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This talk is about (preliminary) results in the Ramsey theory of
countable infinite-dimensional vector spaces.

But first, let’s review the situation on N.
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The Galvin-Prikry/Silver Theorem

The prototypical infinite-dimensional Ramsey theorem is:

Theorem (Galvin-Prikry/Silver, 1970)
If A ⊆ [N]∞ is analytic, then there is an x ∈ [N]∞ such that either
[x]∞ ⊆ A or [x]∞ ∩ A = ∅.

I [x]∞ = {y ⊆ x : |y| =∞} for x ⊆ N.
I This is a generalization of the (1-dimensional) pigeonhole principle

and the (finite-dimensional) Ramsey’s Theorem.

Iian Smythe (Rutgers) Parametrizing Ramsey theory January 16, 2020 3 / 19



Localization

The Galvin-Prikry/Silver Theorem can be “localized”:

Theorem (Mathias, 1977)
Let U be a selective ultrafilter on N. If A ⊆ [N]∞ is analytic, then there
is an x ∈ U such that either [x]∞ ⊆ A or [x]∞ ∩ A = ∅.

I A (non-principle) ultrafilter U on N is selective if it is closed under
certain diagonalizations: whenever x0 ⊇ x1 ⊇ x2 ⊇ · · · in U , there
is an x ∈ U such that x/n ⊆ xn for all n ∈ x.
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Preservation

Selective ultrafilters are robust under “mild” forcing:

Theorem (Baumgartner-Laver, 1979)
Let U be a selective ultrafilter. If g if V-generic for S, then U generates
a selective ultrafilter in V[g].

I S is Sacks forcing, the collection of all perfect trees p ⊆ 2<∞

ordered by containment.
I Moreover: If CH holds in V, then U generates a selective ultrafilter

in the extension by an ω2-length countable support iteration of
Sacks forcing.
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Parametrization

The preservation of selective ultrafilters by S is closely related to the
following “parametrized” Galvin-Prikry/Silver Theorem:

Theorem (Miller-Todorcevic, 1989)
If A ⊆ 2N × [N]∞ is analytic, then there is a perfect set P ⊆ 2N and an
x ∈ [N]∞ such that either P× [x]∞ ⊆ A or (P× [x]∞) ∩ A = ∅.

I A partitions a family of copies of [N]∞ parametrized by 2N. The
result says that, by passing to a “large” subset P of 2N, we can find
a single x homogeneous for all of the slices indexed by P.

I A localized version holds as well, à la Mathias.
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Parametrization (cont’d)
We’ll sketch a proof when A ⊆ 2N × [N]∞ is Borel.

Proof sketch.
I WLOG assume the existence of a selective ultrafilter U .
I Let M be a sufficient ctm containing U ∩M and the relevant data.
I By Baumgartner-Laver, if g is M-generic for S, then U ∩M

generates a selective ultrafilter in M[g].
I In M[g], apply Mathias to get an x ∈ U ∩M such that
{g}× [x]∞ ⊆ A or ({g}× [x]∞)∩A = ∅. (Note: this is Π1

1 in g and x.)
I Take p ∈ S forcing this.
I Use fusion to find p∞ ≤ p such that every g ∈ [p∞] is M-generic.
I By absoluteness, x and P = [p∞] are as claimed.

I Analytic sets require an extra step using Mathias-Prikry forcing.
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Block sequences in vector spaces

The setting for our results is a countably infinite-dimensional vector
space E over a countable field F, with a basis given by (en)n∈N.
I E.g., E =

⊕
n F and en is the nth unit coordinate vector.

A sequence of nonzero vectors X = (xn)n∈N in E is a block sequence if

max(supp(xn)) < min(supp(xn+1))

for all n, where supp(v) = {i : v =
∑

ajej ⇒ ai 6= 0}.
I The (Polish) space of all block sequences is denoted by bb∞(E).
I Block sequences are ordered � by containment of their spans.
I Every infinite-dimensional subspace of E contains a block

sequence. (Why? Row reduce and thin out.)
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Asymptotic pairs

The main obstacle to Ramsey theorems on vector spaces is the failure
of a natural pigeonhole principle:

Proposition
If |F| > 2, then there exists a pair of disjoint, scalar invariant subsets of
E which intersect every infinite-dimensional subspace of E. (This is
called an asymptotic pair.)

I If |F| = 2, then a pigeonhole principle does hold; this is essentially
Hindman’s Theorem (1974).
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Games with vectors

The relevant Ramsey-theoretic dichotomy is stated in terms of games.
Given X ∈ bb∞(E):
I F[X] denotes the infinite asymptotic game below X: Players I and

II alternate with I going first
I I plays nk ∈ N,
I II responds with a vector yk ∈ 〈X〉 such that nk < yk < yk+1.

