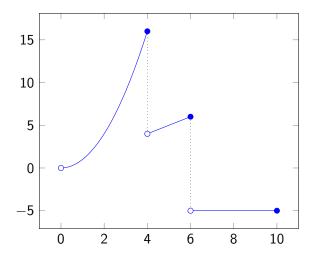
Andrew Marks (UCLA), joint with Adam Day (Victoria University, Wellington)

Joint Mathematics Meetings, 16 Jan 2020

# What functions are piecewise continuous?



X and Y will denote Polish spaces throughout the talk. Suppose  $f: X \to Y$  is a piecewise continuous function in the sense that  $f = \bigcup_i f_i$ , where the  $f_i$  are partial continuous functions with  $\mathbf{\Delta}_n^0$  domains.

X and Y will denote Polish spaces throughout the talk. Suppose  $f: X \to Y$  is a piecewise continuous function in the sense that  $f = \bigcup_i f_i$ , where the  $f_i$  are partial continuous functions with  $\mathbf{\Delta}_n^0$  domains.

Then if A is is a  $\Sigma_n^0$  set,  $f_i^{-1}(A)$  is relatively  $\Sigma_n^0$  in dom $(f_i)$  (which is  $\Delta_n^0$ ), so it is  $\Sigma_n^0$ . Thus,  $f^{-1}(A) = \bigcup_i f_i^{-1}(A)$  is a countable union of  $\Sigma_n^0$  sets, and hence is  $\Sigma_n^0$ .

X and Y will denote Polish spaces throughout the talk. Suppose  $f: X \to Y$  is a piecewise continuous function in the sense that  $f = \bigcup_i f_i$ , where the  $f_i$  are partial continuous functions with  $\mathbf{\Delta}_n^0$  domains.

Then if A is is a  $\Sigma_n^0$  set,  $f_i^{-1}(A)$  is relatively  $\Sigma_n^0$  in dom $(f_i)$  (which is  $\Delta_n^0$ ), so it is  $\Sigma_n^0$ . Thus,  $f^{-1}(A) = \bigcup_i f_i^{-1}(A)$  is a countable union of  $\Sigma_n^0$  sets, and hence is  $\Sigma_n^0$ .

#### Conjecture (2000's, various authors)

 $f: X \to Y$  is a union of continuous functions with  $\mathbf{\Delta}_n^0$  domains iff the preimage of every  $\mathbf{\Sigma}_n^0$  set is  $\mathbf{\Sigma}_n^0$ .

### Conjecture (2000's, the decomposability conjecture)

 $f: X \to Y$  is a union of Baire class m functions with  $\mathbf{\Delta}_n^0$  domains iff the preimage of every  $\mathbf{\Sigma}_{n-m+1}^0$  set is  $\mathbf{\Sigma}_n^0$ .

### Conjecture (2000's, the decomposability conjecture)

 $f: X \to Y$  is a union of Baire class m functions with  $\Delta_n^0$  domains iff the preimage of every  $\Sigma_{n-m+1}^0$  set is  $\Sigma_n^0$ .

Theorem (Day-M.)

The decomposability conjecture is true assuming  $\Sigma_2^1$  determinacy.

### Theorem (Jayne-Rogers, 1982)

The decomposability conjecture is true for n = 2.

Theorem (Jayne-Rogers, 1982)

The decomposability conjecture is true for n = 2.

Theorem (Ding-Kihara-Semmes-Zhao, 2018)

The decomposability conjecture is true for n = 3.

#### Theorem (Jayne-Rogers, 1982)

The decomposability conjecture is true for n = 2.

Theorem (Ding-Kihara-Semmes-Zhao, 2018)

The decomposability conjecture is true for n = 3.

These theorems are proved the following way: Suppose  $f: X \to Y$  is not a union of Baire class *m* functions with  $\Delta_n^0$  domains. Then construct a  $\Sigma_{n-m+1}^0$  set *A* whose preimage is not  $\Sigma_n^0$  (i.e.  $f^{-1}(A)$  is  $\Pi_n^0$  hard).

#### Theorem (Jayne-Rogers, 1982)

The decomposability conjecture is true for n = 2.

Theorem (Ding-Kihara-Semmes-Zhao, 2018)

The decomposability conjecture is true for n = 3.

