Polish groupoids and $\mathcal{L}_{\omega_1\omega}$ -theories

Ronnie Chen

University of Illinois at Urbana-Champaign

JMM, January 15, 2020

Philosophy

This talk is about the mapping

syntax \longrightarrow semantics

in countable infinitary logic $(\mathcal{L}_{\omega_1\omega})$ and descriptive set theory.

Philosophy

This talk is about the mapping

 $\mathsf{syntax} \xrightarrow{\simeq} \mathsf{semantics}$

in countable infinitary logic $(\mathcal{L}_{\omega_1\omega})$ and descriptive set theory.

Polish group: separable, completely metrizable topological group

Polish group: separable, completely metrizable topological group Non-Archimedean Polish group G: G has a nbhd basis of open subgroups at $1 \in G$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Polish group: separable, completely metrizable topological group Non-Archimedean Polish group G: G has a nbhd basis of open subgroups at $1 \in G$.

Theorem (classical)

Up to isomorphism, non-Archimedean Polish groups are precisely $Aut(\mathcal{M})$ for countable first-order structures \mathcal{M}

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Polish group: separable, completely metrizable topological group Non-Archimedean Polish group G: G has a nbhd basis of open subgroups at $1 \in G$.

Theorem (classical)

Up to isomorphism, non-Archimedean Polish groups are precisely $Aut(\mathcal{M})$ for countable first-order structures \mathcal{M} (on \mathbb{N}).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Polish group: separable, completely metrizable topological group Non-Archimedean Polish group G: G has a nbhd basis of open subgroups at $1 \in G$.

Theorem (classical)

Up to isomorphism, non-Archimedean Polish groups are precisely $Aut(\mathcal{M})$ for countable first-order structures \mathcal{M} (on \mathbb{N}).

syntax \longrightarrow semantics

G

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Polish group: separable, completely metrizable topological group Non-Archimedean Polish group G: G has a nbhd basis of open subgroups at $1 \in G$.

Theorem (classical)

Up to isomorphism, non-Archimedean Polish groups are precisely $Aut(\mathcal{M})$ for countable first-order structures \mathcal{M} (on \mathbb{N}).

syntax — >> semantics

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$$\mathcal{L}, \mathcal{M} \stackrel{\mathsf{Aut}}{\longmapsto} \mathcal{G}$$

Analogous result for arbitrary Polish G involves continuous logic.

Analogous result for arbitrary Polish G involves continuous logic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Metric \mathcal{L} -structure \mathcal{M} (\mathcal{L} relational):

▶ underlying complete metric space M of diameter ≤ 1

▶ for *n*-ary $R \in \mathcal{L}$, 1-Lipschitz $R^{\mathcal{M}} : M^n \rightarrow [0, 1]$

Analogous result for arbitrary Polish G involves continuous logic.

Metric \mathcal{L} -structure \mathcal{M} (\mathcal{L} relational):

- underlying complete metric space M of diameter ≤ 1
- ▶ for *n*-ary $R \in \mathcal{L}$, 1-Lipschitz $R^{\mathcal{M}} : M^n \rightarrow [0, 1]$

Theorem (Gao-Kechris 2003)

Up to isomorphism, Polish groups are precisely $\mathsf{Aut}(\mathcal{M})$ for separable first-order metric structures $\mathcal M$

Analogous result for arbitrary Polish G involves continuous logic.

Metric \mathcal{L} -structure \mathcal{M} (\mathcal{L} relational):

- underlying complete metric space M of diameter ≤ 1
- ▶ for *n*-ary $R \in \mathcal{L}$, 1-Lipschitz $R^{\mathcal{M}} : M^n \rightarrow [0, 1]$

Theorem (Gao-Kechris 2003)

Up to isomorphism, Polish groups are precisely $Aut(\mathcal{M})$ for separable first-order metric structures \mathcal{M} (with $\mathcal{L} = \emptyset$,

Analogous result for arbitrary Polish G involves continuous logic.

