Groundedness of infinitary sentences

Chris Laskowski University of Maryland

Joint work with Douglas Ulrich and Richard Rast

JMM, 15 January, 2020 URL: Borel completeness and potential canonical Scott sentences, *Fundamenta Mathematicae* **239** (2017), 101-147.

Chris Laskowski University of Maryland

Joint work with Douglas Ulrich and Richard Rast

Descriptive set theory of countable models

L countable. Let $X_L = \{ all \ L$ -structures with universe $\omega \}$.

- X_L Polish via U_{φ(ē)} := {M ∈ X_L : M ⊨ φ(ē)} clopen for all φ, ē ∈ ωⁿ.
- $S_{\infty} = Sym(\omega)$ acts on X_L via homeomorphisms: $\sigma \cdot M \models \varphi(\sigma^{-1}(\overline{e})) \Leftrightarrow M \models \varphi(\overline{e}).$
- For a theory T or $\Phi \in L_{\omega_1,\omega}$, $Mod_{\omega}(\Phi)$ is a Borel subset of X_L , invariant under the action of S_{∞} .
- The only Borel, invariant subspaces of X_L are Mod_ω(Φ) for some Φ ∈ L_{ω1,ω}.

Chris Laskowski University of Maryland

・ロト ・聞ト ・ヨト ・ヨト

Study the complexity of $\operatorname{Mod}_{\omega}(\mathcal{T})/\cong_{\mathcal{T}}$ (or $\operatorname{Mod}_{\omega}(\Phi)/\cong_{\Phi}$) Friedman-Stanley: $(\operatorname{Mod}_{\omega}(\Phi),\cong_{L_1})$ is Borel reducible to $(\operatorname{Mod}_{\omega}(\Psi),\cong_{L_2}), \Phi \leq_{\mathcal{B}} \Psi$, if there is a Borel $f: \operatorname{Mod}_{\omega}(\Phi) \to \operatorname{Mod}_{\omega}(\Psi)$ with $M \cong_{L_1} N$ iff $f(M) \cong_{L_2} f(N)$.

≅_Φ is always Σ¹₁ (analytic) [M ≅ N iff ∃f(···)] but sometimes is Borel.

(日) (同) (日) (日)

Φ is Borel complete if $\Psi \leq_B \Phi$ for all $\Psi \in L_{\omega_1,\omega}$. Examples include graphs, groups, fields, linear orders.

Chris Laskowski University of Maryland

Groundedness of infinitary sentences

 Φ is Borel complete if $\Psi \leq_B \Phi$ for all $\Psi \in L_{\omega_1,\omega}$. Examples include graphs, groups, fields, linear orders. Notes:

- As you strengthen the theory, you shrink the class, making it harder to be Borel complete.
- If Φ is Borel complete, then \cong_{Φ} is not Borel.

 Φ is Borel complete if $\Psi \leq_B \Phi$ for all $\Psi \in L_{\omega_1,\omega}$. Examples include graphs, groups, fields, linear orders. Notes:

- As you strengthen the theory, you shrink the class, making it harder to be Borel complete.
- If Φ is Borel complete, then \cong_{Φ} is not Borel.

Until recently, only known example of Φ with \cong_{Φ} non-Borel, but not Borel complete was 'Abelian *p*-groups' where countable models are characterized by the UIm invariants.

Ulrich-Rast-L: \cong is not Borel for the first-order, weakly minimal REF(bin)=Th($2^{\omega}, E_n$)_{$n \in \omega$} (where $E_n(\eta, \nu)$ iff $\eta | n = \nu | n$).

Chris Laskowski University of Maryland

Groundedness of infinitary sentences

Joint work with Douglas Ulrich and Richard Rast

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ulrich-Rast-L: \cong is not Borel for the first-order, weakly minimal REF(bin)=Th($2^{\omega}, E_n$)_{$n \in \omega$} (where $E_n(\eta, \nu)$ iff $\eta | n = \nu | n$).

Show: REF(bin) is not Borel complete.

