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Abstract

We show that Countable-to-One Uniformization is preserved by forcing
with P(ω)/Fin over a model of ZF in which every set of reals is completely
Ramsey. We also give an exposition of Todorcevic’s theorem that Ramsey
ultrafilters are generic for P(ω)/Fin over suitable inner models.

1 Introduction

This paper presents a result on models of the form M [U ], where M is an inner
model of ZF satisfying certain regularity properties inconsistent with the Axiom
of Choice, and U is a Ramsey ultrafilter on the integers. Such extensions have
been studied by several authors, notably Henle, Mathias and Woodin [6] and
Di Prisco and Todorcevic [2, 3], where the model M is variously taken to be
a Solovay model or an inner model of Determinacy in the presence of large
cardinals. Our result is that Countable-to-One Uniformization (a weak form of
the Axiom of Choice; see the first paragraph of Section 3) is preserved by forcing
with P(ω)/Fin over a model of ZF in which every set of reals is completely
Ramsey (this includes many standard models of determinacy; see Section 3 and
Subsection 1.2). In conjunction with the main result of [13], this fact can be
used to show that there is no injection from P(ω)/Fin to R in models of the form
the M [U ] considered here (a result previously proved in [3] by other means).

We let Fin denote the ideal of finite subsets of ω = {0, 1, 2, . . .}, and (for
subsets x, y of ω) write x ⊆∗ y for x \ y ∈ Fin. It is easy to see that for
any ⊆∗-decreasing sequence 〈xn : n < ω〉 consisting of infinite subsets of ω,
there is an infinite y ⊆ ω such that y ⊆∗ xn for all n. It follows that forcing
with the Boolean algebra P(ω)/Fin over a model of ZF + DCR does not add
countable subsets of the ground model.1 Forcing with this Boolean algebra over
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1The principle of Dependent Choices (DC) says that every tree of height ω without terminal
nodes has an infinite branch; DCR is DC restricted to trees on R.
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a model M of ZF + DCR then produces a model M [U ], where the generic filter is
naturally interpreted as a nonprincipal ultrafilter U on ω. In fact, the ultrafilter
U is a selective (or Ramsey) ultrafilter, which means that for any collection
{Xn : n ∈ ω} ⊆ U there is a set {in : n ∈ ω} (listed in increasing order) in U
such that i0 ∈ X0 and each in+1 ∈ Xin .

Ramsey ultrafilters exist if the Continuum Hypothesis holds, and their exis-
tence follows from weaker statements such as cov(M) = c, where cov(M) is the
least cardinality of a collection of meager sets of reals whose union is the entire
real line, and c denotes the cardinality of the continuum (see Theorem 4.5.6 of
[1]). Kunen [10] has shown that consistently there are no Ramsey ultrafilters.

A theorem of Todorcevic (see [4]) implies that in the context of large cardi-
nals every Ramsey ultrafilter is generic over the inner model L(R) for the partial
order P(ω)/Fin. We give a proof of this theorem in Section 2.

Woodin has shown that under the assumption of a proper class of Woodin
cardinals, the theory of L(R) is invariant under set forcing (see [12]). Since
P(ω)/Fin is homogeneous, the theory of L(R)[U ] is also invariant under set
forcing (in this context) when U is taken to be a Ramsey ultrafilter. This should
mean that large cardinals give as detailed a theory for L(R)[U ] (i.e., answering
most natural questions) as they do for the inner model L(R). It remains to be
seen whether this is the case. At the present moment many natural questions
about this model remain open.

1.1 Notation

Given an infinite set a ⊆ ω, we let [a]ω denote the set of infinite subsets of a,
and we let [a]<ω denote the set of finite subsets of a (so Fin = [ω]<ω). Given
s ∈ [ω]<ω and a ∈ [ω]ω, we let [s, a] denote the set of infinite subsets of s ∪ a
with s as an initial segment. Given s ∈ [ω]<ω and a set a ⊆ ω, a/s denotes a in
the case that s is the emptyset, and a \ (max(s) + 1) otherwise.

1.2 Selective coideals and Ramsey ultrafilters

A coideal C on a set X is a subset of P(X) such that P(X) \ C is an ideal.
Given a ∈ C, we let C�a denote {b ∈ C | b ⊆ a}. A coideal C on ω is selective
if it contains all cofinite sets, and if for all ⊆-decreasing sequences 〈an : n ∈ ω〉
contained in C, there is a set {ki : i ∈ ω} (listed in increasing order) in C such
that k0 ∈ a0 and each ki+1 is in aki . As defined above, a Ramsey ultrafilter is
a selective ultrafilter on ω.

