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Descriptive set theory of countable models

L countable. Let XL = {all L-structures with universe ω}.

XL Polish via Uϕ(e) := {M ∈ XL : M |= ϕ(e)} clopen for all
ϕ, e ∈ ωn.

S∞ = Sym(ω) acts on XL via homeomorphisms:
σ ·M |= ϕ(σ−1(e))⇔ M |= ϕ(e).

For a theory T or Φ ∈ Lω1,ω, Modω(Φ) is a Borel subset of
XL, invariant under the action of S∞.

The only Borel, invariant subspaces of XL are Modω(Φ) for
some Φ ∈ Lω1,ω.
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Borel complexity

Study the complexity of Modω(T )/ ∼=T (or Modω(Φ)/ ∼=Φ)

Friedman-Stanley: (Modω(Φ),∼=L1) is Borel reducible to
(Modω(Ψ),∼=L2), Φ ≤B Ψ, if there is a Borel
f : Modω(Φ)→ Modω(Ψ) with M ∼=L1 N iff f (M) ∼=L2 f (N).

∼=Φ is always Σ1
1 (analytic) [M ∼= N iff ∃f (· · · )] but

sometimes is Borel.
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Maximal complexity

Φ is Borel complete if Ψ ≤B Φ for all Ψ ∈ Lω1,ω.
Examples include graphs, groups, fields, linear orders.
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Maximal complexity

Φ is Borel complete if Ψ ≤B Φ for all Ψ ∈ Lω1,ω.
Examples include graphs, groups, fields, linear orders.
Notes:

As you strengthen the theory, you shrink the class, making it
harder to be Borel complete.

If Φ is Borel complete, then ∼=Φ is not Borel.
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Maximal complexity

Φ is Borel complete if Ψ ≤B Φ for all Ψ ∈ Lω1,ω.
Examples include graphs, groups, fields, linear orders.
Notes:

As you strengthen the theory, you shrink the class, making it
harder to be Borel complete.

If Φ is Borel complete, then ∼=Φ is not Borel.

Until recently, only known example of Φ with ∼=Φ non-Borel, but
not Borel complete was ‘Abelian p-groups’ where countable models
are characterized by the Ulm invariants.
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A first-order example

Ulrich-Rast-L: ∼= is not Borel for the first-order, weakly minimal
REF(bin)=Th(2ω,En)n∈ω (where En(η, ν) iff η|n = ν|n).
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A first-order example

Ulrich-Rast-L: ∼= is not Borel for the first-order, weakly minimal
REF(bin)=Th(2ω,En)n∈ω (where En(η, ν) iff η|n = ν|n).

Show: REF(bin) is not Borel complete.
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Strategy for showing non-Borel completeness

Every countable M has a canonical Scott sentence
css(M) ∈ Lω1,ω characterizing M up to isomorphism among
countable L-structures. Let
CSS(Φ) := {css(M) : M ∈ Modω(Φ)}.
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Strategy for showing non-Borel completeness

Every countable M has a canonical Scott sentence
css(M) ∈ Lω1,ω characterizing M up to isomorphism among
countable L-structures. Let
CSS(Φ) := {css(M) : M ∈ Modω(Φ)}.
Every Borel embedding f : Modω(Φ)→ Modω(Ψ) induces an
injection

f ∗ : CSS(Φ)→ CSS(Ψ)
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Strategy for showing non-Borel completeness

Every countable M has a canonical Scott sentence
css(M) ∈ Lω1,ω characterizing M up to isomorphism among
countable L-structures. Let
CSS(Φ) := {css(M) : M ∈ Modω(Φ)}.
Every Borel embedding f : Modω(Φ)→ Modω(Ψ) induces an
injection

f ∗ : CSS(Φ)→ CSS(Ψ)

for every V[G ] ⊇ V.
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Credo: Every set X is potentially countable, i.e., X is countable in
some V[G ] ⊇ V.
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Credo: Every set X is potentially countable, i.e., X is countable in
some V[G ] ⊇ V.

Barwise: Every M (of any cardinality) has a canonical Scott
sentence ϕM ∈ L∞,ω such that for any M,N

M ≡∞,ω N if and only if ϕM = ϕN
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Groundedness

Credo #2: Every ϕ ∈ L∞,ω is potentially in Lω1,ω, i.e.,
(ϕ ∈ Lω1,ω)V[G ] for some V[G ] ⊇ V.
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Groundedness

Credo #2: Every ϕ ∈ L∞,ω is potentially in Lω1,ω, i.e.,
(ϕ ∈ Lω1,ω)V[G ] for some V[G ] ⊇ V.

Φ ∈ Lω1,ω is grounded if, for every ϕ ∈ L∞,ω ∩ V and ϕ |= Φ, if ϕ
has a model in some V[G ] ⊇ V, then ϕ has a model in V.
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Groundedness

Credo #2: Every ϕ ∈ L∞,ω is potentially in Lω1,ω, i.e.,
(ϕ ∈ Lω1,ω)V[G ] for some V[G ] ⊇ V.

Φ ∈ Lω1,ω is grounded if, for every ϕ ∈ L∞,ω ∩ V and ϕ |= Φ, if ϕ
has a model in some V[G ] ⊇ V, then ϕ has a model in V.

If Φ is grounded, let ||Φ|| := |Mod(Φ)/ ≡∞,ω | (which may be a
proper class).
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Groundedness

Credo #2: Every ϕ ∈ L∞,ω is potentially in Lω1,ω, i.e.,
(ϕ ∈ Lω1,ω)V[G ] for some V[G ] ⊇ V.

