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Abstract

A function f from ω1 to the ordinals is called a canonical function for
an ordinal α if f represents α in any generic ultrapower induced by forcing
with P(ω1)/NSω1 . We introduce here a method for coding sets of ordinals
using canonical functions from ω1 to ω1. Combining this approach with
arguments from [3], we show that for each cardinal κ there is a forcing
construction preserving cardinalities and cofinalities forcing that every
subset of κ is in the inner model L(P(ω1)).

1 Introduction

Results in set theory over the last forty years show that the existence of certain
large cardinals implies that there there are subsets of ω1 which are not elements
of the inner model L(P(ω)) (for instance, those coding an ω1-sequence of dis-
tinct subsets of ω; see Chapter 6 of [1]). A natural question, asked of us by
several researchers, is whether a similar phenomenon happens at higher cardi-
nals. Here we show that this is not the case. In particular, we show, assuming
the Continuum Hypothesis, that for any infinite cardinal κ there is an (ω,∞)-
distributive, ℵ2-c.c. partial order forcing that P(κ) ⊆ L(P(ω1)). We employ
a coding mechanism using canonical functions (from ω1 to ω1) to code subsets
of the given cardinal κ. We introduce this mechanism in Section 2 and give
the proof in the case κ = ω2 (which is simpler) at the end of the section. The
result for arbitrarity κ is proved in Section 3. This proof involves combining
the coding technique introduced here with previous work of the second author
from [3], although in our context the argument is considerably simpler.
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2 Coding sets of ordinals by subsets of ω1

In this section we introduce the forcing construction which is used in this paper
to code sets of ordinals. Given functions f and g on ω1, we let eq(f, g) denote
the set of α < ω1 for which f(α) = g(α). Suppose that η is an ordinal and that

f̄ = 〈fα : α < η〉

and
C̄ = 〈C{α,β} : {α, β} ∈ [η]2〉

are such that

• each fα is a function from ω1 to ω1;

• C̄ witnesses that f̄ is a mod -NSω1
-distinct sequence, that is, each C{α,β}

is a club subset of ω1 disjoint from eq(fα, fβ);

Let Y be a subset of η. We define a partial order Pf̄ ,C̄,Y which adds a function
from ω1 × ω1 → 2 coding Y via 〈[fα]NSω1

: α < ω1〉, where [f ]NSω1
(for f a

function from ω1 to ω1) is the set of functions g from ω1 to ω1 for which eq(f, g)
contains a club.

2.1 Definition. A condition in Pf̄ ,C̄,Y is a tuple p = 〈up, ip, hp, Ēp〉 such that

• up ∈ [η]ℵ0 ;

• ip ∈
⋂
{C{α,β} : {α, β} ∈ [up]

2};

• letting
jp = sup{fα(ξ) + 1 : (α, ξ) ∈ up × ip},

hp is a function from ip × jp to 2;

• Ēp is a sequence
〈Ep,β : β ∈ up〉

such that each Ep,β is a closed subset of ip.

Given p, q ∈ Pf̄ ,C̄,Y , p ≤ q (p is stronger than q) if

• uq ⊆ up;

• ip ≥ iq;

• for all β ∈ uq, Ep,β ∩ iq = Eq,β ;

• hq ⊆ hp;

• for all α ∈ uq and all ξ ∈ Ep,α \ iq,

hp(ξ, fα(ξ)) = 1⇔ α ∈ Y.
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Lemmas 2.2, 2.3 and 2.4 show that various sets are dense in Pf̄ ,C̄,Y .

Lemma 2.2. For each γ ∈ η, the set of p ∈ Pf̄ ,C̄,Y with γ ∈ up is dense in
Pf̄ ,C̄,Y .

Proof. Fix a condition 〈u, i, h, Ē〉 in Pf̄ ,C̄,Y . If γ ∈ u we are done, so suppose
otherwise. Let

• u′ = u ∪ {γ};

• i′ = min
⋂
{C{α,β} : {α, β} ∈ [u′]2} \ i;

• F̄ = 〈Fβ : β ∈ u′〉 be such that Fβ = Eβ for all β ∈ u, and Fγ = ∅;

• h′ be any function from i′× sup{fα(ξ)+1 : (α, ξ) ∈ u′× i′} to 2 extending
h.

Then 〈u′, i′, h′, F̄ 〉 is a condition in Pf̄ ,C̄,Y below 〈u, i, h, Ē〉.

