Ground model definability in ZF

Victoria Gitman

vgitman@nylogic.org http://victoriagitman.github.io

JMM 2020

Choiceless set theory and related areas January 15, 2019

<ロ> (日) (日) (日) (日) (日)

Ground model definability

More than 3 decades after the introduction of forcing, the following fundamental question was asked and answered.

Question: Is the universe V definable in its forcing extensions V[G]?

Theorem: (Laver (2007), Woodin (2004)) A universe V is uniformly definable in its forcing extensions¹ with a parameter from V.

There is a single formula $\varphi(x, y)$ such that whenever V[G] is a forcing extension of V, there is $a \in V$ such that

 $V = \{x \in V[G] \mid V[G] \models \varphi(x, a)\}.$

¹All forcing extensions in this talk are set-forcing extensions.

イロト イポト イヨト イヨト

Cover and approximation properties

Definition (Hamkins, 2003) Suppose that $V \subseteq W$ are transitive models of (some fragment of) ZFC and δ is a cardinal in W.

• The pair $V \subseteq W$ satisfies the δ -cover property if for every $A \in W$ with $A \subseteq V$ and $|A|^W < \delta$, there is $B \in V$ with $A \subseteq B$ and $|B|^V < \delta$.

"Every set of size less than δ in W that is contained in V can be covered by a set of size less than δ in V."

• The pair $V \subseteq W$ satisfies the δ -approximation property if whenever $A \in W$ with $A \subseteq V$ and $A \cap a \in V$ for every a of size less than δ in V, then $A \in V$.

"If a set in W is contained in V and V has all pieces of it of size less than $\delta,$ then V has the set."

Theorem: (Hamkins) Suppose M, M', and N are transitive models of (a fragment of) ZFC such that:

- δ is regular in N,
- the pairs $M \subseteq N$ and $M' \subseteq N$ have the δ -cover and δ -approximation properties,
- $P^M(\delta) = P^{M'}(\delta)$,
- $(\delta^+)^M = (\delta^+)^N$.

Then M = M'.

<ロ> (四) (四) (三) (三) (三) (三)

The formula defining V

Suppose V[G] is a forcing extension by a poset \mathbb{P} .

- Let $|\mathbb{P}| = \gamma$.
- Let $\delta = \gamma^+$.
- Let Z^{*} be a certain finite fragment of ZFC.
- Say that a transitive model $M \in V[G]$ is good if
 - \blacktriangleright $M \models \mathbb{Z}^*$,
 - $(\delta^+)^M = (\delta^+)^{V[G]}$, $P^M(\delta) = P^V(\delta)$

Lemma

- The pair $V_{\gamma} \subseteq V[G]_{\gamma}$ has the δ -cover and δ -approximation properties whenever they satisfy Z^* .
- There are unboundedly many ordinals γ such that V_{γ} and $V[G]_{\gamma}$ satisfy Z^* .

$\varphi(x, P^V(\delta)) :=$

x is an element of a good model M of height $\gamma \gg \delta$ such that $V[G]_{\gamma} \models Z^*$ and the pair $M \subseteq V[G]_{\gamma}$ has the δ -cover and δ -approximation properties.

Set Theoretic Geology

Ground model definability makes it possible to study the structure of all ground models of a $\rm ZFC$ -universe in a first-order context.

Theorem: (Reitz, 2006) There is a formula $\psi(x, y)$ such that

- for every set r, the class $W_r = \{x \mid \psi(x, r)\}$ is a ground of V,
- for every ground W of V, there is a set r such that $W = \{x \mid \psi(x, r)\}$.

Several new and interesting inner models were introduced and studied using the definability of grounds.

Definition: The mantle is the intersection of all grounds of V.

Theorem: (Usuba, 2017) The mantle is a model of ZFC.

Theorem: (Usuba, 2018) If there exists an extendible cardinal, then the mantle is a (smallest) ground of V.

Ground model definability in $\ensuremath{\mathrm{ZF}}$

Cover and approximation properties arguments do not easily generalize to choiceless models because they are fundamentally tied up with existence of cardinalities.

Open Question: Does (uniform) ground model definability hold for ZF-universes?

Partial results have used (combinations of) two incremental approaches.

- Isolate a class of partial orders for which ground model definability holds.
- Isolate axioms A such that ground model definability holds for ZF + A.

(a)

Ground model definability in $ZF + DC_{\delta}$

Definition: (Lévy, 1964) The choice principle DC_{δ} asserts that for any non-empty set S and any binary relation R, if for each sequence $s \in S^{<\delta}$ there is a $y \in S$ such that s R y, then there is a function $f : \delta \to S$ such that $f \upharpoonright \alpha R f(\alpha)$ for all $\alpha < \delta$.

