization of τ comes with an indexing of each member
of the sequence in order type at most ω. In M0, τ is ordinal definable from
some S ∈ X.

By Theorems 9.35 and 9.39 of [12], DCℵ2 and MM++(c) hold in M1[G0].
By Lemma 2.2, γ has cofinality ω2 in M1[G0]. Forcing with <ω2-directed
closed partial orders of size at most c preserves MM++(c) (see[7]). It follows
then that DCℵ1 and MM++(c) hold in the Q̇G0-extension of M1[G0], and thus
that in this extension every potential �(γ, ω)-sequence is threaded.

Let C = 〈Cα : α < γ〉 be the realization of τ in the Q̇G-extension of
M1[G0]. Since γ has cofinality at least ω2 in this extension, which satisfies
DCℵ1 , C has at most ω many threads, since otherwise one could find a Cα in
the sequence with uncountably many members. Therefore, some member of
some Cα in the realization of τ will be extended by a unique thread through
the sequence, and since the realization of τ indexes each Cα in order type at
most ω, there is in M1 a name, ordinal definable from S, for a thread through
the realization of τ . This name is then a member of M0 = HODM1

X .

3 Proving DCℵm

As stated at the beginning of Section 2, two of our three remaining tasks
are showing that C+

λ [G] � DCℵ2 and C+
λ [G,H] � DCℵ3 . Section 3.1 reduces

each of these to the case of relations on λω. In Section 3.2 we outline our
strategy for proving that DCℵ2 holds in C+

λ [G] for relations on λω. A proof
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of C+
λ [G,H] � DCℵ3 (using essentially the same strategy) is given in Section

6.

3.1 Reducing to DCℵm�λ
ω

Lemma 3.1 is applied in this paper in the cases m = 2 and m = 3 (recall
that, as we have defined it, DCℵm implies DCℵk for all k ≤ m). Since (by the
theorem of Solovay cited in Subsection 1.2), ‡ implies DC, the lemma also
shows (in the case m = 0) that DC holds in C+

λ .

Lemma 3.1. Let P be a partial order in C+
λ , and let I ⊆ P be a C+

λ -generic
filter. Let m be an element of ω such that DCℵk holds in C+

λ [I] for all k < m.
Suppose also that, in C+

λ [I], every <ωm-closed tree on λω of height ωm has a
cofinal branch. Then DCℵm holds in C+

λ [I].

Proof. Fix a <ωm-closed tree T in C+
λ [I]. Fix an ordinal γ such that every

node of T is the realization of a P-name which is ordinal definable in Vγ from
some element of λω. Given (n, δ, x) ∈ ω × γ × λω, let

tn,δ,x

be the set defined in Vγ from δ and x by the formula with Gödel number n.
Let T ′ be the tree of sequences 〈xα : α < β〉 (for some β < ωm) for which

there exists a sequence
〈yα : α < β〉

such that, for each η < β,
yη = tn,δ,xη ,I ,

where (n, δ) ∈ (ω, γ) is minimal such that tn,δ,xη is a P-name and

〈yα : α < η〉_〈tn,δ,xη ,I〉 ∈ T.

Then T ′ is also <ωm-closed, and an ωm-chain through T ′ induces one
through T .

3.2 Proving DCℵ2|λω

To show that DCℵ2�λ
ω holds in C+

λ [G], we show that the following statements
hold in C+

λ [G]:
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• there is no cofinal map from ω2 to λ;

• there is no cofinal map from (γω)β to λ, for any γ < λ and β < ω2 (it
suffices to show this for γ = κ and β = ω1).

The first of these follows from Lemma 4.1 with b as ω2 × Pmax. The
second is shown in the proof of Lemma 4.5, whose statement is just the
desired statement that C+

λ [G] � DCℵ2 . These two facts imply that every
cardinal δ ≤ ℵ2 and each δ-closed relation R on λω in C+

λ [G], there exists
a γ < λ such that R ∩ γω is also δ-closed. Since λ = κ+, it suffices then
(once we have established the two facts above) to consider trees on κω. To
show that, in C+

λ [G], every ω2-closed tree on κω has a cofinal branch, we use
the fact (which follows from standard Pmax arguments) that the following
statements hold in C+

λ [G]:

• there is no cofinal map from ω2 to κ (because κ = ΘC+
λ is regular in

C+
λ and Pmax ⊆ H(ℵ1));

• there is no cofinal map from (γω)β to κ, for any γ < κ and β < ω2

(because κ = ω
C+
λ [G]

3 and ℵℵ12 = ℵ2).

These facts imply that it suffices to consider ω2-closed trees on γω for any
γ < κ. Since each such γω is a surjective image of the wellordered set ωω

in C+
λ [G], C+

λ [G] satisfies the statement that each such tree has a cofinal
branch.

4 Strong regularity of λ

In this section we prove a regularity property of λ in C+
λ and derive several

consequences, including the fact that DCℵ2 holds in C+
λ [G]. We will refer to

the property of λ established in Lemma 4.1 as strong regularity.