These theorems are proved the following way: Suppose  $f: X \to Y$  is not a union of Baire class *m* functions with  $\Delta_n^0$  domains. Then construct a  $\Sigma_{n-m+1}^0$  set *A* whose preimage is not  $\Sigma_n^0$  (i.e.  $f^{-1}(A)$  is  $\Pi_n^0$  hard).

#### Proposition

To prove the decomposability conjecture, it's enough to prove the case where m = n - 1.

Any 
$$\Sigma_1^0$$
 set in  $(X, \eta)$  is  $\Sigma_{n+1}^0$  in  $(X, \tau)$ .

-

Suppose f: (X, τ) → Y is not a union of Baire class n − 1 functions with Δ<sup>0</sup><sub>n</sub> domains.

- Suppose f: (X, τ) → Y is not a union of Baire class n − 1 functions with Δ<sup>0</sup><sub>n</sub> domains.
- Change the topology (X, τ) to (X, η) by making some Π<sup>0</sup><sub>n-2</sub> sets in (X, τ) the new basic open sets of (X, η).

- Suppose f: (X, τ) → Y is not a union of Baire class n − 1 functions with Δ<sup>0</sup><sub>n</sub> domains.
- Change the topology (X, τ) to (X, η) by making some Π<sup>0</sup><sub>n-2</sub> sets in (X, τ) the new basic open sets of (X, η).
- Then f: (X, η) → Y is not a union of Baire class 1 functions with Δ<sup>0</sup><sub>3</sub> domains.

- Suppose f: (X, τ) → Y is not a union of Baire class n − 1 functions with Δ<sup>0</sup><sub>n</sub> domains.
- Change the topology (X, τ) to (X, η) by making some Π<sup>0</sup><sub>n-2</sub> sets in (X, τ) the new basic open sets of (X, η).
- Then f: (X, η) → Y is not a union of Baire class 1 functions with Δ<sup>0</sup><sub>3</sub> domains.
- Apply the techniques of Ding-Kihara-Semmes-Zhao and obtain a Σ<sup>0</sup><sub>2</sub> set A ⊆ Y so that f<sup>-1</sup>(A) is not Σ<sup>0</sup><sub>3</sub> in (X, η).

- Suppose f: (X, τ) → Y is not a union of Baire class n − 1 functions with Δ<sup>0</sup><sub>n</sub> domains.
- Change the topology (X, τ) to (X, η) by making some Π<sup>0</sup><sub>n-2</sub> sets in (X, τ) the new basic open sets of (X, η).
- Then f: (X, η) → Y is not a union of Baire class 1 functions with Δ<sup>0</sup><sub>3</sub> domains.
- Apply the techniques of Ding-Kihara-Semmes-Zhao and obtain a Σ<sup>0</sup><sub>2</sub> set A ⊆ Y so that f<sup>-1</sup>(A) is not Σ<sup>0</sup><sub>3</sub> in (X, η).
- Hope that this set which is not Σ<sup>0</sup><sub>3</sub> in (X, η) is not Σ<sup>0</sup><sub>n</sub> in the original topology (X, τ).

- Suppose f: (X, τ) → Y is not a union of Baire class n − 1 functions with Δ<sup>0</sup><sub>n</sub> domains.
- Change the topology (X, τ) to (X, η) by making some Π<sup>0</sup><sub>n-2</sub> sets in (X, τ) the new basic open sets of (X, η).
- Then f: (X, η) → Y is not a union of Baire class 1 functions with Δ<sup>0</sup><sub>3</sub> domains.
- Apply the techniques of Ding-Kihara-Semmes-Zhao and obtain a Σ<sup>0</sup><sub>2</sub> set A ⊆ Y so that f<sup>-1</sup>(A) is not Σ<sup>0</sup><sub>3</sub> in (X, η).
- Hope that this set which is not Σ<sup>0</sup><sub>3</sub> in (X, η) is not Σ<sup>0</sup><sub>n</sub> in the original topology (X, τ).



This idea actually works eventually if we just keep trying

Each time our idea fails, we get a canonical new  $\Pi_{n-2}^{0}$  set to add to our change of topology. (This requires a careful analysis of the n = 3, m = 2 decomposability proof).

This idea actually works eventually if we just keep trying

Each time our idea fails, we get a canonical new  $\Pi_{n-2}^{0}$  set to add to our change of topology. (This requires a careful analysis of the n = 3, m = 2 decomposability proof).

