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Continuous logic

Analogous result for arbitrary Polish G involves continuous logic.

Metric L-structure M (L relational):

I underlying complete metric space M of diameter ≤ 1

I for n-ary R ∈ L, 1-Lipschitz RM : Mn → [0, 1]

Theorem (Gao–Kechris 2003)

Up to isomorphism, Polish groups are precisely Aut(M) for
separable first-order metric structures M (with L = ∅, or on U).

Urysohn sphere U: universal ultrahomogeneous Polish metric space
of diameter ≤ 1
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Groupoids

We want to generalize to classes of structures.

Groupoid G : objects, morphisms, multiplication, identity, inverse

X Y Z · · ·f

g ·f

1X

g

f −1

1Y
g−1

1Z

obeying the usual axioms. Formally:

I sets G 0,G 1 of objects and morphisms

I source and target σ, τ : G 1 → G 0

I identity 1(−) : G 0 → G 1

I multiplication · : G 1 ×G0 G 1 := {(g , h) | σ(g) = τ(h)} → G 1

I inverse (−)−1 : G 1 → G 1
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Topological groupoids

Topological groupoid G : G 0,G 1 top spaces, σ, τ, 1(−), ·, (−)−1 cts

Open top groupoid: · open, i.e., U,V ⊆ G 1 open =⇒ U · V open
(equivalently, σ or τ is open)

Example

Topological group G = 1-object open topological groupoid

Example

G : topological group, G y X continuous action
Action groupoid G n X has:

I (G n X )0 := X

I morphisms x → y = {g ∈ G | g · x = y}
I formally, (G n X )1 := G × X where (g , x) = g : x → g · x
I σ = projection : G × X → X open
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Logic actions

L : countable relational language

Space of metric L-structures ModU(L) :=
∏

n-ary R∈L

1-Lipschitz maps w/ ptwise conv︷ ︸︸ ︷
Lip(Un, [0, 1])

Logic action Iso(U) y ModU(L) via pushforward of structures

For an L-theory T , ModU(L, T ) := {M ∈ ModU(L) | M |= T }
(Iso(U)-invariant)

Groupoid of models Iso(U) n ModU(L, T ) has

I objects: models of T on U
I morphisms: isomorphisms between models
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Representation of Polish groupoids

Theorem (C.)

For any open Polish groupoid G , there is a language L and an
Lω1ω-sentence φ in continuous logic s.t.
G 'B Iso(U) n ModU(L, φ) (Borel equivalence of groupoids).

In particular, EG ∼B EModU(L,φ)
Iso(U) , a Polish group action.

X EG Y :⇐⇒ ∃g : X → Y ∈ G .

This answers a question of Lupini (2017).
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Representation of non-Archimedean groupoids

A topological groupoid G is non-Archimedean if every 1X ∈ G 1 has
a neighborhood basis of open subgroupoids.

E.g., G n X , for non-Archimedean G .

Theorem (C.)

For any non-Archimedean open Polish groupoid G , there is a
language L and an Lω1ω-sentence φ in discrete logic s.t.
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S∞
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Strong conceptual completeness

The preceding results say that (up to 'B)

syntax −→→ semantics

ctbl cts (disc) Lω1ω-theories −→→ (non-Arch) open Polish gpds

(L, T ) 7−→ ModU (N)(L, T ).

Theorem (C.)

There is an equivalence of 2-categories

{ctbl disc Lω1ω-theories} {non-Arch open Polish gpds}op

(L, T ) ModN(L, T )

(L′, T ′) ModN(L′, T ′)

'

Lω1ω-interpretation F F∗ Borel functor

T ℵ0-categorical: Harrison-Trainor–Miller–Montalbán (2018)

Proof uses DST (Becker–Kechris) + topos theory (Joyal–Tierney).
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