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Abstract

Theorem. Suppose that k = (K,≺k) is an ℵ0-presentable abstract elementary class with
Löwenheim-Skolem number ℵ0, satisfying the joint embedding and amalgamation properties in ℵ0. If
K has only countably many models in ℵ1, then all are small. If, in addition, k is almost Galois ω-stable
then k is Galois ω-stable. Suppose that k = (K,≺k) is an ℵ0-presented almost Galois ω-stable AEC
satisfying amalgamation for countable models, and having a model of cardinality ℵ1. The assertion that
K is ℵ1-categorical is then absolute.

1 Introduction
This paper concerns two aspects of pseudo-elementary classes in Lω1,ω , the reducts to a vocabulary τ ⊆ τ+

of models of an Lω1,ω(τ
+)-sentence. In the first two sections we investigate the relationship among the

number of countable models of such a class, Scott ranks, and the number of small (i.e., having a countable
Lω1,ω-elementary submodel) models and large (not small) models of the class in ℵ1; this yields some techni-
cal information about putative counterexamples to Vaught’s conjecture. Building on this material, in the third
section, we treat such classes as abstract elementary classes and investigate variations on Galois ω-stability.
In the final section we use the results presented here and in [5] to prove a theorem on the absoluteness of
ℵ1-categoricity for pseudo-elementary classes in Lω1,ω that are also abstract elementary classes.

We call an abstract elementary class (AEC) almost Galois ω-stable if for every countable model M , EM

(the equivalence relation of ‘same Galois type over M ’ see Definition 3.1) does not have a perfect set of
inequivalent members. An AEC is strictly almost Galois ω-stable if in addition it is not Galois ω-stable.
The immediate impetus for this paper was [5], which studied what Baldwin and Larson called analytically
presented abstract elementary classes. These classes are called by many names: pseudo-elementary classes
in Lω1,ω, ℵ0-presentable classes, PC(ℵ0,ℵ0) or PCℵ0 [27], PCΓ(ℵ0,ℵ0) [1] or, in the language of Keisler
[13], PCδ in Lω1,ω . In this paper we will most often refer to them as ℵ0-presented. The term ‘analytically
presented’ emphasizes that one can deduce from Burgess’s theorem on analytic equivalence relations (see
[8], Theorem 9.1.5, for instance) that if such a class is almost Galois ω-stable then each equivalence relation
EM has at most ℵ1 equivalence classes. This topic first arose in [27] and several of the arguments here just
expand ideas Shelah mentioned there; for further background on the context see [5, 1, 25]. Our main goal,
Theorem 3.18, is to prove that an almost Galois ω-stable ℵ0-presentable abstract elementary class with only
countably many models in ℵ1 is Galois ω-stable. This extends earlier work by Hyttinen-Kesala [11] and
Kueker [16] proving the result for sentences of Lω1,ω with no requirement on the number of uncountable
models.

Each class of models in this paper is ℵ0-presented. A major tool for this investigation is to expand
models of set theory by predicates encoding relevant properties of the models (for some vocabulary τ ) being
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studied. This approach appears in Shelah’s analysis in [22], Section VII, connecting the Hanf number for
omitting families of types with the well-ordering number for classes defined by omitting types. In [21],
expanding the vocabulary to describe an analysis of the syntactic types allowed the construction of a ‘small’
(Definition 2.2) uncountable model in an ℵ0-presentable class K from an uncountable model that is small
with respect to every countable fragment of Lω1,ω . In Lemma 2.7, we use this method to show that if, in
addition, there are only countably many models in ℵ1, then each is small. In Section 3, we combine this
technique with constructions using iterated models of set theory to prove Theorem 3.18. In Section 4, we
give sufficient conditions of categoricity in ℵ1 of an ℵ0-presented AEC to be absolute.

2 Small Models
We refer the reader to [1, 25] for the definition of abstract elementary class (AEC).

Assumption 2.1. k = (K,≺k) is an AEC which is ℵ0-presented. Specifically, K is the class of reducts to
τ of a class defined by a sentence ϕ ∈ Lω1,ω(τ

+), where τ+ is a countable vocabulary extending τ .

If λ is a cardinal, we let Kλ be the class of models in K of cardinality λ.
This section deals with syntactic Lω1,ω-types in ℵ0-presentable classes. As such the arguments are

primarily syntactic and are minor variants on arguments Shelah used in [21, 23, 27]. In particular, no
amalgamation assumptions are used in this section.

Definition 2.2. 1. A τ -structure M is L∗-small for L∗ a countable fragment of Lω1,ω(τ) if M realizes
only countably many L∗-types (i.e. only countably many L∗-n-types over ∅ for each n < ω).

2. A τ -structure M is called locally τ -small if for every countable fragment L∗ of Lω1,ω(τ), M realizes
only countably many L∗-types.

3. A τ -structure M is called small or Lω1,ω-small if M realizes only countably many Lω1,ω(τ)-types.

Note that ‘small’ is a much stronger requirement than ‘locally small’. If τ ⊆ τ ′ and N ∈ τ ′, we say that
N is locally τ -small when N�τ is. We emphasize τ when the ambient larger vocabulary plays a significant
role. The following standard fact plays a key role below (see also pages 47-48 of [1]).

Fact 2.3. Each small model satisfies a Scott sentence, a complete sentence of Lω1,ω.

We quickly review the proof of this fact, as the details will be important later. For any model M over a
countable vocabulary τ , we can define for each finite tuple a (of size n) from M the n-ary formulas ϕa,α(x)
(α < |M |+) as follows.

• ϕa,0(x) is the conjunction of all atomic and negated atomic formulas satisfied by a,

• ϕa,α+1(x) is the conjunction of the following three formulas:

– ϕa,α(x)

–
∧

c∈M ∃wϕac,α(x,w)
– ∀w

∨
c∈M ϕac,α(x,w)

• for limit β < |M |+, ϕa,β(x) =
∧

α<β ϕa,α.
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The apparent uncountability of the conjunctions in the previous definition is obviated by identifying
formulas ϕac,α and ϕa′c,α when they are equivalent in M . Working by induction on α, one gets that if M is
L∗-small for each countable fragment L∗ of Lω1,ω(τ), then the set of formulas ϕa,α is countable for each α,
letting a range over all finite tuples from M . Finally, if M is small there exists an α < ω1 such that

M |= ∀x(ϕa,α(x) → ϕa,α+1(x))

for all finite tuples a. Then
ϕ⟨⟩,α ∧

∧
a∈M<ω

∀x(ϕa,α(x) → ϕa,α+1(x))

is a Scott sentence for M . Fixing the least such α, we say that M has Scott rank α.
We will also use the following fundamental result (see [13] or Theorem 5.2.5 of [1]; the notion of

fragment is explained in both books). Roughly speaking, the fragment generated by a countable subset X of
Lω1,ω(τ) is the closure of X under first order operations. We preserve Keisler’s terminology to emphasize
that the theorem deals only with the number of models and does not involve the choice of ‘elementary
embedding’ on the class.