The following is part of Theorem 4.5.2 of [1].

Theorem 1.1. A nonprincipal ultrafilter U on ω is Ramsey if and only if either
of the following two statements holds.

• For every partition {yn : n ∈ ω} of ω, either some yn ∈ U or there exists
an x ∈ U such that |x ∩ yn| ≤ 1 for all n ∈ ω.

• For all a ⊆ [ω]2, there is an x ∈ U such that [x]2 ⊆ a or [x]2 ∩ a = ∅.
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Given A ⊆ [ω]ω and a coideal C on ω, we say that A is C-Ramsey (or has
the C-Ramsey property) if there exists a b ∈ C such that either A ∩ [b]ω = ∅ or
[b]ω ⊆ A. We say that A is completely C-Ramsey if for every finite s ⊆ ω and
every b ∈ C, there exists a d ∈ C�b such that either A ∩ [s, d] = ∅ or [s, d] ⊆ A.
We drop the prefix C- when C is the coideal of infinite subsets of ω. It follows
easily from the definitions that if every set of reals in an inner model M of ZF
is C-Ramsey, then every set of reals in M is completely C-Ramsey, even if C is
not a member of M . The axioms ADR and AD + V = L(R) each imply that
every subset of [ω]ω is completely Ramsey; weakly homogeneously Suslin sets
of reals are also completely Ramsey (see pages 382 and 458 of [8]).

Given a coideal C on ω, a set A ⊆ [ω]ω is said to be C-Baire if for every
s ∈ [ω]<ω and b ∈ C there exist t ∈ [ω]<ω and d ∈ C�b such that [t, d] ⊆ [s, b]
and [t, d] ⊆ A or [t, d] ∩ A = ∅. The following is a weakening of Corollary 7.14
of [15] (a corollary to Theorem 2.6 below).

Theorem 1.2. If C is a selective coideal on ω, then every C-Baire subset of
[ω]ω is completely C-Ramsey.

2 Ramsey ultrafilters are generic

In this section we give a proof of the following theorem of Todorcevic, adapted
from [4]. Many of the ideas in this section have their origin in [11].

Theorem 2.1 (Todorcevic). If there exist infinitely many Woodin cardinals
below a measurable cardinal, then every Ramsey ultrafilter is L(R)-generic for
P(ω)/Fin.

Theorem 2.1 follows from Theorem 2.7 below, via the following definition
(which appears on page 206 of [5]) and theorem (which follows from combining
arguments given in [5] and [12]).

2.2 Definition. Given a set A ⊆ ωω and an infinite cardinal λ, A is λ-
universally Baire if for every topological space X with a regular open base
of cardinality at most λ, and for every continuous function f : X → ωω, f−1[A]
has the property of Baire in X.

Theorem 2.3 (Woodin). If δ is a limit of Woodin cardinals below a measurable
cardinal, all subsets of 2ω in L(R) are <δ-universally Baire.

Given a nonprincipal ultrafilter U on ω, the U -exponential (or U -Vietoris or
U -Ellentuck) topology on [ω]ω has a base consisting of all sets of the form [s, a],
where s is a finite subset of ω and a ∈ U . These sets are regular, as each set of
the form [s, a] is clopen.

Let π : [ω]ω → ωω be the function that sends each infinite subset of ω to its
increasing enumeration. Letting U be a nonprincipal ultrafilter, π is continuous
when its domain is given the U -exponential topology and its range is given the
usual product topology. It follows that A ⊆ [ω]ω has the property of Baire in the
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U -exponential topology whenever π[A] is c-universally Baire, where c denotes
2ℵ0 , the cardinality of the continuum.

The following lemma follows from Theorem 1.2 above.

Lemma 2.4. If U is a Ramsey ultrafilter, D is a dense open set in the U -
exponential topology, and [s, a] is a basic open set, then there exists a set a′ ⊆ a
in U such that [s, a′] ⊆ D.

Our proof will also use the following two facts, the first of which follows from
Theorem 1.1 and the second of which is a weakening of Lemma 7.12 of [15].

Lemma 2.5. If U is a Ramsey ultrafilter on ω, and for each finite s ⊆ ω,
As is a member of U , then there is a set B ∈ U such that for all n ∈ B,
B/n ⊆

⋂
s⊆nAs∪{n}.

