Choice from Finite Sets: A Topos View

Andreas Blass

University of Michigan

15 January 2020

3

(日) (同) (三) (三)

C(n, I) means every *I*-indexed family of *n*-element sets has a choice function.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

C(n, I) means every *I*-indexed family of *n*-element sets has a choice function.

C(Z, I) means every *I*-indexed family of *n*-element sets for $n \in Z$ has a choice function.

(日) (周) (三) (三)

C(n, I) means every *I*-indexed family of *n*-element sets has a choice function.

C(Z, I) means every *I*-indexed family of *n*-element sets for $n \in Z$ has a choice function.

Theorem (Tarski)

If $\forall I C(2, I)$ then also $\forall I C(4, I)$.

C(n, I) means every *I*-indexed family of *n*-element sets has a choice function.

C(Z, I) means every *I*-indexed family of *n*-element sets for $n \in Z$ has a choice function.

```
Theorem (Tarski)
```

If $\forall I \ C(2, I)$ then also $\forall I \ C(4, I)$.

It is not claimed that

$$\forall I(C(2, I) \implies C(4, I)).$$

C(n, I) means every *I*-indexed family of *n*-element sets has a choice function.

C(Z, I) means every *I*-indexed family of *n*-element sets for $n \in Z$ has a choice function.

```
Theorem (Tarski)
```

```
If \forall I \ C(2, I) then also \forall I \ C(4, I).
```

It is not claimed that

$$\forall I(C(2,I) \implies C(4,I)).$$

Theorem $\forall I (C(2, I) \land C(3, I) \implies C(4, I)).$

C(n, I) means every *I*-indexed family of *n*-element sets has a choice function.

C(Z, I) means every *I*-indexed family of *n*-element sets for $n \in Z$ has a choice function.

Theorem (Tarski) If $\forall I C(2, I)$ then also $\forall I C(4, I)$. Global

It is not claimed that

$$\forall I(C(2,I) \implies C(4,I)).$$

Theorem

 $\forall I (C(2, I) \land C(3, I) \implies C(4, I)). \qquad \textit{Local}$

Mostowski-Gauntt Permutation Group Criteria

Theorem (Local)

For any natural number n and any finite set Z of natural numbers, the following are equivalent.

- ZFA proves $\forall I(C(Z, I) \implies C(n, I)).$
- Any group that can act without fixed points on n can also act without fixed points on some $z \in Z$.

Mostowski-Gauntt Permutation Group Criteria

Theorem (Local)

For any natural number n and any finite set Z of natural numbers, the following are equivalent.

• ZFA proves $\forall I(C(Z, I) \implies C(n, I)).$

• Any group that can act without fixed points on n can also act without fixed points on some $z \in Z$.

Theorem (Global)

For any natural number n and any finite set Z of natural numbers, the following are equivalent.

- ZFA proves "If $\forall I C(Z, I)$ then $\forall I C(n, I)$."
- Any group that can act without fixed points on n has a subgroup that can act without fixed points on some z ∈ Z.

A *topos* is a category \mathcal{E} so similar to the category **Set** of sets and functions that it makes sense to speak of structures in \mathcal{E} , and to interpret first-order and even higher-order formulas in such structures.

(日) (周) (三) (三)

A *topos* is a category \mathcal{E} so similar to the category **Set** of sets and functions that it makes sense to speak of structures in \mathcal{E} , and to interpret first-order and even higher-order formulas in such structures. Higher-order *intuitionistic* logic is sound for these interpretations. I'll use "topos" to mean "elementary topos with natural numbers object".

A *topos* is a category \mathcal{E} so similar to the category **Set** of sets and functions that it makes sense to speak of structures in \mathcal{E} , and to interpret first-order and even higher-order formulas in such structures. Higher-order *intuitionistic* logic is sound for these interpretations. I'll use "topos" to mean "elementary topos with natural numbers object".

Important Examples

I'll use "topos" to mean "elementary topos with natural numbers object".

Important Examples

 $\mathbf{Set}^{\prime} = \mathbf{Set}/I$: topos of *I*-indexed families of sets and of functions.

イロト イポト イヨト イヨト

I'll use "topos" to mean "elementary topos with natural numbers object".

Important Examples

 $\mathbf{Set}^{\prime} = \mathbf{Set}/I$: topos of *I*-indexed families of sets and of functions.

Any model M of ZF. (Can allow atoms, can omit replacement, can omit regularity. Also M/I for any object I of M)

イロト イポト イヨト イヨト 二日

I'll use "topos" to mean "elementary topos with natural numbers object".

Important Examples

 $\mathbf{Set}^{\prime} = \mathbf{Set}/I$: topos of *I*-indexed families of sets and of functions.

Any model M of ZF. (Can allow atoms, can omit replacement, can omit regularity. Also M/I for any object I of M)

Fix a group G.

G-Set: topos of sets with (left) action of G and functions that commute with the actions.