Lemma 4.1. Whenever b ∈ C−λ and f : b→ λ is in C+
λ , there exists a γ < λ

such that f [b] ⊆ γ.

Proof. Let β < λ be such that b ∈ C−β . Since λ = κ+ in Cλ there exists a

surjection h : κ→ β in Cλ (recall that C+
λ and Cλ have the same subsets of

κ). Let B be the set of y ∈ κω such that b has a member definable in C−β
from h ◦ y and H�β. Then B induces a surjection g : κω → b in Cλ.
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Since κ = ΘC+
λ is regular, the ordertype of f [g[αω]] less than κ for each

α < κ. Since λ is regular in C+
λ , f [g[αω]] is a bounded subset of λ, for each

α < κ. Again applying the regularity of λ in C+
λ , f [b] is bounded in λ.

It follows immediately from Lemma 4.1 that there is no cofinal map from
ω2 to λ in C+

λ [G]. As noted in Section 3.2, this reduces our proof that
C+
λ [G] � DCℵ2 to showing that there is no cofinal map from κω1 to λ in

C+
λ [G]. We will in fact show that κω1 ∩ C+

λ [G] ∈ C−λ [G], which will suffice,
by Lemma 4.4 below, which shows that the strong regularity of λ persists
to C+

λ [G,H]. Lemmas 4.2 and 4.3 use the strong regularity of λ to prove
closure properties of C−λ . The proof of Lemma 4.2 is similar to the proof of
Lemma 4.1.

Lemma 4.2. For all b ∈ C−λ , P(b) ∩C+
λ ⊆ C−λ .

Proof. Fix b ∈ C−λ and a β < λ such that b ∈ C−β . Let h : κ → β be a

surjection in Cλ. Fix a ∈ P(b)∩C+
λ and let Ba be the set of (x, n) ∈ κω × ω

such that some member of a is definable over C−β from h ◦ x and H�β via

the formula with Gödel number n. Then Ba ∈ C+
λ . Since P(κω)∩C+

λ ⊆ Cλ,
Ba ∈ Cλ, so a ∈ Cλ. A reflection argument using the strong regularity of λ
shows that a ∈ C−λ .

The following lemma implies that (Pmax ∗Add(κ, 1))C
+
λ ∈ C−λ and (Pmax ∗

Add(κ, 1) ∗ Add(λ, 1))C
+
λ ⊆ C−λ .

Lemma 4.3. ∆κ ∈ C−λ

Proof. For each α < κ let f(α) be the least β < λ such that there is a set
of reals of Wadge rank α in C−β . By Lemma 4.2, f is well-defined. By the

strong regularity of λ in C+
λ , the range of f is bounded below λ. It follows

then that ∆κ ∈ C−η for any η < λ containing the range of f .

Since (Pmax ∗ Add(κ, 1))C
+
λ ∈ C−λ , we get the following lemma, which

implies that λ is regular in C+
λ [G,H].

Lemma 4.4. Whenever b ∈ C−λ [G,H] and

f : b→ λ

is in C+
λ [G,H], there exists a γ < λ such that f [b] ⊆ γ.
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Lemma 4.5. C+
λ � DCℵ2

Proof. By the remarks in Section 3.2, and Lemma 4.1, it suffices to show
that there is no cofinal map from κω1 to λ in C+

λ [G]. Since κ is regular in V ,
cof(κ) > ω1 in C+

λ [G], so every element of κω1 ∩C+
λ [G] is the realization of a

name coded by a set of reals. Since

∆κ = P(R) ∩C+
λ ∈ C−λ

by Lemma 4.3, (κω1)C
+
λ [G] ∈ C−λ [G]. A reference to Lemma 4.4 then completes

the proof.

5 ω1-closure in V [G]

In this section we show that, in V [G], C+
λ [G] is closed under λ-sequences

from (Add(κ, 1) ∗ Add(λ, 1))C
+
λ [G], which is the second statement from the

beginning of Section 2. This Lemma 5.2 below, which follows from Lemma
5.1.

Lemma 5.1. In V [G], for each b ∈ C−λ [G], bω1 ∈ C−λ [G].

Proof. Since λ < Θ, C−λ is a surjective image of ωω in V . Let U ⊆ ωω be such
that C−λ is a surjective image of ωω in L(U,R). Since ωω is wellordered in
L(U,R)[G], there exists in L(U,R)[G] a function picking for each x ∈ C−λ [G]
a Pmax-name τx ∈ C−λ such that τx,G = x. Since P(ω1) ∩ V [G] ⊆ L(R)[G],

(C−λ [G])ω1 ∩ V [G] ⊆ L(U,R)[G].