Proof. Let E be the set of pairs i < j from ω such that j ∈ As∪{i} for all s ⊆ i,
and let B ∈ U be such that [B]2 is contained in or disjoint from E. Since U is
a filter, fixing i ∈ B there must be j ∈ B/i such that {i, j} ∈ E, so [B]2 is not
disjoint from E.

Theorem 2.6. [Selective Galvin Lemma] If F ⊆ [ω]<ω and C is a selective
coideal, then there exists an a ∈ C such that F ∩ [a]<ω is either empty or
contains an initial segment of every infinite subset of a.

Theorem 2.1 follows from the following more general fact.

Theorem 2.7. If U is a Ramsey ultrafilter, I ⊆ [ω]ω is ⊇-dense and I has the
property of Baire in the U -exponential topology, then U ∩ I 6= ∅.

Proof. Let us note first that for any dense open set D in the U -exponential
topology, and any i ∈ ω, D contains a dense open set D[i] which is closed under
changes below i. To see this, we check that for all t ⊆ i, the set Dt

i consisting
of those b ∈ [ω]ω such that (b \ i) ∪ t ∈ D is dense open. Fix t, and note that
if [t0, c] is a basic open set, with max(t0) > i, then, letting t1 = (t0 \ i) ∪ t,
there exist a t2 ⊆ c/t1 and a set c′ ∈ U�c such that [t1 ∪ t2, c′] is contained in
[t1, c] ∩D. Then for every b ∈ [t0 ∪ t2, c′], (b \ i) ∪ t is in D. Now, let D[i] be
the dense open set formed by taking the intersection of all Dt

i , for t ⊆ i.
Let I ⊆ [ω]ω be ⊇-dense, and suppose that I has the property of Baire in the

U -exponential topology. There exists an open set O such that O4 I is meager.
Let us see that O is dense. Fix a basic open set [s, a] and dense open sets

Di (i ∈ ω) such that (O4 I) ∩
⋂
i∈ωDi = ∅. We may assume that Di+1 ⊂ Di

for each i ∈ ω. Let [si, ai] (i ∈ ω) be such that

• [s0, a0] ⊆ [s, a];

• [t∪{max(si)}, ai] ⊆ Di, for all t ⊆ max(si) and i ∈ ω (here we use Lemma
2.4);

• each [si+1, ai+1] ⊆ [si, ai];
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• each si+1 is a proper extension of si.

Then {max(si) : i ∈ ω} is infinite and every infinite subset of it is in each Di.
It has an infinite subset in I, and therefore in O.

We have then that O is dense open in the U -exponential topology, so by
adding it to our collection of dense sets if necessary, we may assume that O =
[∅, ω], and fix dense open sets Di (i ∈ ω) such that

⋂
i∈ωDi ⊆ I. We will be

done with the proof once we establish the following claim.

Claim. U ∩
⋂
i∈ωDi 6= ∅.

Replacing each Di with Di[i + 1] as above, we have that for all b ∈ Di and
all t ⊆ (i + 1), (b/i) ∪ t ∈ Di. We may assume also that Dj ⊆ Di for all i < j
in ω.

For each i ∈ ω and each finite t ⊂ ω, let ait ⊆ ω/t be an element of U such
that [t, ait] ⊆ Di, if such a set exists, otherwise, let ait = ω/t.

For each i ∈ ω, let

• bi be an element of U such that for all n ∈ bi, bi/n ⊆
⋂
{ait∪{n} | t ⊆ n}

(here we use Lemma 2.5);

• Si be the set of nonempty finite t ⊂ ω such that [t, ait] ⊆ Di;

• ci be an element of U such that Si ∩ [ci]
<ω contains an initial segment of

every infinite subset of ci (here we use the Selective Galvin lemma; note
that the empty case cannot hold, since Di is dense open).

Applying Lemma 2.5 again, let e ∈ U be such that e/i ⊆ bi ∩ ci for all
i ∈ e. We claim then that e ∈ Di for all i ∈ ω. Since the Di’s are shrinking,
and e is infinite, it suffices to consider i ∈ e. For each such i, it suffices to
see that e/i ∈ Di. This in turn follows from the fact that e/i ⊆ ci, so some
nonempty initial segment s0 of e/i is in Si, so [s0, a

i
s0 ] ⊆ Di. Since e/i ⊆ bi and

bi/s0 ⊆ ais0 , we have that e/s0 ⊆ bi and thus that e/i ∈ [s0, a
i
s0 ].