Φ ∈ Lω1,ω is grounded if, for every ϕ ∈ L∞,ω ∩ V and ϕ |= Φ, if ϕ
has a model in some V[G ] ⊇ V, then ϕ has a model in V.

If Φ is grounded, let ||Φ|| := |Mod(Φ)/ ≡∞,ω | (which may be a
proper class).

Theorem (Ulrich-Rast-L)

If Φ,Ψ are both grounded and Φ ≤B Ψ, then ||Φ|| ≤ ||Ψ||.
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An application

Theorem (Ulrich-Rast-L)

1 REF(bin) is grounded.

2 If T is weakly minimal, then |Mod(Φ)/ ≡∞,ω | ≤ i2, hence
||REF (bin)|| = i2.

Corollary (Ulrich-Rast-L)

REF(bin) is not Borel complete. In fact, ‘countable sets of
countable sets of reals’ 6≤B REF (bin).
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Understanding groundedness

Recall: Φ is grounded if, for any ϕ ∈ L∞,ω ∩ V with ϕ |= Φ, if ϕ
has a model in some V[G ] ⊇ V, then ϕ has a model in V.

For ϕ ∈ Lω1,ω, life is good.

Theorem (Karp’s Completeness Theorem)

The following are equivalent for ϕ ∈ Lω1,ω:

1 ϕ has a model;

2 ϕ has countable model in XL;

3 ϕ does not have any ‘formal contradictions’;

4 V |= (∃M |= ϕ) if and only if V[G ] |= (∃M |= ϕ) for
some/every forcing extension V[G ].
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Understanding groundedness

Recall: Φ is grounded if, for any ϕ ∈ L∞,ω ∩ V with ϕ |= Φ, if ϕ
has a model in some V[G ] ⊇ V, then ϕ has a model in V.

For ϕ ∈ Lω1,ω, life is good.

Theorem (Karp’s Completeness Theorem)

The following are equivalent for ϕ ∈ Lω1,ω:

1 ϕ has a model;

2 ϕ has countable model in XL;

3 ϕ does not have any ‘formal contradictions’;

4 V |= (∃M |= ϕ) if and only if V[G ] |= (∃M |= ϕ) for
some/every forcing extension V[G ].

Thus, witnesses ϕ to non-groundedness of Φ must be in L∞,ω but
not Lω1,ω.
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A non-example

Let L = {Un : n ∈ ω} and T :=‘Independent unary predicates’. Say
2ℵ0 = κ and let {si : i ∈ κ} enumerate P(ω).

δ :=
∧

T ∧
∧
i∈κ
∃!x(

∧
n∈si

Un(x) ∧
∧
n 6∈si

¬Un(x))

δ ∈ Lκ+,ω and has a unique model (of size κ).
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Baldwin-Koerwein-L For each k ∈ ω, there is a complete,
countable Tk with atomic models of size ℵk and no larger.
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Baldwin-Koerwein-L For each k ∈ ω, there is a complete,
countable Tk with atomic models of size ℵk and no larger.

Let θk :=
∧
Tk ∧

∧
n∈ω ∀x(x realizes a complete formula).

Then θk ∈ Lω1,ω and has models of size ℵk but no larger.
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Baldwin-Koerwein-L For each k ∈ ω, there is a complete,
countable Tk with atomic models of size ℵk and no larger.

Let θk :=
∧
Tk ∧

∧
n∈ω ∀x(x realizes a complete formula).

Then θk ∈ Lω1,ω and has models of size ℵk but no larger.

Thus, if κ > ℵk , then δ ∧ θk has no models in V, but in the Levy
collapse Coll(κ,ℵ0), V[G ] |= (δ ∧ θk) ∈ Lω1,ω and has a model.
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Baldwin-Koerwein-L For each k ∈ ω, there is a complete,
countable Tk with atomic models of size ℵk and no larger.

Let θk :=
∧
Tk ∧

∧
n∈ω ∀x(x realizes a complete formula).

Then θk ∈ Lω1,ω and has models of size ℵk but no larger.

Thus, if κ > ℵk , then δ ∧ θk has no models in V, but in the Levy
collapse Coll(κ,ℵ0), V[G ] |= (δ ∧ θk) ∈ Lω1,ω and has a model.

So θk is not grounded in the vocabulary τk ∪ {Un : n ∈ ω}.
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Some positive results

(Larson-Zapletal) L = {E}, T = acyclic graphs is grounded.

(URL) L = {En : n ∈ ω}, REF = ‘refining equivalence
relations’ (with arbitrary splitting) is grounded.

(Kaplan-Shelah) Some classes of linear orders are grounded,
but general question remains Open.
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Good news:

1 If T is ℵ1-categorical, then T is grounded.

2 If Φ is complete (i.e., Φ itself is a Scott sentence) then Φ is
grounded.

3 If Φ is grounded, then:
1 The Friedman-Stanley jump J(Φ) is grounded; and
2 If Ψ ` Φ, then Ψ is grounded.

4 Among {Φ :∼=Φ Borel}, the grounded ones and the
non-grounded ones are ≤B -cofinal.
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Bad news:

1 There are first order, non-grounded T with ∼= Borel.

2 There exist first order, weakly minimal T that are
non-grounded.

3 There exist first order, ω-stable T that are non-grounded.

4 There are first-order, Borel complete T that are grounded
(e.g., REF(inf)).

5 The sentence θ1 (in the vocabulary τ1 ∪ {Un : n ∈ ω}) is
grounded iff CH holds.
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Thanks for listening!
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