Metric \mathcal{L} -structure \mathcal{M} (\mathcal{L} relational):

- underlying complete metric space M of diameter ≤ 1
- ▶ for *n*-ary $R \in \mathcal{L}$, 1-Lipschitz $R^{\mathcal{M}} : M^n \rightarrow [0, 1]$

Theorem (Gao-Kechris 2003)

Up to isomorphism, Polish groups are precisely $Aut(\mathcal{M})$ for separable first-order metric structures \mathcal{M} (with $\mathcal{L} = \emptyset$, or on \mathbb{U}).

Urysohn sphere $\mathbb{U}:$ universal ultrahomogeneous Polish metric space of diameter ≤ 1

We want to generalize to classes of structures.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We want to generalize to classes of structures.

Groupoid G: objects, morphisms, multiplication, identity, inverse

X Y Z …

We want to generalize to classes of structures.

Groupoid G: objects, morphisms, multiplication, identity, inverse

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

. . .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

We want to generalize to classes of structures.

Groupoid G: objects, morphisms, multiplication, identity, inverse

. . .

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

We want to generalize to classes of structures.

Groupoid G: objects, morphisms, multiplication, identity, inverse

. . .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We want to generalize to classes of structures.

Groupoid G: objects, morphisms, multiplication, identity, inverse

. . .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We want to generalize to classes of structures.

Groupoid G: objects, morphisms, multiplication, identity, inverse

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

obeying the usual axioms.

We want to generalize to classes of structures.

Groupoid G: objects, morphisms, multiplication, identity, inverse

obeying the usual axioms. Formally:

- sets G^0 , G^1 of objects and morphisms
- source and target $\sigma, \tau : G^1 \to G^0$
- identity $1_{(-)}: G^0 \to G^1$
- multiplication $\cdot : G^1 \times_{G^0} G^1 := \{(g, h) \mid \sigma(g) = \tau(h)\} \rightarrow G^1$
- inverse $(-)^{-1}: G^1 \to G^1$

Topological groupoid G: G^0, G^1 top spaces, $\sigma, \tau, 1_{(-)}, \cdot, (-)^{-1}$ cts

Topological groupoid $G: G^0, G^1$ top spaces, $\sigma, \tau, 1_{(-)}, \cdot, (-)^{-1}$ cts

Open top groupoid: \cdot open, i.e., $U, V \subseteq G^1$ open $\implies U \cdot V$ open

Topological groupoid $G: G^0, G^1$ top spaces, $\sigma, \tau, 1_{(-)}, \cdot, (-)^{-1}$ cts Open top groupoid: \cdot open, i.e., $U, V \subseteq G^1$ open $\implies U \cdot V$ open (equivalently, σ or τ is open)

Topological groupoid G: G^0, G^1 top spaces, $\sigma, \tau, 1_{(-)}, \cdot, (-)^{-1}$ cts

Open top groupoid: \cdot open, i.e., $U, V \subseteq G^1$ open $\implies U \cdot V$ open (equivalently, σ or τ is open)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example

Topological group G = 1-object open topological groupoid

Topological groupoid G: G^0, G^1 top spaces, $\sigma, \tau, 1_{(-)}, \cdot, (-)^{-1}$ cts

Open top groupoid: \cdot open, i.e., $U, V \subseteq G^1$ open $\implies U \cdot V$ open (equivalently, σ or τ is open)

Example

Topological group G = 1-object open topological groupoid

Example

G : topological group, $G \curvearrowright X$ continuous action

Topological groupoid G: G^0, G^1 top spaces, $\sigma, \tau, 1_{(-)}, \cdot, (-)^{-1}$ cts

Open top groupoid: \cdot open, i.e., $U, V \subseteq G^1$ open $\implies U \cdot V$ open (equivalently, σ or τ is open)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example

Topological group G = 1-object open topological groupoid

Example

G: topological group, $G \curvearrowright X$ continuous action Action groupoid $G \ltimes X$ has:

•
$$(G \ltimes X)^0 := X$$

Topological groupoid G: G^0, G^1 top spaces, $\sigma, \tau, 1_{(-)}, \cdot, (-)^{-1}$ cts

Open top groupoid: \cdot open, i.e., $U, V \subseteq G^1$ open $\implies U \cdot V$ open (equivalently, σ or τ is open)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example