Chris Laskowski University of Maryland

Groundedness of infinitary sentences

Joint work with Douglas Ulrich and Richard Rast

(日) (同) (三) (三)

Strategy for showing non-Borel completeness

 Every countable M has a canonical Scott sentence css(M) ∈ L_{ω1,ω} characterizing M up to isomorphism among countable L-structures. Let CSS(Φ) := {css(M) : M ∈ Mod_ω(Φ)}.

- Every countable M has a canonical Scott sentence css(M) ∈ L_{ω1,ω} characterizing M up to isomorphism among countable L-structures. Let CSS(Φ) := {css(M) : M ∈ Mod_ω(Φ)}.
- Every Borel embedding $f : Mod_{\omega}(\Phi) \to Mod_{\omega}(\Psi)$ induces an injection

 $f^*: CSS(\Phi) \to CSS(\Psi)$

Chris Laskowski University of Maryland

イロト 人間ト イヨト イヨト

- Every countable M has a canonical Scott sentence css(M) ∈ L_{ω1,ω} characterizing M up to isomorphism among countable L-structures. Let CSS(Φ) := {css(M) : M ∈ Mod_ω(Φ)}.
- Every Borel embedding $f : Mod_{\omega}(\Phi) \to Mod_{\omega}(\Psi)$ induces an injection

$$f^*: \mathit{CSS}(\Phi) o \mathit{CSS}(\Psi)$$

for every $\mathbb{V}[G] \supseteq \mathbb{V}$.

Chris Laskowski University of Maryland

Credo: Every set X is potentially countable, i.e., X is countable in some $\mathbb{V}[G] \supseteq \mathbb{V}$.

Chris Laskowski University of Maryland

Groundedness of infinitary sentences

Joint work with Douglas Ulrich and Richard Rast

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Credo: Every set X is potentially countable, i.e., X is countable in some $\mathbb{V}[G] \supseteq \mathbb{V}$.

Barwise: Every M (of any cardinality) has a canonical Scott sentence $\varphi_M \in L_{\infty,\omega}$ such that for any M, N

$$M \equiv_{\infty,\omega} N$$
 if and only if $\varphi_M = \varphi_N$

Joint work with Douglas Ulrich and Richard Rast

Chris Laskowski University of Maryland

Credo #2: Every
$$\varphi \in L_{\infty,\omega}$$
 is potentially in $L_{\omega_{1},\omega}$, i.e., $(\varphi \in L_{\omega_{1},\omega})^{\mathbb{V}[G]}$ for some $\mathbb{V}[G] \supseteq \mathbb{V}$.

Joint work with Douglas Ulrich and Richard Rast

æ

▲□▶ ▲圖▶ ▲温▶ ▲温≯

Chris Laskowski University of Maryland

Credo #2: Every $\varphi \in L_{\infty,\omega}$ is potentially in $L_{\omega_1,\omega}$, i.e., $(\varphi \in L_{\omega_1,\omega})^{\mathbb{V}[G]}$ for some $\mathbb{V}[G] \supseteq \mathbb{V}$.

 $\Phi \in L_{\omega_1,\omega}$ is grounded if, for every $\varphi \in L_{\infty,\omega} \cap \mathbb{V}$ and $\varphi \models \Phi$, if φ has a model in some $\mathbb{V}[G] \supseteq \mathbb{V}$, then φ has a model in \mathbb{V} .

Chris Laskowski University of Maryland

(日) (同) (日) (日)

Credo #2: Every $\varphi \in L_{\infty,\omega}$ is potentially in $L_{\omega_1,\omega}$, i.e., $(\varphi \in L_{\omega_1,\omega})^{\mathbb{V}[G]}$ for some $\mathbb{V}[G] \supseteq \mathbb{V}$.

 $\Phi \in L_{\omega_1,\omega}$ is grounded if, for every $\varphi \in L_{\infty,\omega} \cap \mathbb{V}$ and $\varphi \models \Phi$, if φ has a model in some $\mathbb{V}[G] \supseteq \mathbb{V}$, then φ has a model in \mathbb{V} .