Theorem 2.4 (Keisler). If a PCδ over Lω1,ω class K has an uncountable model but less than 2ω1 models
of power ℵ1 then K is locally τ -small. That is, for any countable fragment L∗ of Lω1,ω(τ), each M ∈ K
realizes only countably many L∗-types over ∅.

By just changing a few words in the proof of Theorem 6.3.1 of [1], (originally in [21]) one can obtain
the following result, which was implicit in [27].

Theorem 2.5. If K is an ℵ0-presentable AEC and some model M ∈ K of cardinality ℵ1 is locally τ -small,
then K has a Lω1,ω(τ)-small model N of cardinality ℵ1.

Proof. Let ϕ be the τ+-sentence whose reducts to τ are the members of K. Without loss of generality
we may assume the universe ofM is ω1. Add to τ+ a binary relation<, interpreted as the usual order on ω1.
Using the fact that M realizes only countably many types in any τ -fragment, define a continuous increasing
chain of countable fragments Lα for α < ℵ1 such that

• for each quantifier free (first order) n-type over the empty set realized in M , the conjunction of the
type is in L0, and

• the conjunction of each type in Lα that is realized in M is a formula in Lα+1.

Extend the similarity type further to τ ′ by adding new (2n + 1)-ary predicates En(x,y, z) and (n + 1)-
ary functions fn for each n ∈ ω. Let M satisfy En(α,a,b) if and only if a and b realize the same
Lα-type, and let the interpretation of fn map Mn+1 into ω in such a way that En(α,a,b) if and only if
fn(α,a) = fn(α,b) for all suitable α, a, b. Then the following hold.

1. The equivalence relations En(β, x, y) refines En(α, x, y) if β > α;

2. En(0,a,b) implies that a and b satisfy the same quantifier free τ -formulas;

3. If β > α and En(β,a,b), then for every c1 there exists c2 such that En+1(α, c1a, c2b), and

4. fn witnesses that for any a ∈ M , each equivalence relation En(a, x, y) has only countably many
classes.
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All these assertions can be expressed by an Lω1,ω(τ
′) sentence χ. Let L∗ be the smallest τ ′-fragment

containing χ ∧ ϕ. Now by the Lopez-Escobar bound on Lω1,ω definable well-orderings, Theorem 5.3.8
of [1], there is a τ ′-structure N of cardinality ℵ1 satisfying χ ∧ ϕ such that there is an infinite decreasing
sequence d0 > d1 > . . . in N (alternately, one could use Lemma 2.5 of [5] for this step). For each n, let
E+

n (x, y) denote the assertion that for some i, En(di, x, y).
Using 1), 2) and 3) one can prove by induction on quantifier rank (for all n ∈ ω simultaneously) that

for all n-ary Lω1,ω(τ) formulas µ, and all finite tuples a, b from N , if E+
n (a,b) holds then N |= µ(a)

if and only if N |= µ(b). To see this, suppose that this assertion holds for all n and all θ with quantifier
rank at most γ. Let µ(z) be an n-ary formula of the form (∃x)θ(z, x), where θ has quantifier rank γ. Let
a,b be n-tuples from N for which E+

n (a,b) holds and N |= µ(a). Then for some i, En(di,a,b) and for
some a, N |= θ(a, a). By condition 3) above there is a b such that En+1(di+1,a, a,b, b). By our induction
hypothesis we have N |= θ(b, b) and so N |= µ(b).

Now, for each n, En(d0, x, y) refines E+
n (x, y) and by 4) En(d0, x, y) has only countably many classes,

so N�τ is small. 2.5

Definition 2.6. We say a countable structure is extendible if it has an Lω1,ω-elementary extension to an
uncountable model.

Lemma 2.7. Suppose that K is the class of reducts to τ of a class defined by a sentence ϕ ∈ Lω1,ω(τ
+),

where τ+ is a countable vocabulary extending τ . If some uncountable M ∈ K is locally τ -small but is not
Lω1,ω(τ)-small then

1. There are at least ℵ1 pairwise-inequivalent complete sentences of Lω1,ω(τ) which are satisfied by
uncountable models in K;

2. K has uncountably many small models in ℵ1 that satisfy distinct complete sentences of Lω1,ω(τ);

3. K has uncountably many extendible models in ℵ0.

Proof. Suppose that M is a model in K with cardinality ℵ1 that is is locally τ -small but is not Lω1,ω(τ)-
small. Let M+ be an expansion of M to a τ+-structure satisfying ϕ. We construct a sequence of τ+-
structures {N+

α : α < ω1} each with cardinality ℵ1 and an increasing continuous family of countable
fragments {L′

α : α < ω1} of Lω1,ω(τ) and sentences χα such that:

1. L′
0(τ) is first order logic on τ ;

2. all the models N+
α satisfy ϕ;

3. for each α < ω1, N+
α �τ is Lω1,ω(τ)-small;

4. χα is the Lω1,ω(τ)-Scott sentence of Nα;

5. L′
α+1(τ) is the smallest fragment of Lω1,ω(τ) containing L′

α(τ) ∪ {¬χα};

6. For limit δ, L′
δ(τ) =

∪
α<δ L

′
α(τ);

7. For each α, Nα ≡L′
α(τ) M .
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Working by recursion, suppose that we have constructed Nα for all α < β, for some countable ordinal
β. This determines each χα (α < β) as the Scott sentence of Nα and also determines L′

β(τ). Since M
is not small, M |= ¬χα for each α < β. Apply Theorem 2.5 to M and the restriction of K to models
L′
β(τ)-elementarily equivalent to M to construct Nβ .

Now the Nα are pairwise non-isomorphic since each satisfies a distinct complete sentence χα of
Lω1,ω(τ), so conclusions 1) and 2) are satisfied. And each Nα has a countable elementary submodel with
respect to L′

α+1(τ), so there are at least ℵ1 non-isomorphic extendible models in ℵ0 as well. 2.7

Putting together Theorem 2.4 and Lemma 2.7, we have the following.