"We can make δ -many dependent choices along any relation without terminal nodes."

Definition: A poset \mathbb{P} admits a gap at a cardinal δ if it has the form $\mathbb{R} * \dot{\mathbb{Q}}$ where

- $|\mathbb{R}| < \delta$ (in particular, \mathbb{R} is well-orderable) is a non-trivial forcing,
- $\Vdash_{\mathbb{R}}$ " \mathbb{Q} is $\leq \delta$ -strategically closed".

Posets admitting a gap at δ preserve DC_{δ} to the forcing extension.

Theorem: (G., Johnstone, 2014) Suppose $V \models \text{ZF} + DC_{\delta}$ and \mathbb{P} is a poset admitting a gap at δ . Then every forcing extension V[G] by \mathbb{P} satisfies DC_{δ} .

Theorem: (G., Johnstone, 2014) A universe $V \models \text{ZF} + DC_{\delta}$ is uniformly definable in all its forcing extensions by posets admitting a gap at δ .

There is a single formula $\varphi(x, y)$ such that whenever $V \models \text{ZF} + DC_{\delta}$ and V[G] is a forcing extension of V by a poset \mathbb{P} admitting a gap at δ , then

$$V = \{x \in V[G] \mid V[G] \models \varphi(x, P^V(\delta))\}.$$

イロン イヨン イヨン イヨン 三日

Löwenheim-Skolem cardinals

Definition: An uncountable cardinal κ is a Lowenheim-Skolem cardinal (LS) if for every $\gamma < \kappa \leq \alpha$ and $x \in V_{\alpha}$, there is $\beta > \alpha$ and $X \prec V_{\beta}$ such that

- $V_{\gamma} \subseteq X$,
- $x \in X$,
- the transitive collapse of X belongs to V_{κ} ,
- $(X \cap V_{\alpha})^{V_{\gamma}} \subseteq X.$

Proposition: Suppose $V \models \text{ZFC}$. Then the LS cardinals are precisely the \beth -fixed point cardinals.

Definition: (Woodin) Suppose $V \models \text{ZF}$. A cardinal κ is supercompact if for every $\alpha \ge \kappa$, there is $\beta \ge \alpha$, a transitive set N and an elementary embedding $j : V_{\beta} \to N$ such that $\operatorname{crit}(j) = \kappa$, $\alpha < j(\kappa)$, and $N^{V_{\alpha}} \subseteq N$.

Proposition: Suppose $V \models \text{ZF}$. Then every supercompact cardinal is an LS cardinal.

Theorem: (Usuba, 2019) The assertion that there is a proper class of LS cardinals is absolute between V and its forcing extensions.

Corollary: If AC is forceable over $V \models ZF$, then V has a proper class of LS-cardinals.

Example: $L(\mathbb{R})$ has a proper class of LS cardinals.

Universes without LS cardinals

- **Theorem:** (Usuba, 2019) Suppose $V \models \text{ZF}$. If κ is an LS cardinal, then the club filter on κ^+ is κ -complete.
- **Theorem:** (Karagila, 2018) Every universe $V \models \text{ZFC} + \text{GCH}$ has an extension to a universe $W \models \text{ZF}$ with the same cofinalities in which the club filter is not σ -complete for any regular cardinal δ .

Corollary: It is consistent that there are universes $V \models \text{ZF}$ without any LS cardinals.

<ロ> (日) (日) (日) (日) (日)

Ground model definability in $\mathrm{ZF}+$ proper class of LS cardinals

Theorem: (Usuba, 2019) A universe $V \models \text{ZF} + \text{proper class of LS cardinals is uniformly definable in all its forcing extensions.$

There is a single formula $\varphi(x, y)$ such that whenever

 $V \models \text{ZF} + \text{proper class of LS cardinals}$

and V[G] is a forcing extension by a poset $\mathbb{P} \in V_{\kappa}$ for an LS cardinal κ , then

 $V = \{x \in V[G] \mid V[G] \models \varphi(x, V_{\kappa})\}.$

The proof is a modification of the cover and approximation properties arguments, where cardinality is replaced by a rough measure on sets:

 (Usuba) Define for a set x that the measure ||x|| is the least ordinal α such that there is a surjection from V_α onto x.

Corollary: Uniform ground model definability holds for the following universes.

- \bullet Universes satisfying ${\rm ZF}$ + proper class of supercompact cardinals.
- Universes over which AC is forceable.

イロト イポト イヨト イヨト 二日