Lemma 2.3. For every p ∈ Pf̄ ,C̄,Y and every ξ < ω1, there exists a q ≤ p in
Pf̄ ,C̄,Y with iq ≥ ξ and

ip ∈
⋂
{Eq,β : β ∈ uq}.

Proof. Given p, define q by setting uq = up,

iq = min(
⋂
{C{α,β} : {α, β} ∈ [up]

2}) \ (ξ ∪ (ip + 1)),

and Eq,β = Ep,β ∪ {ip} for all β ∈ up.
It remains to extend hp (whose domain is ip × jp) to hq : iq × jq → 2 such

that, for all α ∈ up, hq(ip, fα(ip)) = 1 if and only if α ∈ Y . Since ip ∈ C{α,β} for
all {α, β} ∈ [up]

2, there cannot be distinct α, β ∈ up such that fα(ip) = fβ(ip).
It follows that such an hq exists.

Lemmas 2.2 and 2.3 give the following.

Lemma 2.4. The following sets are dense in Pf̄ ,C̄,Y .

1. For each ξ < ω1, the set of p ∈ Pf̄ ,C̄,Y such that ip ≥ ξ.

2. For each ξ < ω1 and each α < η, the set of p ∈ Pf̄ ,C̄,Y such that α ∈ up
and sup(Ep,α) ≥ ξ.

Given a V -generic filter G ⊆ Pf̄ ,C̄,Y , for each β ∈ η, we let

EG,β =
⋃
{Ep,β : p ∈ G, β ∈ up}.

Lemma 2.4 shows that each EG,β (β ∈ η) is cofinal subsets of ωV1 (which is

ω
V [G]
1 , by Remark 2.5 below), and that

dom(hG) = ωV1 × sup{fα(ξ) + 1 : α < η, ξ < ω1}

(which will be ωV1 ×ωV1 in our applications). Each set EG,β is also closed. By Re-
mark 2.5 and Lemma 2.11 below, forcing with Pf̄ ,C̄,Y preserves all cardinalities
and cofinalities.
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2.5 Remark. The partial order Pf̄ ,C̄,Y is σ-closed; moreover, every descending
ω-sequence of conditions in Pf̄ ,C̄,Y has a greatest lower bound. To see this,
suppose that 〈pn : n ∈ ω〉 is a sequence of conditions in Pf̄ ,C̄,Y such that
pn ≥ pn+1 for all n ∈ ω. Let

• uq =
⋃
n∈ω upn ;

• iq = supn∈ω ipn ;

• Eq,β =
⋃
{Epn,β : n ∈ ω, β ∈ upn}, for each β ∈ uq;

• hq =
⋃
n∈ω hpn .

Then q is the greatest lower bound for {pn : n ∈ ω} in Pf̄ ,C̄,Y .

It is a standard fact, and easy to see, that a countable support iteration of
σ-closed partial orders is σ-closed. We formulate an abstract consequence of the
preceding remark.

2.6 Remark. Suppose that P is a partial order and that Q∼ is a P -name for a

partial order on a subset of the ground model. We say that Q∼ has generic lower

bounds if whenever

• θ is a cardinal greater than 2
|P∗Q∼|;

• X is a countable elementary submodel of H(θ) with P ∗Q∼ ∈ X;

• G ⊆ (P ∗Q∼) ∩X is X-generic for P ∗Q∼;

• p ∈ P is a lower bound for the restriction of G to P ,

there exists an x such that (p, x̌) is a lower bound for G. The construction of
the condition q in Remark 2.5 shows that whenever Q∼ is a P -name for a partial

order of the form Pf̄ ,C̄,Y , Q∼ has generic lower bounds.

Given a condition p in a forcing iteration, we let supp(p) denote the support
of p (we also use sup(u) to mean the supremum of a set of ordinals u).

2.7 Remark. We say that a condition p in an forcing iteration 〈Pα, Q∼α : α < θ〉
is fully realized if, for each α ∈ supp(p), p(α) is x̌ (relative to Pα), for some set
x. If 〈Pα, Q∼α : α < θ〉 is a countable support iteration such that each Q∼α
has generic lower bounds, then (letting Pθ be the direct limit of this iteration)
whenever

• χ is a cardinal greater than 2|Pθ|;

• X is a countable elementary submodel of H(χ) with Pθ ∈ X;

• G ⊆ Pθ ∩X is X-generic for P ∗Q∼;
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there exists fully realized q which is a lower bound for G (this is easily proved
by induction on the elements of X ∩ θ).