As a corollary, we get Mathias’s result (in this context) that every selective
coideal in L(R) is densely often the coideal of infinite sets.

Corollary 2.8. Suppose that M is an inner model of ZF containing the reals,
and that every set of reals in M is c-universally Baire in every forcing extension
of V by an (ω,∞)-distributive partial order of cardinality at most c. Then for
every selective coideal C on ω in M , and every a ∈ [ω]ω, there is a b ∈ [a]ω such
that [b]ω ⊆ C.

Proof. Let I = P(ω) \ C. Since C is selective, a V -generic filter for P(a)/I
gives a Ramsey ultrafilter U which does not intersect I. This ultrafilter U is
also M -generic for P(a)/Fin, which means that there must be a b ∈ [a]ω ∩ U
such that [b]ω ∩ I = ∅.

This of course implies that there are no infinite maximal antichains in
P(ω)/Fin.
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Corollary 2.9. If M is an inner model of ZF containing the reals, and every
set of reals in M is c-universally Baire in every forcing extension of V by an
(ω,∞)-distributive partial order of cardinality at most c, then the partial order
P(ω)/Fin contains no infinite maximal antichains in M .

Proof. If A were such an antichain, let I be the ideal of subsets of ω which are
contained mod-finite in a union of finitely many members of A, and let C be
the corresponding coideal. Then C is selective, and nowhere equal to Fin.

3 Countable-to-one Enumeration in models of
determinacy

Given sets A and B, a ∈ A and X ⊆ A × B, we let Xa denote the set of
b ∈ B such that (a, b) ∈ X. Uniformization is the statement that for every
X ⊆ R×R there is a function f ⊆ X whose domain is the set of a ∈ R such that
Xa 6= ∅. Countable-to-one Uniformization is Uniformization restricted to the
case where each set Xa is countable (in which case we say that X has countable
cross sections). Finally, Countable-to-one Enumeration is the statement that
for every X ⊆ R×R having countable cross sections, there is a function F with
domain R such that F (a) is a wellordering of Xa, for each a ∈ R (we say that F
uniformly enumerates X). Countable-to-one Enumeration clearly follows from
Uniformization and implies Countable-to-one Uniformization. The first of these
implications is not reversable, as we shall see below. We suspect that the second
is also not reversable, but don’t know of a proof.

It is easy to see that Uniformization is equivalent to determinacy for one-
round real games, which of course follows from ADR. It is also well known
that Uniformization fails in models of the form L(A), for A a set of reals (a
counterexample is the set of pairs (x, y) such that y is not ordinal definable from
x and A; see [14]). In this section we present a proof of Woodin’s unpublished
theorem that Countable-to-one Enumeration follows from the axiom AD+, and
thus holds in L(R) and other natural models of AD.

3.1 Definition. A set of ordinals S is an ∞-Borel code for a set of reals A if
for some binary formula φ, A = {x ∈ R | L[S, x] |= φ(S, x)}.

The statement that every set of reals has an∞-Borel code is one of the three
statements that make up the axiom AD+ (see [16] for more details). Recall that
for a model M of ZF and sets x1, . . . , xn in M , HODM

x1,...,xn
is the class HOD

as defined in M , allowing x1, . . . , xn as parameters. This is always a model of
ZFC, and has a natural definable wellordering.

Theorem 3.2 (Woodin). Countable-to-one Enumeration is a consequence of
AD + DCR + “every set of reals has an ∞-Borel code.”

Before beginning the proof, we note that AD can be replaced by the following
consequences, which are are proved in many places, including Chapter 6 of [8].
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• (Martin) Every set of Turing degrees either contains or is disjoint from a
cone.

• (Mycielski) There is no ω1-sequence of distinct reals.

Proof of Theorem 3.2. Since all sets of reals are ∞-Borel, it suffices to fix a set
of ordinals S and a formula φ and show that the set

AS = {(x, y) ∈ R× R | L[S, x, y] |= φ(S, x, y)}

can be uniformly enumerated, under the assumption that all of its cross sections
are countable. We will show that for each x ∈ R, (AS)x ⊆ HODS,x. From this
it follows, using the natural wellordering of HODS,x, that AS can be uniformly
enumerated. Fix a real x0. For each z ∈ R, set

Hz = HOD
L[S,x0,z]
S,x0

.

Claim. For a Turing cone of z, (AS)x0 ⊆ Hz.