We work in L(U,R)[G], which satisfies Choice. Fix b ∈ C−λ [G], and let
β < λ be such that ∆κ, τb ∈ C−β . It follows that every member of b is the

realization of a name in C−β . We first show that bω1 ⊆ C−λ [G].
Fix f ∈ bω1 . Since Choice holds, there is an

hf ∈ (C−β )ω1

such that, for every α < ω1, hf (α) is a Pmax name in C−β such that hf (α)G =
f(α). Fix a function cf : ω1 → ω and a sequence 〈Bα : α < ω1〉 such that
each Bα is a nonempty subset of βω and each hf (α) is definable in C−β from
H�β, and each member of the corresponding Bα, via the formula with Gödel
number cf (α). Since P(ω1) ⊆ Lλ(R)[G], cf ∈ Cλ[G].
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Let h : κ → β be a surjection in C−λ (which exists by Lemma 4.2), and,
for each α < ω1 let

B′α = {x ∈ κω : h ◦ x ∈ Bα}.

As there is no cofinal function from ω1 to κ in C+
λ [G], there is a γ < κ such

that B′α ∩ γω is nonempty for each α < ω1. Let r : ωω → γω be a surjection
in L(∆κ), and for each α < ω1 let

Cα = r−1[B′a ∩ γω].

Then each Cα is a set of reals in L(∆κ).
In L(∆κ) there is a set of reals of Wadge rank greater than each Cα, so,

in L(U,R)[G], there is a subset T of ω1 such that

〈Cα : α < ω1〉 ∈ L(∆κ)[T ].

Since P(ω1) ⊆ Lλ(R)[G], it follows that 〈B′α ∩ γω : α ∈ ω1〉 is in L(∆κ)[G],
and that

〈{h ◦ x : x ∈ B′α ∩ γω} : α ∈ ω1〉,

〈hf (α) : α < ω1〉 and f are in C−λ [G].
Suppose now that bω1 6⊆ Cα[G] for any α < λ. We then have a function

g : bω1 → λ that is unbounded in λ with g ∈ Cλ[G]. Using the above coding,
g induces a cofinal function

h : P(ω1)×∆κ → λ

in Cλ[G], with the first argument playing the role of T above and the second
coding both a wellordering of ωω in ordertype γ and set of reals of Wadge
rank above each Cα. This contradicts Lemma 4.4.

Lemma 5.2. V [G] � ((Add(κ, 1) ∗ Add(λ, 1))C
+
λ [G])ω1 ⊆ C+

λ [G]

Proof. As noted before Lemma 4.3, each element of ((Add(κ, 1)∗Add(λ, 1))C
+
λ [G]

an element of C−λ [G]. Since cof(λ) = ω2 in V [G], every element of

((Add(κ, 1) ∗ Add(λ, 1))C
+
λ [G])ω1

in V [G] has range contained in some element of C−λ [G]. The lemma then
follows from Lemma 5.1.
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6 DCℵ3 in C+
λ [G,H ]

Lemma 6.2 is the third item from the beginning of Section 2, and completes
the proof of Theorem 1.10. The proof is a reflection argument as in Subsec-
tion 3.2.

Lemma 6.1. There are stationarily many η < λ such that, in C+
λ [G,H],

C−η [G,H]ω2 ⊆ C−η [G,H].

Proof. Since λ is regular in C+[G,H] by Lemma 4.4, it suffices to show that
for all α < β < λ, if there exists a surjection s : κ→ α in C−β then

C−α [G,H]ω2 ⊆ C−β [G,H].

Fix such α < β, and let s : κ → α be a surjection in C−β . Fix a function

f : ω2 → C−α [G,H] in C+
λ [G,H].

For each γ < ω2, let Bγ be the set of x ∈ αω such that f(γ) is definable
in C−α [G,H] from H�α, G, H and x via the formula with Gödel code x(0).
Since cof(κ) > ω2 in C+

λ [G,H], there is a δ < κ such that for all γ < ω2,

B′γ = {y ∈ δω : s ◦ y ∈ Bγ}
is nonempty. The sequence 〈B′γ : γ < ω2〉 is coded by a set of reals in
C+
λ [G,H], so it is in L(∆κ)[G]. It follows that f ∈ C−β [G,H].

Lemma 6.2. C+
λ [G,H] � DCℵ3.

Proof. By Lemma 3.1, it suffices to show that, in C+
λ [G,H], every <ω3-closed

tree of height ω3 on λω has a cofinal branch.
In C+

λ [G,H], cof(λ) > ω3 and λ is strongly regular, by Lemma 4.4. By
Lemma 6.1, then, it suffices to consider trees on κω. Since κω is wellordered
in C+

λ [G,H] the lemma follows.

7 Further work

The arguments in this paper naturally adapt to produce models of ZFC in
which �(ℵn, ω) fails for all n ∈ ω, from models of the appropriate generaliza-
tions of 1λ. Since these generalizations are not yet known to be consistent,
we save these arguments for a later paper. In addition, there is much more
that can be said about the types of Chang models that we consider in this
paper. Some observations that were not needed for the proof of Theorem
1.10 have been collected in [8].
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