2.8 Remark. If G ⊆ Pf̄ ,C̄,Y is a V -generic filter, then, in V [G], Y is the set
of α < η such that hG(ξ, fα(ξ)) = 1 for club many ξ < ω1. This implies that
Y is in any inner model of ZF containing hg which is correct about NSω1 and
contains a sequence 〈Fα : α < η〉 such that each Fα is nonempty subset of the
corresponding [fα]NSω1

(for instance, L(P(ω1)), if η ≤ ω2, and each fα is a
canonical function for α (see Theorem 2.13 and the paragraph before it)). Note
that f̄ and C̄ do not need to be elements of the inner model.

2.9 Remark. In the definition of the partial order Pf̄ ,C̄,Y , the functions fα
are required only to differ pairwise on clubs, not necessarily to dominate one
another. We use canonical functions (from ω1 to ω1) only because their NSω1

-
classes are definable in L(P(ω1)).

We turn now to showing that a countable support iteration of partial orders
of the form Pf̄ ,C̄,Y is ℵ2-c.c.. We start by noting a sufficient condition for
compatibility.

2.10 Remark. Let p and q be conditions in Pf̄ ,C̄,Y such that hp = hq and
Ep,β = Eq,β for all β ∈ up ∩ uq. Then ip = iq and jp = jq. Let

• u′ be up ∪ uq;

• i′ be min(
⋂
{C{α,β} : {α, β} ∈ [u′]2} \ ip;

• j′ be sup{fα(ξ) + 1 : (α, ξ) ∈ u′ × i′};

• h′ be any function from i′ × j′ to 2 such that hp ⊆ h′.

Then the condition 〈u′, i′, h′, Ēp ∪ Ēq〉 is a lower bound for {p, q}.

We say that partial order P has satisfies the regressive ℵ2-chain condition
(c.c.) on cofinality ℵ1 if for any sequence

〈pα : α < ω2〉

of conditions from P, there exist a club D ⊆ ω2 and a regressive function r on
the members of D of cofinality ℵ1 such that for all γ, η ∈ D, if r(γ) = r(η) then
pγ and pη are compatible (this is a weakening of condition (c) from the first
page of [2]).

Lemma 2.11. Suppose that the Continuum Hypothesis holds. Let θ be an
ordinal, and let 〈Pα, Q∼α : α < θ〉 be a countable support forcing iteration such

that each Q∼α is a Pα-name for a partial order of the form Pf̄ ,C̄,Y , where, in the

Pα-extension,

• f̄ is an η-sequence 〈fα : α < η〉, for some ordinal η, of functions from ω1

to ω1;
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• C̄ witnesses that f̄ is a mod-NSω1
-distinct sequence;

• Y is a subset of η.

Let Pθ be the countable support limit of this iteration. Then Pθ satisfies the
regressive ℵ2-c.c. on cofinality ℵ1.

Proof. Fix a sequence 〈pα : α < ω2〉 consisting of distinct conditions in Pθ. It
suffices to consider the case where each pα is fully realized (so for each α < ω2

and γ < θ, we can let upα(γ), etc., refer to the parts of pα(γ)). Let U be the union
of all sets of the form upα(γ) for α < ω2 and γ < θ. Let 〈ξδ : δ < ζ〉 enumerate U ,
for some ζ ≤ ω2. Let κ be a regular cardinal with Pθ and 〈pα : α < ω2〉 in H(κ).
Let D be a club subset of ω2 such that for each γ ∈ D of cofinality ℵ1 there is an
X ≺ H(θ) of cardinality ℵ1, closed under ω-sequences, with 〈pα : α < ω2〉 ∈ X
and X ∩ ω2 = γ. For each γ ∈ D, then, there exists an α < γ such that, for all
ρ ∈ supp(pγ) ∩ γ,

• ρ ∈ supp(pα);

• hpα(ρ) = hpγ(ρ);

• upγ(ρ) ∩ {ξδ : δ < min{γ, ζ}} ⊆ upα(ρ);

• Ēpα(ρ),β = Ēpγ(ρ),β for all β ∈ upγ(ρ) ∩ {ξδ : δ < min{γ, ζ}}.

Let r(γ) be any such α. Remark 2.10 shows that this choice of r works.