I G[X] denotes the Gowers game below X: Players I and II alternate
with I going first.
I I plays Xk � Y,
I II responds with a vector yk ∈ 〈Xk〉 such that yk < yk+1.

I In both games, the outcome is the sequence of II’s moves (yk)k∈N.
Players will have strategies for playing in to or out of a set.
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A Ramsey theorem for block sequences

The analogue of the Galvin-Prikry/Silver theorem is:

Theorem (Rosendal, 2010)
If A ⊆ bb∞(E) be analytic, then there is an X ∈ bb∞(E) such that either
I I has a strategy in F[X] for playing out of A, or
I II has a strategy in G[X] for playing in to A.

I I.e., below some X, either Ac or A is “large”.
I This result is based on a dichotomy for block sequences in

Banach spaces due to Gowers (1996/2002) and implies it.
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A Ramsey theorem for block sequences (cont’d)

Rosendal’s result can be localized:

Theorem (S., 2018)
Let U ⊆ bb∞(E) be a (p+)-filter. If A ⊆ bb∞(E) is analytic, then there is
an X ∈ U such that either
I I has a strategy in F[X] for playing out of A, or
I II has a strategy in G[X] for playing in to A.

I A filter U in (bb∞(E),�) has the (p)-property if it is closed under
diagonalizations: whenever X0 � X1 � X2 � · · · in U , there is an
X ∈ U such that X �∗ Xn for all n.

I U is full if whenever D ⊆ E is such that for every Y ∈ U � X, there is
a Z � Y with 〈Z〉 ⊆ D, there is such a Z ∈ U � X.

I (p+) = (p) + full.
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Parametrization?

Can we parametrize these Ramsey theorems for block sequences? A
natural first attempt is the following:

(∗) If A ⊆ 2N × bb∞(E) is analytic, then there is a perfect set P ⊆ 2N

and an X ∈ bb∞(E) such that either
I I has a strategy σ in F[X] such that (P× [σ]) ∩ A = ∅, or
I II has a strategy α in G[X] such that P× [α] ⊆ A.

But, (∗) is false if |F| > 2: The idea is to use an asymptotic pair to code
the first coordinate into the second coordinate.
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Parametrization (cont’d)

There is too much uniformity in (∗), so we weaken it:

Theorem (S.)
If B ⊆ 2N × bb∞(E) is Borel, then there is a perfect set P ⊆ 2N and an
X ∈ bb∞(E) such that either
I for all f ∈ P, I has a strategy in F[X] to play out of Bf , or
I for all f ∈ P, II has a strategy in G[X] to play in to Bf .

I Our results (at least in ZFC) are only for Borel sets, though we
suspect that this can be improved to analytic sets.
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An outline of the proof

The general outline of our proof is:
I Prove the result for clopen B ⊆ 2N × bb∞(E).

I The argument uses MA and Shoenfield Absoluteness. It derives
from an observation of Christian Rosendal that the parametrized
result holds for all definable sets under sufficient large cardinals.

I Prove the result localized to a strategic (p+)-filter, again, for
clopen sets.
I U is strategic if whenever α is a strategy for II in G[X], X ∈ U , there

is an outcome of α in U .
I Prove that strategic (p+)-filters are preserved* by Sacks forcing.
I Mimic the above proof of the Miller-Todorcevic Theorem to get the

result for all Borel sets.
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Preservation*

A key step is the analogue of the Baumgartner-Laver theorem:

Theorem (S.)
Let U be a strategic (p+)-filter. If g if V-generic for S, then U generates
a (p+)-filter in V[g].

I What happened to “strategic”?
I If |F| > 2, being strategic does not survive when adding a Sacks

real. This answers a question implicit in the author’s thesis,
namely whether (p+) implied strategic, and presents a potential
obstacle to iteration.
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Choiceless?

The proofs described in this talk seem to use choice and other
non-effective methods to an almost excessive degree:
I Countable models
I Forcing
I Martin’s Axiom
I Shoenfield and Mostowski Absoluteness
I Ultrafilters/(p+)-filters (that need not exist in ZFC)...
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Choiceless? (cont’d)

But, our main theorem makes good sense in a choiceless context:

Theorem (S.)
If B ⊆ 2N × bb∞(E) is Borel, then there is a perfect set P ⊆ 2N and an
X ∈ bb∞(E) such that either
I for all f ∈ P, I has a strategy in F[X] to play out of Bf , or
I for all f ∈ P, II has a strategy in G[X] to play in to Bf .

I What’s missing is a more direct, combinatorial, “Ellentuck-style”
argument (in ZF + DC); this exists for the Miller-Todorcevic
Theorem (due to Pawlikowski, 1990).

I Such an argument should more easily extend to analytic sets.
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Thanks for listening!
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