Corollary 2.8. If an ℵ0-presented AEC K has only countably many models in ℵ1, then every model in K
is small.

Lemma 2.7 leads to several corollaries connected to the Vaught conjecture. First we recall the following
result of Harnik and Makkai [9].

Theorem 2.9 (Harnik-Makkai). If σ ∈ Lω1,ω is a counterexample to Vaught’s Conjecture then it has a
model of cardinality ℵ1 which is not small.

Corollary 2.10. If ϕ ∈ Lω1,ω is a counterexample to the Vaught conjecture then ϕ has ℵ1 extendible
countable models.

Proof. If ϕ ∈ Lω1,ω is a counterexample to Vaught’s conjecture, then every uncountable model of ϕ is
locally small. The result then follows from Theorem 2.9 and Lemma 2.7. 2.10

Remark 2.11. Clearly, if K has only countably many models in ℵ1 then K has at most ℵ0 non-isomorphic
extendible countable models (since each uncountable model is Lω1,ω-equivalent to at most one model in ℵ0).
The three conclusions of Lemma 2.7 are easily seen to be equivalent; we separated them in the statement
because both the countable and uncountable models arose naturally in the proof. The converse of Lemma 2.7
asserts that if K has uncountably many extendible countable models and a locally small model in ℵ1 then
it has a non-small model in ℵ1. Theorem 2.9 shows this is true if the hypothesis is changed to ‘uncountably
many countable models, but not a perfect set of countable models’, without requiring extendibility, and the
class of countable models is Borel, as opposed to analytic. In general, the converse is false. The empty theory
in a vocabulary with ℵ0 constants has 2ℵ0 models (depending on which constants are identified) in each of
ℵ1 and ℵ0; all are small. But joint embedding and amalgamation fail even under first order elementarity.
Example 2.1.1 of [4] is a sentence of Lω1,ω giving rise to an AEC, with a particular notion of ≺k (weaker
than first order), which satisfies amalgamation and joint embedding and is ℵ1-categorical, and for which the
model in ℵ1 is small. In this case there are 2ℵ0 countable models, but only one of them is extendible.

Definition 2.12. A sentence σ of Lω1,ω is large if it has uncountably many countable models. A large
sentence σ is minimal if for every sentence ϕ either σ ∧ ϕ or σ ∧ ¬ϕ is not large.

As part of their proof of Theorem 2.9, Harnik and Makkai showed that any counterexample to Vaught’s
conjecture can strengthened to a minimal counterexample. We call a model of cardinality ℵ1 large if it is
not Lω1,ω-small in the sense of Definition 2.2. Lemma 2.7 implies that if ϕ has a large model in ℵ1 then ϕ
is large.

Corollary 2.13. If ϕ is a minimal counterexample to Vaught’s conjecture then ϕ has a large model in ℵ1,
and all large models of ϕ in ℵ1 are Lω1,ω-elementarily equivalent.
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Proof. Theorem 2.9 says that ϕ has a large model N . Suppose that ψ ∈ Lω1,ω holds in N . The fact
that ϕ ∧ ψ has a large model implies by Lemma 2.7 that ϕ ∧ ψ has uncountably many models in ℵ0. By
minimality, ϕ ∧ ¬ψ has only countably many models in ℵ0 and so by Lemma 2.7 again, all uncountable
models of ϕ ∧ ¬ψ are small. 2.13

Harrington1 showed that any counterexample to Vaught’s conjecture has models in ℵ1 with Scott ranks
(using sentences in Lω2,ω) cofinal in ℵ2.

Question 2.14. Can one say anything about the embedability relation on the large models of a counterex-
ample to Vaught’s conjecture?

2.1 Connections with the Morley Analysis
We pause to connect this analysis in Section 2.2 with a related but subtly distinct procedure.

Definition 2.15. 1. Morley’s Analysis Let K be the class of models of a sentence of Lω1,ω.

(a) Let LK
0 be the set of first order τ -sentences.

(b) Let LK
α+1 be the smallest fragment generated by LK

α and the sentences of the form (∃x)
∧
p(x)

where p is an LK
α -type realized in a model in K.

(c) For limit δ, LK
δ =

∪
α<δ L

K
α .

2. K is scattered if and only if for each α < ω1, LK
α is countable.

Recall Morley’s theorem, which is key to his approach to Vaught’s conjecture.

Theorem 2.16 (Morley). If K is the class of models of a sentence in Lω1,ω that has less than 2ℵ0 models of
power ℵ0 then K is scattered.

Remark 2.17. We cannot conclude that K is scattered from just counting models in ℵ1, even from the
hypothesis that K is ℵ1-categorical. Again, Example 2.1.1 of [4] (Remark 2.11) is ℵ1-categorical and has
joint embedding for ≺k. But there are 2ℵ0 first order types that give models that are not even first order
mutually embeddible and the class K is not scattered.

Remark 2.18. The sequence of languages in Theorem 2.5 might be labeled LM
α . They come about by

applying the Morley analysis solely to the types realized in M . So this gives a slower growing sequence of
languages than the Morley analysis. Clearly if K is scattered, every model of K is locally small. So from
Theorem 2.16 and Theorem 2.4, we conclude. If K has either less than 2ℵ0 models in ℵ0 or less than 2ℵ1

models in ℵ1, then every uncountable model of K is locally small.

Remark 2.19. The arguments of Morley and Shelah have different goals. Being scattered is a condition on
all models of (in the interesting case for the Vaught conjecture) an incomplete sentence in Lω1,ω. The Shelah
argument contracts K to a smaller class where every model is small and thus finds a K ′ ⊂ K that is small
and is axiomatized by a complete sentence. The hard part is to make sure K ′ has an uncountable model. In
the most used case, K and a fortiori K ′ is ℵ1-categorical.

1See [19] for an account of Harrington’s proof, Larson [17] for his proof using Scott processes and [3, 18] for a proof that encom-
passes the construction of an uncountable atomic model of a first order theory in a vocabulary of size ℵ1. Another proof of Harrington’s
Theorem appears in [15].
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2.2 Alternate proofs using Scott sentences
In this subsection we prove alternate versions of Theorem 2.5 and part of Lemma 2.7. Theorem 2.20 has
essentially the same proof as Theorem 2.5 and was proved (by the third author, modulo the fragment of
ZFC used) at essentially the same time. It can be used in place of Theorem 2.5 in all of our applications
of Theorem 2.5. An ill-founded model as in the statement of the theorem can be obtained either by Lopez-
Escobar or by iterated ultrapowers of models of set theory. For convenience we use the theory ZFC◦ from
[5]. Any theory strong enough to carry out the construction of Scott sentences should be sufficient.