2.12 Remark. A generalized version of the partial order Pf̄ ,C̄,Y adds a coor-
dinate to each condition containing a subset of ip, and requires the coding in
the last condition on the order to work only for members of this subset. This
forcing then adds a stationary subset of ω1 relative to which the coding works.
We have chosen the restricted version so that the coding is absolute to outer
models with the same ω1 (not necessarily preserving stationary subsets of ω1).
The distinction is not important in this section, but it helps in the iterated
forcing argument in Section 3.

We give an application of the material in this section, in the case η = ω2.
Fix a sequence πα (α < ω2) such that each πα is a surjection from ω1 to α,
and for each α < ω2, let fα : ω1 → ω1 be such that fα(β) is the ordertype of
πα[β], for each β < ω1 (such a function fα is called a canonical function for
α; it is not hard to see that it represents α in all generic ultrapowers formed
by forcing with P(ω1)/NSω1). Then 〈[fα]NSω1

: α < ω2〉 is in L(P(ω1)). Let

f̄ = 〈fα : α < ω2〉 (we do not need f̄ to be in L(P(ω1)) for Theorem 2.13 below).
For each {α, β} ∈ [ω2]2, let C{α,β} be a club of countable limit ordinals such that

fmin{α,β}(γ) < fmax{α,β}(γ) for all γ ∈ C{α,β}. Fixing a regular θ > 2ℵ2 , there
is a countable support forcing iteration 〈Pα, Q∼α : α < θ〉 such that each Q∼α is

a Pα-name for a partial order of the form Pf̄ ,C̄,Yα , for f̄ and C̄ the fixed sets
introduced in this paragraph, where by suitable bookkeeping the sets Yα range
through all subsets of ω2 appearing in the final extension. Putting together the
material in this section, then, we get the following.
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Theorem 2.13. If the Continuum Hypothesis holds, then there is a σ-closed,
ℵ2-c.c. partial order forcing that P(ω2) ⊆ L(P(ω1)).

3 Coding P(κ) for larger κ

In this section we combine the argument of the previous section with the argu-
ments of Section XVII §4 of [3] to produce a coding of the subsets of cardinals κ
larger than ω2. The object is to obtain the coding in the previous section along
with the existence of a canonical function from ω1 to ω1 for each α < κ.

3.1 Remark. The forcing construction from Section XVII §4 of [3] makes the
constant function from ω1 to {ω1} into a canonical function. Here we need only
that there are canonical functions for each α < κ, so our job is considerably
easier.

Given an ordinal γ, we say that there exist canonical functions for each
α < γ if there exists a sequence of functions fα : ω1 → ω1 (α < γ) such that

• for all α < β < γ, {δ < ω1 : fα(δ) < fβ(δ)} contains a club;

• for all α < γ, all stationary A ⊆ ω1 and all g : ω1 → ω1, if fα dominates g
on A (i.e. g(δ) < fα(δ) for all δ ∈ A), then there exists a β < α such that
A ∩ eq(g, fα) is stationary.

Each fα is then called a canonical function for α.1 If canonical functions exist
for each α < γ, then the sequence 〈Fα : α < γ〉 is in L(P(ω1)), where each Fα is
the set of canonical functions for α. The paragraph before Theorem 2.13 shows
that canonical functions exist for each α < ω2.

The rest of this section proves the following theorem.

Theorem 3.2. Suppose that the Continuum Hypothesis holds, and that κ is an
infinite cardinal. There exists an (ω,∞)-distributive, ℵ2-c.c. countable support
iterated forcing construction forcing the following statements.

• There exist canonical functions for each α < κ.

• P(κ) ⊆ L(P(ω1)).

The previous section establishes the theorem in the case that κ ≤ ω2, so we
assume otherwise here. The second conclusion of the theorem will be obtained
by forcing that for each Y ⊆ κ there exists an h : ω1 × ω1 → ω1 such that for
each α < κ, α ∈ Y if and only if h(ξ, fα(ξ)) = 1 for club many ξ < ω1, for
functions fα (α < κ) witnessing the first conclusion.

1Standard arguments, working by induction on α, show that each fα represents α in any
generic ultrapower formed by forcing with P(ω1)/NSω1 . The usual definition of canonical
function allows functions which map into the ordinals, as opposed to only the countable
ordinals. Since we will not need such functions, we modify the definition for this paper. It
would interesting if the current argument could be modified to work with canonical functions
in this generalized sense, while having 2ℵ1 < κ.
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We consider countable support forcing iterations P̄ = 〈Pα, Q∼α : α < θ〉,
for some ordinal θ, satisfying the following conditions, where for notational
convenience we let Gα denote a generic filter for Pα.