Topological group G = 1-object open topological groupoid

Example

G: topological group, $G \curvearrowright X$ continuous action Action groupoid $G \ltimes X$ has:

$$\blacktriangleright (G \ltimes X)^0 := X$$

• morphisms $x \to y = \{g \in G \mid g \cdot x = y\}$

Topological groupoid G: G^0, G^1 top spaces, $\sigma, \tau, 1_{(-)}, \cdot, (-)^{-1}$ cts

Open top groupoid: \cdot open, i.e., $U, V \subseteq G^1$ open $\implies U \cdot V$ open (equivalently, σ or τ is open)

Example

Topological group G = 1-object open topological groupoid

Example

G: topological group, $G \curvearrowright X$ continuous action Action groupoid $G \ltimes X$ has:

$$\blacktriangleright \ (G \ltimes X)^0 := X$$

- morphisms $x \to y = \{g \in G \mid g \cdot x = y\}$
- ▶ formally, $(G \ltimes X)^1 := G \times X$ where $(g, x) = g : x \to g \cdot x$

Topological groupoid G: G^0, G^1 top spaces, $\sigma, \tau, 1_{(-)}, \cdot, (-)^{-1}$ cts

Open top groupoid: \cdot open, i.e., $U, V \subseteq G^1$ open $\implies U \cdot V$ open (equivalently, σ or τ is open)

Example

Topological group G = 1-object open topological groupoid

Example

G: topological group, $G \curvearrowright X$ continuous action Action groupoid $G \ltimes X$ has:

$$\blacktriangleright \ (G \ltimes X)^0 := X$$

- morphisms $x \to y = \{g \in G \mid g \cdot x = y\}$
- ▶ formally, $(G \ltimes X)^1 := G \times X$ where $(g, x) = g : x \to g \cdot x$

•
$$\sigma = \mathsf{projection} : G \times X \to X$$
 open

 $\mathcal L$: countable relational language

Space of metric \mathcal{L} -structures $\mathsf{Mod}_{\mathbb{U}}(\mathcal{L}) := \prod_{n-\mathsf{ary } R \in \mathcal{L}} \overbrace{\mathsf{Lip}(\mathbb{U}^n, [0, 1])}^{\mathsf{Lip}(\mathbb{U}^n, [0, 1])}$

1-Lipschitz maps w/ ptwise conv

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $\mathcal L$: countable relational language

Space of metric \mathcal{L} -structures $Mod_{\mathbb{U}}(\mathcal{L}) := \prod_{n-ary \ R \in \mathcal{L}} \underbrace{\operatorname{Lip}(\mathbb{U}^n, [0, 1])}_{\operatorname{Lip}(\mathbb{U}^n, [0, 1])}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Logic action $\mathsf{Iso}(\mathbb{U}) \curvearrowright \mathsf{Mod}_{\mathbb{U}}(\mathcal{L})$ via pushforward of structures

 $\mathcal L$: countable relational language

1-Lipschitz maps w/ ptwise conv

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Space of metric \mathcal{L} -structures $Mod_{\mathbb{U}}(\mathcal{L}) := \prod_{n-ary \ R \in \mathcal{L}} Lip(\mathbb{U}^n, [0, 1])$

Logic action $\mathsf{Iso}(\mathbb{U}) \curvearrowright \mathsf{Mod}_{\mathbb{U}}(\mathcal{L})$ via pushforward of structures

For an \mathcal{L} -theory \mathcal{T} , $\mathsf{Mod}_{\mathbb{U}}(\mathcal{L}, \mathcal{T}) := \{\mathcal{M} \in \mathsf{Mod}_{\mathbb{U}}(\mathcal{L}) \mid \mathcal{M} \models \mathcal{T}\}$ (Iso(\mathbb{U})-invariant)

 $\mathcal L$: countable relational language

1-Lipschitz maps w/ ptwise conv

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Space of metric \mathcal{L} -structures $Mod_{\mathbb{U}}(\mathcal{L}) := \prod_{n-ary \ R \in \mathcal{L}} Lip(\mathbb{U}^n, [0, 1])$

Logic action $\mathsf{Iso}(\mathbb{U}) \curvearrowright \mathsf{Mod}_\mathbb{U}(\mathcal{L})$ via pushforward of structures