Before proving this, we show that the theorem follows. To see this, suppose
that the claim holds, and for each z in this Turing cone, let 〈xzα | α < γz〉 be
the enumeration of (AS)x0

in Hz via the natural wellordering of Hz. For each
fixed α < ω1, we get that on a Turing cone of z, xzα is a fixed real x∞α . The
ordinal γz must also be the same for a Turing cone of z (call this common value
γ∞); otherwise, we get an ω1-sequence of distinct reals. So there is a sequence
〈x∞α | α < γ∞〉 which is equal to 〈xzα | α < γz〉 for a Turing cone of z. Clearly
x∞α ∈ HODS,x0

for all α < γ∞. This finishes the proof of the theorem from the
claim.

We finish by proving the claim. Since (AS)x0 is countable, it is a subset
of L[S, x0, z] for a Turing cone of z. Fix any z in this Turing cone. Following
Definition 2.3 of [7] (but changing the notation), we let B0 be the collection of
subsets of P(ω) in L[S, x0, z] which are ordinal definable in L[S, x0, z] from S
and x0. Given a filter G ⊆ B0 (where B0 is considered as a partial order under
containment), let y(G) be the set of n ∈ ω such that {y ⊆ ω | n ∈ y} ∈ G. Then
by Vopěnka’s Theorem (Theorem 2.4 of [7]), there exist a Boolean algebra B1

in Hz, a B1-name ẏ ∈ Hz and an isomorphism h : B0 → B1 such that

1. for every real y ∈ L[S, x0, z], G(y) = h[{A ∈ B0 | y ∈ A}] is Hz-generic
for B1;

2. if H ⊆ B1 is Hz-generic and G = h−1[H], then y(G) = ẏH and, for every
trinary formula ψ and every ordinal α,

Lα[S, x0, y(G)] |= ψ(S, x0, y(G))⇔ {y ⊆ ω | Lα[S, x0, y] |= ψ(S, x0, y)} ∈ G.

By (2), densely many conditions in B1 below

{y ⊆ ω | L[S, x0, y] |= φ(S, x0, y)}
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must decide all of ẏ, since otherwise one can easily construct a real y(G) distinct
from all members of the countable set (AS)x0

(here we use the fact that P(B1)Hz

is countable, which follows from the fact that there is no ω1-sequence of distinct
reals). By (1), and the assumption that (AS)x0

⊆ L[S, x0, z], every member
of (AS)x0 is one of these completely determined values of ẏ, which means that
(AS)x0 ⊆ Hz.

3.3 Remark. A slight modification of the argument just given works just as-
suming ZF+DC+“there is a fine measure on Pω1

(R)”; this holds in the Solovay
model for Levy collapsing a measurable cardinal to be ω1.

3.4 Remark. The argument just given shows that under the assumption AD+

+ V = HODP(R), one can enumerate subsets of P(Ord)×R which have countable
cross-sections.

4 Countable-to-one Uniformization in the P(ω)/Fin
extension

In this section we prove the main result of this note. We do not know if the
corresponding result holds for Countable-to-one Enumeration.

Theorem 4.1. Suppose that every set of reals is completely Ramsey, and that
Countable-to-one Uniformization holds. Then Countable-to-one Uniformization
holds after forcing with P(ω)/Fin.

Before proving Theorem 4.1, we separate out the following lemma, a varia-
tion of the results of Section 6 of [11].

Lemma 4.2. Suppose that every set of reals is completely Ramsey, and let
f : [ω]ω → 2ω be a partial function whose domain is closed under subsets and
finite changes. Then for each x0 ∈ dom(f) there exist x′ ∈ [x0]ω and a collection

{τns : n ∈ ω \ {0}, s ⊆ n}

such that each τns is in the corresponding set 2n, and such that for all infinite
x ⊆ ω and all m ∈ ω, if x/m ⊆ x′, then

f(x) =
⋃
{τnx∩n : n ∈ (m,ω) ∩ x}.

Proof. Fix x0 ∈ dom(f). Find xn (n < ω) such that

• each xn+1 ∈ [xn]ω;

• for each n ∈ ω and s ⊆ n, f(x)�n is the same fixed set τns for all x in
[s ∪ {n}, xn] (here we use the complete Ramsey property).
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Let x′ be an infinite subset of x0 such that, for each n ∈ x′, x′/n ⊆ xn. If
x ⊆ ω is infinite and m ∈ ω is such that x/m ⊆ x′, then for all n ∈ x/m,

x/n ⊆ x′/n ⊆ xn,

so f(x)�n = τnx∩n. Then f(x) =
⋃
{τnx∩n : n ∈ (m,ω) ∩ x}.