If we add this set to our change of topology and try again, we'll eventually succeed at some countable ordinal stage. If not, we would contradict the following:

### Theorem (Harrington 1978, AD)

Fix  $\alpha < \omega_1$ . There is no  $\omega_1$  length sequence of distinct  $\Pi^0_{\alpha}$  sets.

This idea actually works eventually if we just keep trying

Each time our idea fails, we get a canonical new  $\Pi_{n-2}^{0}$  set to add to our change of topology. (This requires a careful analysis of the n = 3, m = 2 decomposability proof).

If we add this set to our change of topology and try again, we'll eventually succeed at some countable ordinal stage. If not, we would contradict the following:

### Theorem (Harrington 1978, AD)

Fix  $\alpha < \omega_1$ . There is no  $\omega_1$  length sequence of distinct  $\Pi^0_{\alpha}$  sets.

We also need a new characterization of when a set is  $\Sigma_n^0$  hard for  $n \ge 3$ .

# Characterizing $\sum_{n+2}^{0}$ hardness

Let  $\mathcal{A}$  be a countable collection of subsets of X. Let  $\tau(\mathcal{A})$  denote the topology generated by the subbasis  $\mathcal{A}$ , where the open sets are unions of finite intersections of elements of  $\mathcal{A}$ .

# Characterizing $\Sigma_{n+2}^{0}$ hardness

Let  $\mathcal{A}$  be a countable collection of subsets of X. Let  $\tau(\mathcal{A})$  denote the topology generated by the subbasis  $\mathcal{A}$ , where the open sets are unions of finite intersections of elements of  $\mathcal{A}$ .

Given a Polish space X, say that  $\vec{\mathcal{A}} = \mathcal{A}_0, \mathcal{A}_1, \dots, \mathcal{A}_n$  is a **suitable sequence of length** n + 1 of subsets of X iff  $\mathcal{A}_0$  is a countable basis of open sets for X,  $\mathcal{A}_m$  is a countable set of  $\Pi_m^0$  subsets of X for  $m \ge 1$ , every  $\mathcal{A}_m$  is closed under finite intersections, and for all m < n,

- 1. If  $B \in \mathcal{A}_0$ , then  $\overline{B} \in \mathcal{A}_1$ , and  $\mathcal{A}_m \subseteq \mathcal{A}_{m+1}$  for m > 0.
- 2. If  $B \in \mathcal{A}_m$ , then  $X \setminus B \in \mathcal{A}_{m+1}$ .
- 3. If  $B \in \mathcal{A}_{m+1}$ , then B is closed in  $\tau(\mathcal{A}_m)$ .

4. If  $B \in \mathcal{A}_{m+1}$  and m > 0, then  $\overline{B}^{\mathcal{A}_{m-1}} \in \mathcal{A}_m$ .

Properties (1)-(3) are simple properties which ensure that the topology  $\tau(A_m)$  is Polish. Property (4) here is the difficult property to satisfy and is key to the following theorem:

# Characterizing $\sum_{n+2}^{0}$ hardness

#### Theorem (Day-M.)

Suppose X is Polish,  $Y \subseteq X$ , and  $n \ge 1$ . Then Y is  $\Sigma_{n+2}^0$ -hard (i.e. there exists a continuous reduction of a complete  $\Sigma_{n+2}^0$  set to Y) if and only if there exists a closed set  $F \subseteq X$  and a suitable sequence of sets  $A_0, \ldots, A_n$  on F such that

1. Y is  $\tau(A_n)$ -meager

2. *Y* is  $\tau(A_{n-1})$ -comeager in *A* for all  $A \in A_n$ 

# Characterizing $\sum_{n+2}^{0}$ hardness

#### Theorem (Day-M.)

Suppose X is Polish,  $Y \subseteq X$ , and  $n \ge 1$ . Then Y is  $\sum_{n+2}^{0}$ -hard (i.e. there exists a continuous reduction of a complete  $\sum_{n+2}^{0}$  set to Y) if and only if there exists a closed set  $F \subseteq X$  and a suitable sequence of sets  $A_0, \ldots, A_n$  on F such that

1. Y is  $\tau(A_n)$ -meager

2. Y is 
$$\tau(A_{n-1})$$
-comeager in A for all  $A \in A_n$ 

The proof uses a priority argument. We make heavy use of the true stages machinery of Antonio Montalbán.

# Thanks!