Theorem 2.20. Let τ be a countable vocabulary, let M be a τ -structure, and let N be an ω-model of
ZFC◦ with ωN

1 ill-founded. Let β be the ordinal isomorphic to the longest well-founded initial segment of
ωN
1 . Suppose that, in N , M is locally τ -small and either large or small with Scott rank in the ill-founded

part of N . Then M is small, and the Scott rank of M is exactly β.

Proof. Let t be the Scott rank of M in N if N thinks that M is small, and ωN
1 otherwise. Let

⟨ϕa,s : a ∈M<ω, s < t⟩

be the set of formulas defined in N in the first t many steps of the search for a Scott sentence for M . Then

⟨ϕa,α : a ∈M<ω, α < β⟩

is also the set of formulas defined in V in the first β many steps of the search for a Scott sentence for M .
Since the Scott rank of M in N is in the ill-founded part of N if it exists, the Scott rank of M in V is at least
β.

We claim that for any n ∈ ω and any pair a, b of n-tuples from M , if ϕa,s = ϕb,s for any ill-founded
s < t, then a and b satisfy all the same Lω1,ω(τ)-formulas in M (from the point of view of V ). To see
this, suppose that this assertion holds for all n and all formulas θ with quantifier rank at most γ. Let µ(z)
be an n-ary formula of the form (∃x)θ(z, x), where θ has quantifier rank γ. Let a,b be n-tuples from N ,
let s < t be an ill-founded ordinal of N such that ϕa,s = ϕb,s, and suppose that M |= µ(a). Then there
is an ill-founded r < s, and for any such r, ϕa,r = ϕb,r. Since M |= µ(a), there is a c ∈ M such that
M |= θ(a, c). Since r < s and ϕa,s = ϕb,s, ϕa,r+1 = ϕb,r+1, which means that there is some d ∈M such
that ϕbd,r = ϕac,r. Thus by our induction hypothesis, M |= θ(b, d) and thus M |= µ(b).

For each n ∈ ω and each pair a,b of n-tuples from M , if ϕa,α = ϕb,α for all α < β, then ϕa,s = ϕb,s
for some ill-founded s < t, since if ϕa,r ̸= ϕb,r for any r < t, then N thinks that there is a least such r,
and there is no least ill-founded ordinal of N . It follows then that the Scott rank of M (in V ) is exactly β.

2.20

Lemma 2.21 will make up part of the proof of our main theorem (Theorem 3.18). The proof is in fact a
simplified part of the main argument in the proof of that theorem.

Lemma 2.21. Suppose that K is the class of reducts to τ of a class defined by a sentence ϕ ∈ Lω1,ω(τ
+),

where τ+ is a countable vocabulary extending τ . If K has a model in Kℵ1 that is locally τ -small, but is not
Lω1,ω(τ)-small then K has small models in ℵ1 of club many distinct Scott ranks.

Proof. Suppose that M is a model in K with cardinality ℵ1 that is is locally τ -small but is not Lω1,ω(τ)-
small. Fix a regular cardinal θ > 22

ℵ1 . It suffices to show that for every countable elementary submodel
X of H(θ) with τ , ϕ and M in X , there exists a small model in K of cardinality ℵ1 whose Scott rank is
X ∩ ω1. Fix such an X . Let P be the transitive collapse of X , and let ρ : X → P be the corresponding
collapsing map. Then ρ(ω1) = ωP

1 is the ordinal X ∩ ω1.
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By iterating the construction in [14], one can find an elementary extension P ′ of P with corresponding
elementary embedding π : P → N , with critical point ωP

1 , such that ωN
1 is ill-founded and uncountable,

and such that the well-founded ordinals of N are exactly the members of ωP
1 . Since ωN

1 is ill-founded,
Theorem 2.20 implies that π(ρ(M)) is Lω1,ω(τ)-small, with Scott rank equal to the longest well-founded
initial segment of of ωN

1 , which is X ∩ ω1. 2.21

Theorem 2.20 gives part of the proof of the following fact, which is used in the proof of Theorem 4.2.

Lemma 2.22. Let k = (K,≺k) be an ℵ0-presented AEC with Löwenheim-Skolem number ℵ0, having an
uncountable model. The statement that every uncountable model in K satisfies the same Scott sentence in
Lω1,ω can be expressed as both a Σ1

2 sentence and a Π1
2 sentence, each in a given real parameter for K.

Proof. First consider the statement that there is a complete sentence θ in Lω1,ω such that whenever M
is a countable model in K and N is a countable ω-model of ZFC◦ with θ ∈ N and M uncountable in N ,
M |= θ. By Theorem 8.9 in Marker’s appendix to [2], being a complete sentence in Lω1,ω is Π1

1, so this
sentence is Σ1

2. If there is a nonsmall uncountable model in K, or if there are uncountable small models with
distinct Scott sentences in Lω1,ω , then this Σ1

2 statement can be shown to be false by taking the transitive
collapses of a suitable countable elementary submodels (note that a nonsmall model satisfies the negation of
each complete sentence in Lω1,ω). On the other hand, for any sentence θ of Lω1,ω, if there exist a countable
model M in K and a countable ω-model N of ZFC◦ with θ ∈ N , M uncountable in N and M |= ¬θ, then
one can find an uncountable model in K satisfying ¬θ, by taking an iterated generic elementary embedding
of length ω1 (as in the proof of Theorem 2.1 of [5]).