For an \mathcal{L} -theory \mathcal{T} , $\mathsf{Mod}_{\mathbb{U}}(\mathcal{L}, \mathcal{T}) := \{\mathcal{M} \in \mathsf{Mod}_{\mathbb{U}}(\mathcal{L}) \mid \mathcal{M} \models \mathcal{T}\}$ (Iso(U)-invariant)

Groupoid of models $Iso(\mathbb{U}) \ltimes Mod_{\mathbb{U}}(\mathcal{L}, \mathcal{T})$ has

- objects: models of \mathcal{T} on \mathbb{U}
- morphisms: isomorphisms between models

Representation of Polish groupoids

Theorem (C.)

For any open Polish groupoid G, there is a language \mathcal{L} and an $\mathcal{L}_{\omega_1\omega}$ -sentence ϕ in continuous logic s.t. $G \simeq_B \operatorname{Iso}(\mathbb{U}) \ltimes \operatorname{Mod}_{\mathbb{U}}(\mathcal{L}, \phi)$ (Borel equivalence of groupoids).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Representation of Polish groupoids

Theorem (C.)

For any open Polish groupoid G, there is a language \mathcal{L} and an $\mathcal{L}_{\omega_1\omega}$ -sentence ϕ in continuous logic s.t. $G \simeq_B \operatorname{Iso}(\mathbb{U}) \ltimes \operatorname{Mod}_{\mathbb{U}}(\mathcal{L}, \phi)$ (Borel equivalence of groupoids). In particular, $\mathbb{E}_G \sim_B \mathbb{E}^{\operatorname{Mod}_{\mathbb{U}}(\mathcal{L}, \phi)}_{\operatorname{Iso}(\mathbb{U})}$, a Polish group action.

$$X \mathbb{E}_{G} Y : \iff \exists g : X \to Y \in G.$$

This answers a question of Lupini (2017).

Representation of non-Archimedean groupoids

A topological groupoid G is non-Archimedean if every $1_X \in G^1$ has a neighborhood basis of open subgroupoids.

E.g., $G \ltimes X$, for non-Archimedean G.

Representation of non-Archimedean groupoids

A topological groupoid G is non-Archimedean if every $1_X \in G^1$ has a neighborhood basis of open subgroupoids.

E.g., $G \ltimes X$, for non-Archimedean G.

Theorem (C.)

For any non-Archimedean open Polish groupoid G, there is a language \mathcal{L} and an $\mathcal{L}_{\omega_1\omega}$ -sentence ϕ in discrete logic s.t. $G \simeq_B S_{\infty} \ltimes \operatorname{Mod}_{\mathbb{N}}(\mathcal{L}, \phi).$ In particular, $\mathbb{E}_G \sim_B \mathbb{E}_{S_{\infty}}^{\operatorname{Mod}_{\mathbb{N}}(\mathcal{L}, \phi)}.$

The preceding results say that (up to \simeq_B)

syntax \longrightarrow semantics ctbl cts (disc) $\mathcal{L}_{\omega_1\omega}$ -theories \longrightarrow (non-Arch) open Polish gpds $(\mathcal{L}, \mathcal{T}) \longmapsto \mathsf{Mod}_{\mathbb{U}(\mathbb{N})}(\mathcal{L}, \mathcal{T}).$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The preceding results say that (up to \simeq_B)

syntax \longrightarrow semantics ctbl cts (disc) $\mathcal{L}_{\omega_1\omega}$ -theories \longrightarrow (non-Arch) open Polish gpds $(\mathcal{L}, \mathcal{T}) \longmapsto \mathsf{Mod}_{\mathbb{U}(\mathbb{N})}(\mathcal{L}, \mathcal{T}).$

Theorem (C.)