If Φ is grounded, let $||\Phi|| := |Mod(\Phi)/ \equiv_{\infty,\omega} |$ (which may be a proper class).

(日) (同) (日) (日)

Credo #2: Every $\varphi \in L_{\infty,\omega}$ is potentially in $L_{\omega_1,\omega}$, i.e., $(\varphi \in L_{\omega_1,\omega})^{\mathbb{V}[G]}$ for some $\mathbb{V}[G] \supseteq \mathbb{V}$.

 $\Phi \in L_{\omega_1,\omega}$ is grounded if, for every $\varphi \in L_{\infty,\omega} \cap \mathbb{V}$ and $\varphi \models \Phi$, if φ has a model in some $\mathbb{V}[G] \supseteq \mathbb{V}$, then φ has a model in \mathbb{V} .

If Φ is grounded, let $||\Phi|| := |Mod(\Phi)/ \equiv_{\infty,\omega} |$ (which may be a proper class).

Theorem (Ulrich-Rast-L)

If Φ, Ψ are both grounded and $\Phi \leq_B \Psi$, then $||\Phi|| \leq ||\Psi||$.

Chris Laskowski University of Maryland Groundedness of infinitary sentences < ロ > < 同 > < 回 > < 回 > < 回 > <

Joint work with Douglas Ulrich and Richard Rast

Theorem (Ulrich-Rast-L)

REF(bin) is grounded.

 If T is weakly minimal, then |Mod(Φ)/ ≡_{∞,ω} | ≤ □₂, hence ||REF(bin)|| = □₂.

Corollary (Ulrich-Rast-L)

REF(bin) is not Borel complete. In fact, 'countable sets of countable sets of reals' $\leq_B REF(bin)$.

Chris Laskowski University of Maryland

イロン イ理と イヨン イヨン

Recall: Φ is grounded if, for any $\varphi \in L_{\infty,\omega} \cap \mathbb{V}$ with $\varphi \models \Phi$, if φ has a model in some $\mathbb{V}[G] \supseteq \mathbb{V}$, then φ has a model in \mathbb{V} .

For $\varphi \in L_{\omega_1,\omega}$, life is good.

Theorem (Karp's Completeness <u>Theorem)</u>

The following are equivalent for $\varphi \in L_{\omega_1,\omega}$:

• φ has a model;

2
$$\varphi$$
 has countable model in X_L;

() φ does not have any 'formal contradictions';

Chris Laskowski University of Maryland

Understanding groundedness

Recall: Φ is grounded if, for any $\varphi \in L_{\infty,\omega} \cap \mathbb{V}$ with $\varphi \models \Phi$, if φ has a model in some $\mathbb{V}[G] \supseteq \mathbb{V}$, then φ has a model in \mathbb{V} .

For $\varphi \in L_{\omega_1,\omega}$, life is good.

Theorem (Karp's Completeness Theorem)

The following are equivalent for $\varphi \in L_{\omega_1,\omega}$:

- φ has a model;
- **2** φ has countable model in X_L ;
- **(**) φ does not have any 'formal contradictions';
- V ⊨ (∃M ⊨ φ) if and only if V[G] ⊨ (∃M ⊨ φ) for some/every forcing extension V[G].

Thus, witnesses φ to non-groundedness of Φ must be in $L_{\infty,\omega}$ but not $L_{\omega_1,\omega}$.

Chris Laskowski University of Maryland

Joint work with Douglas Ulrich and Richard Rast

Let $L = \{U_n : n \in \omega\}$ and T := 'Independent unary predicates'. Say $2^{\aleph_0} = \kappa$ and let $\{s_i : i \in \kappa\}$ enumerate $\mathscr{P}(\omega)$.

$$\delta := \bigwedge T \land \bigwedge_{i \in \kappa} \exists ! x (\bigwedge_{n \in s_i} U_n(x) \land \bigwedge_{n \notin s_i} \neg U_n(x))$$

 $\delta \in L_{\kappa^+,\omega}$ and has a unique model (of size κ).