1. For α < κ, Q∼α is a Pα-name for the partial order which adds a function

from ω1 to ω1, by countable initial segments. We let ḟα be the Pα+1-name
for this function, and write fα for ḟα,Gα+1

when this causes no confusion.

2. For γ ∈ [κ, κ ·κ), letting α, β ∈ κ be such that γ = κ · (1 +α) +β, if α ≥ β
then Q∼γ is a Pγ-name for the trivial partial order (which we take to be

the partial order on {∅}), otherwise it is a Pγ-name for the partial order
which adds by countable initial segments a club set of ξ ∈ ω1 for which
fα(ξ) < fβ(ξ). Again, we let Ċ{α,β} be the Pγ+1-name for this club, and

we write C{α,β} for Ċ{α,β},Gγ+1
when convenient.

3. For α ∈ [κ · κ, θ) of the form γ + 2n, for γ a limit ordinal and n ∈ ω, Q∼α
is a Pα-name such that, for some δ < κ and some Pα-names ġα and Ȧα,

• Ȧα is a Pα-name for a subset of ω1;

• ġα is a Pα-name for a function from ω1 to ω1 which is dominated by
fδ on Ȧα,Gα ;

• if, in V [Gα], Ȧα,Gα is stationary and there does not exist β < δ such

that Ȧα,Gα ∩eq(fβ , ġα,Gα) is stationary, then Q∼α,Gα is the partial or-

der which adds a club subset of ω1 disjoint from Ȧα,Gδ , by countable
initial segments;

• if, in V [Gα], Ȧα,Gα is not stationary or there does exist such a β,
then Q∼α,Gα is the trivial partial order.

4. For α ∈ [κ · κ, θ) of the form γ + 2n+ 1, for γ a limit ordinal and n ∈ ω,
Q∼α is a Pα-name for the partial order Pf̄ ,C̄,Ẏα , where

• f̄ = 〈fα : α < κ〉;
• C̄ = {C{α,β} : {α, β} ∈ [κ]2};

• Ẏα is a Pα-name for a subset of κ.

We let Pθ denote the countable support limit of P̄ , and we let P ′θ denote
the set of fully realized conditions in Pθ (see Remark 2.7). We will show by
induction on θ that for any iteration satisfying conditions (1)-(4) above, the
following properties hold.

(a) Pθ is (ω,∞)-distributive (that is, forcing with Pθ adds no new ω-sequences
of ordinals);

(b) P ′θ is dense in Pθ;
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Given that (b) holds, the argument that the corresponding Pθ satisfies the
regressive ℵ2-c.c. on cofinality ℵ1 is a slight modification (using the assumption
of the Continuum Hypothesis to deal with the stages in cases (1)-(3)) of the
proof of Lemma 2.11. Given this, we may fix a cardinal θ such that θκ = θ, and
an iteration satisfying conditions (1)-(4) along with the following two conditions.

5. For all β ∈ [κ · κ, θ) and δ < κ, if ġ and Ȧ are such that Ȧ is a Pβ-name
for a subset of ω1 and ġ is a Pβ-name for a function from ω1 to ω1 which

is dominated by fδ on Ȧα,Gα , there are cofinally many α ∈ [β, θ) (in case

(3) above) such that ġα and Ȧα are the natural reinterpretations of ġ and
Ȧ as Pα-names.

6. For every β ∈ [κ · κ, θ), and every Pβ-name Ẏ for a subset of κ, there is

an α ∈ [β, θ) (in case (4)) such that Ẏα is Ẏ (again, reinterpreted).

The proof of Theorem 3.2 will then be complete. We briefly review the
argument that each fδ is a canonical function for δ. The first part of the
definition is satisfied by the definition of the first κ · κ stages of the iteration.
For the second, suppose that G ⊆ Pθ is a V -generic filter, and that, in V [G], A
is a subset of ω1 and g is a function from ω1 to ω1 dominated by fδ on A. We
may fix a γ ∈ [κ · κ, θ) and Pγ-names ġ and Ȧ such that ġG = g and ȦG = A.
Then the sets A∩eq(g, fβ) exist in the Pγ-extension, for each β < δ. If ρ ∈ [γ, θ)

is a stage in case (3) with respect to ġ and Ȧ, and either A is nonstationary
or one of the sets A ∩ eq(g, fβ) is stationary in V [Gρ], then Q∼ρ,Gρ is the trivial

partial order. Otherwise, the partial order Q∼ρ,Gρ destroys the stationarity of A.

