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What functions are piecewise continuous?
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The decomposability conjecture

X and Y will denote Polish spaces throughout the talk.
Suppose f : X → Y is a piecewise continuous function in the sense
that f =

⋃
i fi , where the fi are partial continuous functions with

∆0
n domains.

Then if A is is a Σ0
n set, f −1i (A) is relatively Σ0

n in dom(fi ) (which
is ∆0

n), so it is Σ0
n. Thus, f −1(A) =

⋃
i f
−1
i (A) is a countable

union of Σ0
n sets, and hence is Σ0

n.

Conjecture (2000’s, various authors)

f : X → Y is a union of continuous functions with ∆0
n domains iff

the preimage of every Σ0
n set is Σ0

n.
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The decomposability conjecture

Conjecture (2000’s, the decomposability conjecture)

f : X → Y is a union of Baire class m functions with ∆0
n domains

iff the preimage of every Σ0
n−m+1 set is Σ0

n.

Theorem (Day-M.)

The decomposability conjecture is true assuming Σ1
2 determinacy.
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Prior progress

Theorem (Jayne-Rogers, 1982)

The decomposability conjecture is true for n = 2.

Theorem (Ding-Kihara-Semmes-Zhao, 2018)

The decomposability conjecture is true for n = 3.

These theorems are proved the following way: Suppose f : X → Y
is not a union of Baire class m functions with ∆0

n domains. Then
construct a Σ0

n−m+1 set A whose preimage is not Σ0
n (i.e. f −1(A)

is Π0
n hard).

Proposition

To prove the decomposability conjecture, it’s enough to prove the
case where m = n − 1.
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Changing topology

Suppose we change our topology (X , τ) on X to a new Polish
topology (X , η) where we make countably many Π0

n sets in (X , τ)
the new basic open sets of (X , η).

I Any Σ0
1 set in (X , η) is Σ0

n+1 in (X , τ).

I Any Σ0
k set in (X , η) is Σ0

n+k in (X , τ).

I If A is not Σ0
n+k in (X , τ), it is not Σ0

k in (X , η).

The converses of these statements are very false.
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A stupid attempt at proving decomposability
I Suppose f : (X , τ)→ Y is not a union of Baire class n − 1

functions with ∆0
n domains.

I Change the topology (X , τ) to (X , η) by making some Π0
n−2

sets in (X , τ) the new basic open sets of (X , η).

I Then f : (X , η)→ Y is not a union of Baire class 1 functions
with ∆0

3 domains.

I Apply the techniques of Ding-Kihara-Semmes-Zhao and
obtain a Σ0

2 set A ⊆ Y so that f −1(A) is not Σ0
3 in (X , η).

I Hope that this set which is not Σ0
3 in (X , η) is not Σ0

n in the
original topology (X , τ).
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This idea actually works eventually if we just keep trying

Each time our idea fails, we get a canonical new Π0
n−2 set to add

to our change of topology. (This requires a careful analysis of the
n = 3, m = 2 decomposability proof).

If we add this set to our change of topology and try again, we’ll
eventually succeed at some countable ordinal stage. If not, we
would contradict the following:

Theorem (Harrington 1978, AD)

Fix α < ω1. There is no ω1 length sequence of distinct Π0
α sets.

We also need a new characterization of when a set is Σ0
n hard for

n ≥ 3.
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Characterizing Σ0
n+2 hardness

Let A be a countable collection of subsets of X . Let τ(A) denote
the topology generated by the subbasis A, where the open sets are
unions of finite intersections of elements of A.

Given a Polish space X , say that ~A = A0,A1, . . . ,An is a suitable
sequence of length n + 1 of subsets of X iff A0 is a countable
basis of open sets for X , Am is a countable set of Π0

m subsets of X
for m ≥ 1, every Am is closed under finite intersections, and for all
m < n,

1. If B ∈ A0, then B ∈ A1, and Am ⊆ Am+1 for m > 0.

2. If B ∈ Am, then X \ B ∈ Am+1.

3. If B ∈ Am+1, then B is closed in τ(Am).

4. If B ∈ Am+1 and m > 0, then B
Am−1 ∈ Am.

Properties (1)-(3) are simple properties which ensure that the
topology τ(Am) is Polish. Property (4) here is the difficult
property to satisfy and is key to the following theorem:
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Characterizing Σ0
n+2 hardness

Theorem (Day-M.)

Suppose X is Polish, Y ⊆ X , and n ≥ 1. Then Y is Σ0
n+2-hard

(i.e. there exists a continuous reduction of a complete Σ0
n+2 set to

Y ) if and only if there exists a closed set F ⊆ X and a suitable
sequence of sets A0, . . . ,An on F such that

1. Y is τ(An)-meager

2. Y is τ(An−1)-comeager in A for all A ∈ An

The proof uses a priority argument. We make heavy use of the
true stages machinery of Antonio Montalbán.



Characterizing Σ0
n+2 hardness

Theorem (Day-M.)

Suppose X is Polish, Y ⊆ X , and n ≥ 1. Then Y is Σ0
n+2-hard

(i.e. there exists a continuous reduction of a complete Σ0
n+2 set to

Y ) if and only if there exists a closed set F ⊆ X and a suitable
sequence of sets A0, . . . ,An on F such that

1. Y is τ(An)-meager

2. Y is τ(An−1)-comeager in A for all A ∈ An

The proof uses a priority argument. We make heavy use of the
true stages machinery of Antonio Montalbán.



Thanks!