There is an equivalence of 2-categories $\{ ctbl \ disc \ \mathcal{L}_{\omega_1\omega} \text{-theories} \} \simeq \{ non-Arch \ open \ Polish \ gpds \}^{op}$ $(\mathcal{L}, \mathcal{T}) \longmapsto \operatorname{Mod}_{\mathbb{N}}(\mathcal{L}, \mathcal{T})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The preceding results say that (up to \simeq_B)

syntax \longrightarrow semantics ctbl cts (disc) $\mathcal{L}_{\omega_1\omega}$ -theories \longrightarrow (non-Arch) open Polish gpds $(\mathcal{L}, \mathcal{T}) \longmapsto \mathsf{Mod}_{\mathbb{U}(\mathbb{N})}(\mathcal{L}, \mathcal{T}).$

Theorem (C.)

There is an equivalence of 2-categories

 $\begin{aligned} \{\textit{ctbl disc } \mathcal{L}_{\omega_1\omega}\textit{-theories} \} &\simeq \{\textit{non-Arch open Polish gpds} \}^{\mathsf{op}} \\ (\mathcal{L}, \mathcal{T}) &\longmapsto \mathsf{Mod}_{\mathbb{N}}(\mathcal{L}, \mathcal{T}) \\ \mathcal{L}_{\omega_1\omega}\textit{-interpretation } \mathcal{F} \downarrow \longmapsto & \bigwedge \uparrow \mathcal{F}^* \textit{ Borel functor} \\ (\mathcal{L}', \mathcal{T}') &\longmapsto \mathsf{Mod}_{\mathbb{N}}(\mathcal{L}', \mathcal{T}') \end{aligned}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The preceding results say that (up to \simeq_B)

syntax \longrightarrow semantics ctbl cts (disc) $\mathcal{L}_{\omega_1\omega}$ -theories \longrightarrow (non-Arch) open Polish gpds $(\mathcal{L}, \mathcal{T}) \longmapsto \mathsf{Mod}_{\mathbb{U}(\mathbb{N})}(\mathcal{L}, \mathcal{T}).$

Theorem (C.)

There is an equivalence of 2-categories

 $\begin{aligned} \{\textit{ctbl disc } \mathcal{L}_{\omega_1\omega}\textit{-theories} \} &\simeq \{\textit{non-Arch open Polish gpds} \}^{\mathsf{op}} \\ (\mathcal{L}, \mathcal{T}) &\longmapsto \mathsf{Mod}_{\mathbb{N}}(\mathcal{L}, \mathcal{T}) \\ \mathcal{L}_{\omega_1\omega}\textit{-interpretation } \mathcal{F} \downarrow \longmapsto & \bigwedge \uparrow \mathcal{F}^* \textit{ Borel functor} \\ (\mathcal{L}', \mathcal{T}') &\longmapsto \mathsf{Mod}_{\mathbb{N}}(\mathcal{L}', \mathcal{T}') \end{aligned}$

 $\mathcal{T} \aleph_0$ -categorical: Harrison-Trainor-Miller-Montalbán (2018)

The preceding results say that (up to \simeq_B)

syntax \longrightarrow semantics ctbl cts (disc) $\mathcal{L}_{\omega_1\omega}$ -theories \longrightarrow (non-Arch) open Polish gpds $(\mathcal{L}, \mathcal{T}) \longmapsto \mathsf{Mod}_{\mathbb{U}(\mathbb{N})}(\mathcal{L}, \mathcal{T}).$

Theorem (C.)

There is an equivalence of 2-categories

 $\begin{aligned} \{\textit{ctbl disc } \mathcal{L}_{\omega_1\omega}\textit{-theories} \} &\simeq \{\textit{non-Arch open Polish gpds} \}^{\mathsf{op}} \\ (\mathcal{L}, \mathcal{T}) &\longmapsto \mathsf{Mod}_{\mathbb{N}}(\mathcal{L}, \mathcal{T}) \\ \mathcal{L}_{\omega_1\omega}\textit{-interpretation } \mathcal{F} \downarrow \longmapsto & \bigwedge \uparrow \mathcal{F}^* \textit{ Borel functor} \\ (\mathcal{L}', \mathcal{T}') &\longmapsto \mathsf{Mod}_{\mathbb{N}}(\mathcal{L}', \mathcal{T}') \end{aligned}$

 $\mathcal{T} \aleph_0$ -categorical: Harrison-Trainor–Miller–Montalbán (2018) Proof uses DST (Becker–Kechris) + topos theory (Joyal–Tierney).

Thank you

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)