Baldwin-Koerwein-L For each $k \in \omega$, there is a complete, countable T_k with atomic models of size \aleph_k and no larger.

Chris Laskowski University of Maryland

Groundedness of infinitary sentences

Joint work with Douglas Ulrich and Richard Rast

Baldwin-Koerwein-L For each $k \in \omega$, there is a complete, countable T_k with atomic models of size \aleph_k and no larger. Let $\theta_k := \bigwedge T_k \land \bigwedge_{n \in \omega} \forall \overline{x} (\overline{x} \text{ realizes a complete formula}).$ Then $\theta_k \in L_{\omega_1,\omega}$ and has models of size \aleph_k but no larger.

Joint work with Douglas Ulrich and Richard Rast

Chris Laskowski University of Maryland

Baldwin-Koerwein-L For each $k \in \omega$, there is a complete, countable T_k with atomic models of size \aleph_k and no larger. Let $\theta_k := \bigwedge T_k \land \bigwedge_{n \in \omega} \forall \overline{x} (\overline{x} \text{ realizes a complete formula}).$ Then $\theta_k \in L_{\omega_{1,\omega}}$ and has models of size \aleph_k but no larger. Thus, if $\kappa > \aleph_k$, then $\delta \land \theta_k$ has no models in \mathbb{V} , but in the Levy collapse $Coll(\kappa, \aleph_0), \mathbb{V}[G] \models (\delta \land \theta_k) \in L_{\omega_{1,\omega}}$ and has a model.

Chris Laskowski University of Maryland

Baldwin-Koerwein-L For each $k \in \omega$, there is a complete, countable T_k with atomic models of size \aleph_k and no larger. Let $\theta_k := \bigwedge T_k \land \bigwedge_{n \in \omega} \forall \overline{x} (\overline{x} \text{ realizes a complete formula}).$ Then $\theta_k \in L_{\omega_1,\omega}$ and has models of size \aleph_k but no larger. Thus, if $\kappa > \aleph_k$, then $\delta \land \theta_k$ has no models in \mathbb{V} , but in the Levy collapse $Coll(\kappa, \aleph_0), \mathbb{V}[G] \models (\delta \land \theta_k) \in L_{\omega_1,\omega}$ and has a model. So θ_k is not grounded in the vocabulary $\tau_k \cup \{U_n : n \in \omega\}$.

- (Larson-Zapletal) $L = \{E\}$, T = acyclic graphs is grounded.
- (URL) L = {E_n : n ∈ ω}, REF = 'refining equivalence relations' (with arbitrary splitting) is grounded.
- (Kaplan-Shelah) Some classes of linear orders are grounded, but general question remains Open.

Good news:

- **1** If T is \aleph_1 -categorical, then T is grounded.
- If Φ is complete (i.e., Φ itself is a Scott sentence) then Φ is grounded.
- **③** If Φ is grounded, then:
 - The Friedman-Stanley jump $J(\Phi)$ is grounded; and
 - $\textbf{0} \quad \text{If } \Psi \vdash \Phi, \text{ then } \Psi \text{ is grounded}.$
- Among {Φ :≅_Φ Borel}, the grounded ones and the non-grounded ones are ≤_B-cofinal.

Bad news:

- **1** There are first order, non-grounded T with \cong Borel.
- Or There exist first order, weakly minimal T that are non-grounded.
- **③** There exist first order, ω -stable T that are non-grounded.
- There are first-order, Borel complete T that are grounded (e.g., REF(inf)).
- So The sentence θ₁ (in the vocabulary τ₁ ∪ {U_n : n ∈ ω}) is grounded iff CH holds.

Thanks for listening!

URL: Borel completeness and potential canonical Scott sentences, *Fundamenta Mathematicae* **239** (2017), 101-147.

Chris Laskowski University of Maryland

Joint work with Douglas Ulrich and Richard Rast