The cofinality condition in case (5) is then essential, but our argument does not
require us to preserve the stationarity of a witness to a challenge given by g and
A, since all possible witnesses exist as soon as g and A do, and if they all fail
then the stationarity of A is destroyed.

We now return to the proof, by induction on θ, that (a) and (b) hold. They
hold trivially in the case θ = 0, and the successor case is similarly straightfor-
ward. We now give the proof in the case where θ is a limit ordinal, assuming
that (a) and (b) hold for all α < θ.

Fix a regular cardinal χ greater than 2|Pθ|. Let p be a condition in Pθ and let
τ be a Pθ-name for an ω-sequence of ordinals. Let N be a countable elementary
submodel of H(χ) with p and τ in N . Let G be an N -generic filter for Pθ with
p ∈ G. For each α ∈ N ∩ (θ+ 1), let Gα be {p�α : p ∈ G}. Let q be the function
on θ which takes the value 1Q∼α

for all α ∈ θ \N (which is ∅̌ is all cases except

for (4), and x̌ for x = 〈∅, ∅, ∅, ∅〉 in (4)), and which is defined as follows on N ∩θ.

• For each α ∈ N ∩ κ, q(α) is x̌, where x is the function determined by
the α-th coordinates of the elements of G, extended by taking the value
o.t.(N ∩ α) at N ∩ ω1.

• For each α ∈ N ∩ [κ, κ · κ) in the trivial case, q(α) is ∅̌.
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• For each α ∈ N ∩ [κ, κ · κ) in the nontrivial case, q(α) is x̌, where x is the
club subset of N ∩ω1 determined by the α-th coordinates of the elements
of G, extended by adding the ordinal N ∩ ω1.

• For each α ∈ N in case (3) for which Q∼α is forced by some condition in

Gα to be trivial, q(α) = ∅̌.

• For each α ∈ N in case (3) for which Q∼α is forced by some condition

in Gα to be nontrivial, q(α) is x̌, where x is the club subset of N ∩ ω1

determined by the α-th coordinates of the elements of G, extended by
adding the ordinal N ∩ ω1.

• For each α ∈ N in case (4), q(α) is the limit of the conditions in the
α-coordinates of the elements of G ∩ P ′θ, as described in Remark 2.5.

It suffices now to see that q is in Pθ, and below each element of G. We show
by induction on α ∈ N ∩ (θ + 1) that q�α is in Pα and that q�α is below each
element of Gα. This is straightforward in the cases where α = 0 or α is a limit
ordinal. The successor cases of the form α + 1, where α is in cases (1) or (4),
or Q∼α is forced by some condition in Gα to be the trivial partial order, are also

straightforward. For α in the nontrivial subcase of case (2), the fact that the
sequence of values 〈q(β)(N ∩ ω1) : β ∈ N ∩ κ〉 is increasing implies that N ∩ ω1

is forced by q�α to be in the desired set.
Finally, we consider α ∈ N in case (3) for which Q∼α is forced by some

condition p0 in G ∩ Pα to be nontrivial. We want to see that q�α forces that
N ∩ ω1 is not in Ȧα. To see this, suppose to the contrary that r ≤ q�α is in
Pα and forces the opposite. We may fix δ ∈ N ∩ α such that r forces that ġα
is dominated on Ȧα by ḟδ. Strengthening r, we may assume that it forces a
value ξ to ġα(N ∩ ω1). Since q�α forces that fδ(N ∩ ω1) = o.t.(N ∩ δ), ξ is less
than N ∩ δ, so ξ is o.t.(N ∩ γ) for some γ ∈ N ∩ δ. Then there is a Pα-name
Ċ in N for a subset of ω1 which p0 forces to be a club disjoint from the set of
ζ ∈ Ȧα for which fγ(ζ) = ġα(ζ). Then r forces that N ∩ ω1 is in Ċ, but also

that ḟγ(ζ) = ġα(ζ) and that N ∩ ω1 is in Ȧα, giving a contradiction.
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