Now consider the statement that whenever M and N are countable models in K and P and Q are
countable ω-models of ZFC◦ with M an uncountable model in P and N an uncountable model in Q, then
M and N are isomorphic. This statement is easily seen to be Π1

2 in a code for K. As above, if there is a
nonsmall uncountable model in K, or if there are uncountable small models with distinct Scott sentences in
Lω1,ω, then this Π1

2 statement can be shown to be false by taking the transitive collapses of suitable countable
elementary submodels of H(κ), for any regular κ greater than 22

ℵ1 .
In the other direction, suppose first that there exist a countable model P of ZFC◦ with ωP

1 wellfounded,
and a model M ∈ K in P which P thinks has uncountable Scott rank. Then we can produce two un-
countable models in K of distinct Scott ranks by taking elementary extensions of P . We start by finding
two elementary embeddings, k1 : P → R1 and k2 : P → R2, each with critical point ωP

1 , where the well-
founded part of R1 is exactly ωP

1 , and the well-founded part of R2 is at least ωP
2 (for the first of these, use

the construction in [14]; for the second use [10] or [5]). We can then iteratively extend R1 and R2 each ω1

many times (iterating either the construction in [14] or the one in [5]), producing elementary embeddings
j1 : R1 → R∗

1 and j2 : R2 → R∗
2, where ωR∗

1
1 and ωR∗

2
1 are uncountable. By Theorem 2.20, j1(k1(M)) will

have Scott rank ωP
1 . By the elementarity of j2 ◦ k2, the Scott rank of j2(k2(M)) will be at least ωP

2 (and
uncountable if ωR∗

2
1 = ω1).

Supposing now that there exists no pair (M,P ) as in the previous paragraph, suppose that we have two
ω-models P and Q of ZFC◦, containing countable models M and N (respectively) in K which they think
are uncountable, and suppose that M and N satisfy different Scott sentences in V . Then either P thinks that
M is small, or ωP

1 is ill-founded, and the same holds for Q and N . Using the constructions from either [14]
or [5], iterate P andQ each ω1 times, producing modelsM ′ andN ′ of cardinality ℵ1. ThenM andM ′ have
the same Scott sentence, as do N and N ′. To see this, note that the Scott rank of M as computed in P is
either in the well-founded part of P (in which case it must be countable in P, since we are not in the case of
the previous paragraph) or not. In the first case, M and M ′ have the same Scott sentence by elementarity. In
the second case, they have the same Scott sentence by Theorem 2.20. Since this applies toQ andN also,M ′

and N ′ are uncountable models in K satisfying distinct Scott sentences in Lω1,ω, and we are done. 2.22
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3 Almost Galois Stability
The section is concerned about stability and almost stability with respect to Galois types.

Definition 3.1. Given an AEC k = (K,≺k), we define a reflexive and symmetric relation ∼0 on the
set of triples of the form (M,a,N), where M,N ∈ Kℵ0

, M ≺K N , and a ∈ N \ M . We say that
(M0, a0, N0) ∼0 (M1, a1, N1) if M0 = M1 and there exist a structure N ∈ K and ≺k-embeddings
f0 : N0 → N and f1 : N1 → N such that f0|M0 = f1|M1 and f0(a0) = f1(a1). We let ∼ be the transitive
closure of ∼0. The equivalence classes of ∼ are called Galois types.

Note that if K satisfies the amalgamation property then ∼=∼0. This identity is used crucially in proving
the equivalence of model-homogeneity and Galois-saturation. When we use this equivalence we will assume
amalgamation.

Fixing a coding of hereditarily countable sets by subsets of ω, the notion of Galois types naturally induces
an equivalence relation on P(ω).2 For each M ∈ Kℵ0 we let EM denote the corresponding equivalence
relation for Galois types over M (This notation was used in [5]3.). The domain of EM is then the set of
subsets of ω coding triples of the form (M,a,N), where N ∈ Kℵ0 , M ≺K N and a ∈ N \M . If k is
ℵ0-presented, then each EM is an analytic equivalence relation, and by Burgess’s trichotomy for analytic
equivalence relations, EM has either countably many equivalence classes, ℵ1 many, or a perfect set of
inequivalent reals. Because there are two notions of weak-stability in the literature of AEC ([11, 25], we call
the following notion almost Galois ω-stability.

Definition 3.2. K is almost Galois ω-stable if there do not exist a countable model M in K and a perfect
subset P of the domain of EM whose members are EM -inequivalent.

Galois types are very much a property of the monster model. That is, givenM ≺k N and a ∈ N \M , the
Galois type of a over M cannot be determined by just looking at automorphism of N fixing M in isolation;
one must consider an embedding of N into the monster model.

Remark 3.3. [Amalgamation, joint embedding, and maximal models] This remark collects a number of
easy and well-known observations about the properties in its title. These observations should provide a
background for understanding the choice of some ‘background hypotheses’ below. If an AEC has no maxi-
mal models4 then it has arbitrarily large models. In general the converse fails; but the converse holds under
joint embedding with one exception: an AEC with a unique maximal model may satisfy joint embedding
(See part (1) of Corollary 3.6). The class of well-orders of order type ≤ ω1, with ≺k as end extension is a
standard example of part 1 of Theorem 3.7: an AEC with a unique maximal model in ℵ1 but amalgamation
in ℵ0.

Assuming amalgamation, the relation ‘M and N can be ≺k-embedded into a common model’ is an
equivalence relation and each equivalence class is an AEC with joint embedding. Often we will assume
amalgamation and joint embedding to avoid assuming only amalgamation and then having to restrict to
one joint embedding class. Failure to make this assumption yields trivial counterexamples. There are no
universal models for the class of algebraically closed fields (because of characteristic) but fixing the charac-
teristic (that is the joint embedding class) yields a family of classes each with the joint embedding property.
The technique of restricting to an equivalence class is illustrated by the generalization of Theorem 3.18 to
Corollary 3.22.

2Alternately, letting τ be the vocabulary associated to K, the set of τ -structures with domain ω can be viewed as a Polish space,
with the set of codes for members of Kℵ0

as an analytic subset. See [8].
3It might be natural to write E1

M instead, as we are referring to the Galois 1-types. Recent work of Boney [6] shows that for an
AEC satisfying amalgamation for countable models, the set of Galois n-types over M has the same cardinality for each n ∈ ω.

4Maximal means there is no proper ≺k-extension, even one isomorphic to itself.
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We record some additional observations about amalgamation, joint embedding and maximal models.
Lemma 3.4 is Lemma 2.11 on page 134 of [25], in the case κ = ℵ0 (the relevant case for this paper).
It shows that joint embedding and amalgamation in κ implies members of K with cardinality κ+ can be
amalgamated over submodels of cardinality κ. It is an open question (usually conjectured to be false)
whether amalgamation in κ implies amalgamation in κ+. Note that (1) of Lemma 3.4 is an easy consequence
of part (2).

Lemma 3.4. Let k = (K,≺k) be an AEC with Löwenheim-Skolem number ℵ0 which satisfies amalgama-
tion for countable models.

1. If M,N ∈ Kℵ0 and P ∈ Kℵ1 , with M ≺k P and M ≺k N , then there exist Q ∈ Kℵ1 with
N ≺k Q, and a ≺k-embedding f : P → Q such that f is the identity function on M .