Proof of Theorem 4.1. Let ρ be a P(ω)/Fin-name for a subset of 2ω × 2ω with
the property that each cross-section is countable. It suffices to prove the result
in the case that each cross section is forced to be nonempty, so we assume this
also. Let T be the set of triples (x, y, z) such that [x] forces that (y, z) is in the
realization of ρ. By refining T , we may suppose that for each pair (x, y),

{z | (x, y, z) ∈ T} = {z | ∃w ∈ [x]ω (w, y, z) ∈ T}

whenever the first of these two sets is nonempty (note that it is always count-
able). To see this, note that since ρ is a name for a set with countable cross-
sections, for each y, for densely many [x] there is a sequence of reals that [x]
forces to be an enumeration of the cross section of ρ at y, and we may restrict
T to triples starting with such pairs (x, y).

Let P0 be the set of pairs (x, y) for which there exists a z with (x, y, z) ∈ T .
Applying Countable-to-one Uniformization, fix a function Z : P0 → 2ω such that
for each (x, y) ∈ P0, (x, y, Z(x, y)) ∈ T .

Let P1 be the set of pairs (x, y) ∈ P0 for which there exists a collection

{τns : n ∈ ω \ {0}, s ⊆ n}

such that each τns is in the corresponding 2n and such that for all infinite w ⊆ ω
and all m ∈ ω, if w/m ⊆ x, then

Z(w, y) =
⋃
{τnw∩n : n ∈ (m,ω) ∩ w}.

Applying Lemma 4.2 to the function Z(x, y) (with y fixed), we get the following.

Claim. For each y ∈ ω2 and x ∈ [ω]ω there exists an x′ ∈ [x]ω such that
(x′, y) ∈ P1.

For each pair ([x], y) ∈ P(ω)/Fin× 2ω, let Σ
[x]
y be the set of finite σ ⊂ ω for

which there exists an x′ ∈ [x] such that Z(w, y) is the same for all w ∈ [σ, x′].
Noting that this constant value must be the same for all such x′, we denote it

by Z∗([x], y, σ). Note that [x0] ≤ [x1] implies Σ
[x1]
y ⊆ Σ

[x0]
y , so for each y, Σ

[x]
y

is constant below densely many conditions [x].

Claim. If (x, y) ∈ P1, then Σ
[x]
y 6= ∅.

To prove the claim, fix {τns : n ∈ ω \ {0}, s ⊆ n} witnessing that (x, y) ∈ P1.
For each n ∈ ω and s ⊂ n such that s∪{n} ⊆ x, try to find t∪{m} and r∪{p},
subsets of x end-extending s ∪ {n}, such that τmt and τpr are incompatible
(necessarily proper) extensions of τns . If there always exists such a pair, then
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there is a perfect set Q consisting of infinite subsets of x such that the values of
Z(w, y) for w ∈ Q are all distinct. This is impossible, by our refinement of T .
This proves the claim.

Fixing some enumeration of [ω]<ω, for each [x] ∈ P(ω)/Fin, let σ[x],y denote

the least element of Σ
[x]
y , whenever this set is nonempty (and be undefined

otherwise). For each y ∈ 2ω, for densely many [x], σ[x],y is defined and

σ[x′],y = σ[x],y

for all [x′] ≤ [x]. Call this dense set Dy.
Now, suppose that [a] and [b] are two compatible conditions in Dy. Then for

any [c] below both [a] and [b], σ[c],y is equal to both σ[a],y and σ[b],y. Call this
set σ. If d ∈ [a] and e ∈ [b] are such that Z(f, y) is the same for all f ∈ [σ, d],
and Z(g, y) is the same for all g ∈ [σ, e], then these two constant values are the
same, since these two sets are not disjoint. We have then that

• for all (x, y) ∈ P1, if [x] ∈ Dy, then (x, y, Z∗([x], y, σ[x],y)) ∈ T ;

• for all (a, y), (b, y) ∈ P1, if [a], [b] ∈ Dy and [a], [b] are compatible, then
Z∗([a], y, σ[a],y) = Z∗([b], y, σ[b],y).

It follows that the set of (x, y, σ[x],y) for (x, y) ∈ P1 and [x] ∈ Dy gives rise
to a name for function uniformizing the realization of ρ.
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