M-sets for any monoid M Kripke structures for intuitionistic logic Presheaves on any small category Sheaves on any topological space (or any site) Realizability topoi

3

A *point* in X is a morphism from $1 = (1)_{i \in I}$ to X.

A *point* in X is a morphism from $1 = (1)_{i \in I}$ to X. So it amounts to a choice of one element from each X_i .

A *point* in X is a morphism from $1 = (1)_{i \in I}$ to X. So it amounts to a choice of one element from each X_i .

Similarly when **Set** is replaced by other models of ZF.

A *point* in X is a morphism from $1 = (1)_{i \in I}$ to X. So it amounts to a choice of one element from each X_i .

Similarly when **Set** is replaced by other models of ZF.

So C(n, I) says that, in **Set**^{*I*}, every *n*-element set (in the sense of internal logic) has a point.

A *point* in X is a morphism from $1 = (1)_{i \in I}$ to X. So it amounts to a choice of one element from each X_i .

Similarly when **Set** is replaced by other models of ZF.

So C(n, I) says that, in **Set**^{*I*}, every *n*-element set (in the sense of internal logic) has a point.

Notation: Abbreviate "In topos \mathcal{E} , every *n*-element set has a point" as $EP(n, \mathcal{E})$.

A *point* in X is a morphism from $1 = (1)_{i \in I}$ to X. So it amounts to a choice of one element from each X_i .

Similarly when **Set** is replaced by other models of ZF.

So C(n, I) says that, in **Set**^{*I*}, every *n*-element set (in the sense of internal logic) has a point.

Notation: Abbreviate "In topos \mathcal{E} , every *n*-element set has a point" as $EP(n, \mathcal{E})$. And $EP(Z, \mathcal{E})$ means $EP(z, \mathcal{E})$ for all z in the finite set Z.

A G-set X is an *n*-element set in the topos G-**Set** iff X has *n* elements (regardless of how G acts on it).

3

(日) (周) (三) (三)

- A G-set X is an *n*-element set in the topos G-**Set** iff X has *n* elements (regardless of how G acts on it).
- A point in an object X of G-Set is an element X fixed by the action of all $g \in G$.

イロト イ理ト イヨト イヨト

- A G-set X is an *n*-element set in the topos G-**Set** iff X has *n* elements (regardless of how G acts on it).
- A point in an object X of G-Set is an element X fixed by the action of all $g \in G$.
- So EP(n, G-**Set**) says that every action of G on n has a fixed point.

- A G-set X is an *n*-element set in the topos G-**Set** iff X has *n* elements (regardless of how G acts on it).
- A point in an object X of G-Set is an element X fixed by the action of all $g \in G$.
- So EP(n, G-Set) says that every action of G on n has a fixed point. And EP(Z, G-Set) says the same for actions of G on any $z \in Z$.

Local Mostowski-Gauntt in Topos Language

Theorem

For any natural number n and any finite set Z of natural numbers, the following are equivalent.

- For every topos \mathcal{E} of the form Model of ZF/I, $EP(Z, \mathcal{E})$ implies $EP(n, \mathcal{E})$.
- For every topos \mathcal{E} of the form G-Set, $EP(Z, \mathcal{E})$ implies $EP(n, \mathcal{E})$.

Local Mostowski-Gauntt in Topos Language

Theorem

For any natural number n and any finite set Z of natural numbers, the following are equivalent.

- For every topos \mathcal{E} of the form Model of ZF/I, $EP(Z, \mathcal{E})$ implies $EP(n, \mathcal{E})$.
- For every topos \mathcal{E} of the form G-Set, $EP(Z, \mathcal{E})$ implies $EP(n, \mathcal{E})$.

What other sorts of topoi does this equivalence apply to?

Theorem

For any natural number n and any finite set Z of natural numbers, the following are equivalent.

- For every topos \mathcal{E} of the form Model of \mathbf{ZF}/I , $EP(Z, \mathcal{E})$ implies $EP(n, \mathcal{E})$.
- For every topos \mathcal{E} of the form G-Set, $EP(Z, \mathcal{E})$ implies $EP(n, \mathcal{E})$.
- For every topos \mathcal{E} , $EP(Z, \mathcal{E})$ implies $EP(n, \mathcal{E})$.

< 🗇 🕨 < 🖃 🕨

Theorem

For any natural number n and any finite set Z of natural numbers, the following are equivalent.

- ZF (or ZFA) proves that, if C(Z, I) for all I then C(n, I) for all I.
- For every topos ε of the form Model of ZF/I, if EP(Z, ε/F) for all finite decidable objects F of ε, then EP(n, ε).
- Every group that acts without fixed points on n has a subgroup that acts without fixed points on some z ∈ Z.
- For every topos ε of the form G-Set, if EP(Z, ε/F) for all finite decidable objects F of ε, then EP(Z, ε).
- For every topos *E*, if EP(Z, *E*/F) for all finite decidable objects F of *E*, then EP(n, *E*).

(日) (同) (三) (三)