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that f = J; fi, where the f; are partial continuous functions with
A% domains.



The decomposability conjecture

X and Y will denote Polish spaces throughout the talk.
Suppose f: X — Y is a piecewise continuous function in the sense

that f = J; fi, where the f; are partial continuous functions with
A% domains.

Then if Aisis a X0 set, f, (A) is relatively X9 in dom(f;) (which
is A%), so it is 0. Thus, f~1(A) = |J; f*(A) is a countable
union of X2 sets, and hence is X0.



The decomposability conjecture

X and Y will denote Polish spaces throughout the talk.

Suppose f: X — Y is a piecewise continuous function in the sense
that f = J; fi, where the f; are partial continuous functions with
A% domains.

Then if Aisis a X0 set, f, (A) is relatively X9 in dom(f;) (which
is A%), so it is 0. Thus, f~1(A) = |J; f*(A) is a countable
union of X2 sets, and hence is X0.
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Theorem (Day-M.)

The decomposability conjecture is true assuming X3 determinacy.
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Proposition

To prove the decomposability conjecture, it's enough to prove the
case where m = n — 1.
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The converses of these statements are very false.
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ALWAYS HOPE, THEREIS),
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would contradict the following:
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We also need a new characterization of when a set is X hard for
n> 3.



Characterizing X°_, hardness

Let A be a countable collection of subsets of X. Let 7(.A) denote
the topology generated by the subbasis .4, where the open sets are
unions of finite intersections of elements of A.



Characterizing X9, hardness

Let A be a countable collection of subsets of X. Let 7(.A) denote
the topology generated by the subbasis .4, where the open sets are
unions of finite intersections of elements of A.

Given a Polish space X, say that A= Ao, A1, ..., A, is a suitable
sequence of length n + 1 of subsets of X iff Ap is a countable
basis of open sets for X, A,, is a countable set of I'I?n subsets of X
for m > 1, every A,, is closed under finite intersections, and for all
m < n,

1. If B€ Ap, then B € Ay, and A, € Ay for m > 0.

3. If B € Apnt1, then B is closed in 7(Ap).
4.1f B € Apyq and m > 0, then B " € A,

Properties (1)-(3) are simple properties which ensure that the
topology 7(.Ap) is Polish. Property (4) here is the difficult
property to satisfy and is key to the following theorem:
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Suppose X is Polish, Y C X, and n>1. Then Y is Z?,+2—hard
(i.e. there exists a continuous reduction of a complete X9, set to
Y ) if and only if there exists a closed set F C X and a suitable
sequence of sets Ay, ..., Ap on F such that

1. Y is 7(Ap)-meager
2. Y is 7(An—1)-comeager in A for all A € A,
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The proof uses a priority argument. We make heavy use of the
true stages machinery of Antonio Montalban.



Thanks!