2. If M ∈ Kℵ0 , P,Q ∈ Kℵ1 with M ≺k P and M ≺k Q, then there exist R ∈ Kℵ1 with P ≺k R
and a ≺k-embedding f : Q→ R such that f is the identity function on M .

In Part (1) of Lemma 3.4, we have not asserted that Q is a proper extension of P ; the first example in
Remark 3.3 shows that is too strong.

Definition 3.5. 1. M is µ-model homogeneous if for every N ≺k M and every N ′ ∈ K with |N ′| < µ
and N ≺k N ′ there is a K-embedding of N ′ into M over N .

2. M is strongly µ-model homogeneous if it is µ-model homogeneous and for any N,N ′ ≺k M and
|N |, |N ′| < µ, every isomorphism f from N to N ′ extends to an automorphism of M .

3. M is strongly model homogeneous if it is strongly |M |-model homogeneous.

Lemma 3.4 implies that for AEC’s with Löwenheim-Skolem number ℵ0 satisfying amalgamation for
countable models, maximal models of cardinality ℵ1 are strongly ℵ1-model homogeneous. By Theorem
8.3 of [1], ℵ1-model homogeneous models are isomorphic for AEC’s with Löwenheim-Skolem number ℵ0

satisfying joint embedding for countable models. We note two additional consequences of Lemma 3.4 for
maximal models.

Corollary 3.6. Let k = (K,≺k) be an AEC with Löwenheim-Skolem number ℵ0 which satisfies amalga-
mation for countable models.

1. If k satisfies joint embedding for countable models, and M and P are elements of K, with M count-
able and P maximal and of cardinality ℵ1, then M ≺k-embeds into P .

2. If M , P and Q are elements of K, with M countable, P and Q maximal of cardinality ℵ1, M ≺k P
and M ≺k Q, then there is an isomorphism of P and Q fixing M .

Amalgamation with some form of joint embedding easily allows one to show the following (see Corollary
8.23 of [1]); we give two variants. Note that in the second case the Galois-saturated model may not be
unique. Furthermore, there may be countable models that are not extendible, even when there is a unique
Galois-saturated model in ℵ1.

Theorem 3.7. Let k = (K,≺k) be an AEC which is almost Galois ω-stable and satisfies amalgamation in
ℵ0.

1. If K satisfies joint embedding in ℵ0 then there is a unique Galois-saturated model M in Kℵ1 .
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2. If N ∈ Kℵ0 has an uncountable extension in K, then there is a Galois-saturated model M in Kℵ1

with N ≺k M .

Proof. For the first part, carefully construct an interweaving enumeration the Galois types over an in-
creasing chain of countable models in order type ω1 so that each Galois type over each model in the chain
is realized. For uniqueness, suppose that M and M ′ are Galois-saturated models in Kℵ1 . Choose countable
M0 ≺k M and M ′

0 ≺k M . By joint embedding there is a countable M1 that ≺k-extends both M0 and
M ′

0. Applying Galois saturation, a countable recursive construction shows that M1 is ≺k-embeddable into
both M and M ′. Then a recursive construction of length ω1 using Galois saturation shows M and M ′ are
isomorphic (over M1).

For the second part, let KN be the equivalence class under joint embedding of the models that are jointly
embeddable with N . Apply the first argument to this class. 3.7

For any AEC k = (K,≺k), if M,N ∈ K and M ≺K N , then M is a substructure of N , but the
definition of AEC does not require even that M be a first-order elementary submodel of N . Before proving
the main result of this section, Theorem 3.18, we prove a lemma which reduces the proof to the case where
M ≺K N implies Lω1,ω(τ)-elementarity. A similar reduction appears in Theorem 3.6E of [27] and Lemma
2.5 of [21].

Definition 3.8. Let K be an AEC in a countable similarity type τ , with Löwenheim-Skolem number ℵ0, such
that K has a unique Galois-saturated model M in ℵ1, which is small.

1. For N0, N1 ∈ K, define N0 ≺k∗ N1 to mean that N0 ≺k N1 and N0 ≺∞,ω N1.

2. Let K∗ be the set of N ∈ Kℵ0 which satisfy the Scott sentence of M .

3. Let (K ′,≺k′) be the closure of (K∗,≺k∗) under isomorphism and direct limits of arbitrary length.

To discuss the relationship between (almost) Galois stability of K and K ′, we introduce some notation.
We first give a standard equivalent for the definition of Galois type, but parameterized for the comparisons
we need here. The class K0 below will be K or K ′ in our applications. This construction is implicit in [27]
and in the extension of those arguments towards the construction of examples of a good frame in [26] and
chapter III of [25]. The next lemma shows the properties of the induced class K ′. We describe a slightly
more general situation from [25] in Remark 3.12

Notation 3.9. Let K0 be an AEC with a (K0,ℵ1)-homogenous-universal model M in ℵ1.

1. If M0 ≺K0
M , SK0

(M0) is the collection of orbits of elements of M under autM0(M) (the auto-
morphisms of M fixing M0 pointwise).

2. α(K0) = sup{|SK0
(M0)| :M0 ∈ K0, |M0| = ℵ0}.

We need to require the joint embedding property to guarantee that (K,ℵ1)-homogeneous-universal5 is
equivalent to Galois saturated. Most of the argument for the next lemma would work if we just assume there
is a unique Galois saturated model (which is small); but it might not be universal (in either K or K ′). (See
Chapter 16 of [1] or Remark 1 of [24] for more detailed remarks.)

Lemma 3.10. Let K be an AEC in a countable similarity type τ , with Löwenheim-Skolem number ℵ0, with
joint embedding and the amalgamation property in ℵ0. Suppose further that unique Galois-saturated model
M in ℵ1 is small. Then the following hold.

5M is (K,ℵ1)-homogeneous-universal it is universal for countable structures in K and ℵ1-model-homogenous.
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1. (K ′,≺k′) is an AEC with Löwenheim-Skolem number ℵ0.

2. M is (K ′,ℵ1)-homogenous-universal.

3. (K ′,≺k′) satisfies amalgamation in ℵ0.

4. For every M0 ∈ K ′
ℵ0

, SK (M0) = SK ′(M0).

5. α(K) = α(K ′).

6. K ′ is ℵ0-categorical.

Proof. 1) The coherence and unions of chains axioms are immediate on K∗. For Löwenheim-Skolem,
note that M can be written as an increasing chain of K ′-submodels. Thus, K∗ is a weak AEC in the sense
of Definition 16.10 of [1] and so (K ′,≺k′) is an AEC applying either Exercise 16.12 of [1] or Lemma
II.1.12 of [25].

2) Let M0 ≺k′ M1 be countable. Then there are K ′-maps f and g such that f(M0)≺k′ M and
g(M1)≺k′ M by the definition of K ′. But since M is (K,ℵ1)-homogenous-universal, there is an h in
aut(M) such that h◦g �M0 = f . Since both ≺k and ≺k′ are preserved by automorphisms, h is a K ′-map.
So h ◦ g is a K ′ embedding of M1 into M extending f . This shows M is (K ′,ℵ1) homogeneous and it is
clearly K ′-universal.

3) Suppose M0 ≺k′ M1,M2. Then there are K ′-embeddings of M1 and M2 over M0 into M . So
amalgamation holds.

4) The Galois types are determined by autM0M which does not depend on the choice of AEC.
5) We have thatα(K) ≥ α(K ′) since the supremum is taken over a smaller set. But for eachM0 ∈ Kℵ0 ,

there is an M1 ∈ K ′
ℵ0

with M0 ≺k M1 ≺k′ M and by the extendability of K-Galois types, and part 4,
|SK (M0)| ≤ |SK (M1)| = |SK ′(M1)| so α(K) = α(K ′).

6) Let τ ′ and τ ′′ = τ ′ ∪ {P} be the vocabularies which witness that K is ℵ0-presented. Let ψ1 be the
τ ′ sentence whose reducts are the models in K; let ψ2 be the τ ′′ sentence whose reducts are pairs (N,M)
with N ≺k M . Further suppose that ϕ is the Scott sentence of M . The following sentences witness that
(K ′,≺k′) is ℵ0-presented: ψ̂1 = ψ1 ∧ ϕ and ψ̂2 = ψ2 ∧ χ where (M,N) |= χ if M ≺L∗ N where L∗ is
least countable fragment containing ϕ.

7) This is evident since N is small. 3.10

Conclusion 5 immediately yields.

Corollary 3.11. Under the hypotheses of Lemma 3.10,

• (K,≺k) is Galois ω-stable if and only if (K ′,≺k′) is;

• (K,≺k) is almost Galois ω-stable if and only if (K ′,≺k′) is.

Moreover, the hypothesis of joint embedding is in some ways only a convenience; see Corollary 3.22.
If K has the amalgamation property then joint embedability is an equivalence relation and each of the
equivalence classes is an AEC with joint embedding preserving the other properties defining AEC’s. At
least one class fails Galois ω-stability if K does. But some classes may not have any uncountable models.

Remark 3.12. In chapters I and II (e.g. II.3.4) of [25], Shelah makes a somewhat more general argument.
Add to Definition 3.8 a third clause: For each countable M ∈ K, let KM = {N ∈ K : |N | = ℵ0 ∧
M ≺k′ N}, where ≺k′ is defined as before. It is again straightforward to see that each KM is an ℵ0
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categorical AEC. If there are less than 2ℵ1 models in ℵ1 of K and a fortiori of each KM then under
2ℵ0 < 2ℵ1 , KM has the amalgamation property and since all models are extension of a single one, the joint
embedding property. Then Shelah argues that by way of the notion of ‘materialization of types’ (Chapter 1
of [25]) one can deduce almost Galois stability.

The following variants on an example of Jarden and Shelah [12] will illustrate the situation and also
provide some context for Theorem II.3.4 of [25]. That theorem aims to construct a good frame from an
ℵ0-presentable class that has few models in ℵ1, is ℵ0-categorical, has amalgamation in ℵ0 and is ω-Galois
stable or at least ω-almost Galois stable. We show several of these conditions are necessary. In particular,
these examples are not ℵ0-categorical. Note that one use of Lemma 3.10 is to extract an ℵ0-categorical AEC
from a given AEC with few models in ℵ1. Recall that there are only ℵ1 countable linear orders that are one
transitive (any two points are automorphic) [20].

Here is the basic example

Example 3.13. Let τ contain equality and a binary symbol<. Let (K,≺k) be the class of τ structures such
that each M ∈ K is a partially ordered set such that each component is a countable 1-transitive linear order.
M ≺k N means M ⊆ N but each element of N −M is incomparable with all elements of M .

K is an ℵ0-presentable AEC. It has exactly ℵ1 countable models and 2ℵ1 in ℵ1. It is almost Galois ω-
stable but not Galois ω-stable. Kℵ0 satisfies the amalgamation property and the joint embedding property.
Thus there is a unique Galois saturated model in ℵ1.

Now we vary the example so there are ℵ1 non-isomorphic Galois-saturated models in ℵ1.

Example 3.14. Let τ consist of a binary symbol < and another binary relation symbol E. Let (K,≺k) be
the class of τ -structures such that eachM ∈ K is a partially ordered set such that each component (maximal
connected component) is a countable 1-transitive linear order. Further E is an equivalence relation; each
class intersects each component in exactly one point. Moreover E induces an order-isomorphism between
each pair of components. M ≺k N means M ⊆ N but each element of N −M is incomparable with all
elements of M .

K is an ℵ0-presentable AEC as it is describable in L(Q) using only assertions of the form ‘ϕ(x) is
countable’. It has exactly ℵ1 models in each infinite cardinality. It is almost Galois ω-stable but not Galois
ω-stable. Kℵ0 satisfies the amalgamation property but does not satisfy the joint embedding property. There
are in fact ℵ1, pairwise non-isomorphic Galois saturated models in ℵ1; each model is ℵ1 copies of a particular
1-transitive order.

There is no countable fragment L∗ such that syntactic type in L∗ is the same as the Galois type in K.
Because the joint embedding property fails, Lemma 3.10 does not apply to this example. Applying

the construction in Definition 3.8 gives rise to ℵ1 distinct ℵ0-presentable AEC; each is categorical in every
infinite cardinality; each is ω-stable. In each derived AEC, Galois type is equivalent to syntactic type.

The refined AEC, where all components have the same order type, are indexed by ϕα for α < ω1, which
list the Scott sentences of countable transitive linear orders. Exercise 14.28 of Rosenstein [20] shows that
the transitive order Zα has Scott rank ω · α+ 1.

Neither Lemma 3.10 nor II.3.4 (page 285) of [25] applies to either of these examples because there are
too many models in ℵ1 in the first case and the Galois saturated model is not locally small in the second.
Nevertheless there are ℵ1 restrictions of K to AEC Kα, where models in Kα contain only components
satisfying ϕα. Each of them is Galois ω-stable. In each Kα, Galois types are equivalent to syntactic types
in an appropriate fragment Lα.
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Question 3.15. Find an example of an ℵ0-presented AEC with the joint embedding and amalgamation
properties that has fewer than 2ℵ1 many models in ℵ1 and is strictly almost Galois ω-stable.

By Theorem 3.18 below, K must fail joint embedding or have at least ℵ1 models in ℵ1.

Given a τ -structure M and a fragment L of Lω1,ω(τ), we say that M is L-atomic if for each finite
sequence a from M there exists an |a|-ary formula χa(x) ∈ L such that M |= χa(a), and, for each |a|-ary
formula λ(x) of Lω1,ω(τ), if M |= λ(a), then M |= (∀x)[χa(x) → λ(x)].

Remark 3.16. It follows from the Scott analysis (in Section 2) that a τ -structure M is small if and only if
there is a countable fragment L of Lω1,ω(τ) such that M is L-atomic (for instance, any fragment containing
the Scott sentence of M ).

Lemma 3.17. Suppose that k = (K,≺k) is an AEC over a vocabulary τ , and that M0 ∈ Kℵ0 . Suppose
that M ∈ Kℵ1 is Galois saturated, with M0 ≺k M . Let τ̂ be the union of τ with a countably infinite
collection of new constant symbols, and let M ′ be an expansion of M where these new symbols are used to
enumerate M0. Suppose that M ′ is Lω1,ω(τ̂)-small. Then for some L∗(τ̂), M ′ is L∗(τ̂)-atomic. It follows
that (in k) there are only countably many Galois types over M0.

Proof. By Remark 3.16 applied in the vocabulary τ̂ , M ′ is atomic in L∗(τ̂), the countable fragment in
whichM ′ has a Scott sentence; this is Theorem 3.18.1. We will show that for any a ∈M the L∗(τ̂)-type of a
determines the Galois type (in K) of a over M0. Since M ′ is Lω1,ω(τ̂)-small, it follows that only countably
many Galois types over M0 are realized in M . Suppose that some a, b ∈ M realize the same L∗(τ̂)-type in
M ′. Then this type is given by a formula in L∗(τ̂), by L∗(τ̂)-atomicity. There exists a countable M̂ ∈ K
such that M0ab ⊂ M̂ ≺L∗(τ̂) M , and, as M̂ is L∗(τ̂)-atomic, there exists an automorphism g of M̂ , fixing
M0 pointwise with g(a) = b. Thus, a and b have the same Galois type over M0. So M realizes only
countably many Galois types over M0. 3.17

We turn to the main result. Corollary 3.22 derives a slightly weaker conclusion than Theorem 3.18 in the
absence of the joint embedding property. By Corollary 2.8, the hypotheses of Theorem 3.18 imply that all
models in K are small. By Theorem 3.7, K1 contains a unique Galois-saturated model.

Theorem 3.18. Suppose that K is an ℵ0-presented AEC (over a countable vocabulary τ ) which satisfies
amalgamation, and JEP for countable models, such that that K is almost Galois ω-stable, and |Kℵ1 | ≤ ℵ0.
Let M be the unique Galois-saturated model in Kℵ1 , and let k′ = (K ′,≺k′) be as in Definition 3.8. Let τ̂
be formed by adding ω many new constant symbols to τ . Then

1. for each M0 ∈ K ′
0 such that M0 ≺k′ M , if M ′ is a τ̂ -structure expanding M in which the interpre-

tations of the new constant symbols in τ̂ enumerate M0, then M ′ is small. This implies

2. K is Galois ω-stable.

Proof. There are three cases, as follows.

1. For some countable fragment L∗(τ̂) of Lω1,ω(τ̂) and some n, there are uncountably many L∗(τ̂)-n-
types realized in M ′ .

2. For every countable fragment L0(τ̂) of Lω1,ω(τ̂) and every n, only countably many L0(τ̂)-n-types
are realized in M ′. Then one of the following holds.

(a) The model M ′ is not Lω1,ω(τ̂)-small.
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(b) The model M ′ is Lω1,ω(τ̂)-small, so for some countable fragment L∗(τ̂), M ′ has a Scott sen-
tence in L∗(τ̂).

We will show that case 1) contradicts the assumption of almost Galois ω-stability of k′ (which by Corol-
lary 3.11 is equivalent to that of k), and that case 2a) contradicts the assumption that |Kℵ1 | ≤ ℵ0. We are
reduced to case 2b) and Lemma 3.17 gives that k is Galois ω-stable.

For case 1, we use the following fact6.

Fact 3.19. If for some n, there is a fragment L1 of Lω1,ω(τ̂) such that there are a perfect set of L1- n-types
over a countable model N , then there is a fragment L∗ of Lω1,ω(τ̂) containing L1 such that there are a
perfect set of L∗-1-types over N .

Proof. From the hypothesis there must be an n − 1-type p such that there are a perfect set {qη(x,y) :
η ∈ 2ω} of n-types extending p. So q′η(x) = {(∃y)[ϕ(x,y) ∧

∧
p(y)] : ϕ(x,y) ∈ qη(x,y)} for η ∈ 2ω is

the required collection of L∗-1-types over N , where L∗ adds the conjunction of p to L1. 3.19

By Fact 3.19, in Case 1 there exists a perfect set of syntactic 1-types in L∗(τ̂) that are realized in
countable τ̂ -structures whose τ -reducts are in K ′

ℵ0
and for which the interpretation of the ci’s enumerates

M0 in the same manner that M ′ does. Since ≺k′ implies Lω1,ω(τ)-elementarity, this implies the existence
of a perfect set of Galois 1-types over M0, contradicting the almost Galois ω-stability of k′.

The bulk of the proof derives a contradiction from Case 2a. Let ϕ be the Scott sentence for M . Let
M = ⟨Mα :α < ω1⟩ be such that (as above) M0 is the model introduced in the statement of the theorem,
M =

∪
α<ω1

Mα and the following hold for each α < ω1:

• Mα is a countable element of K;

• Mα ≺k M ;

• Mα |= ϕ;

• Mα is a proper subset of Mα+1;

• if α is a limit ordinal, then Mα =
∪

β<αMβ .

The models Mα are all isomorphic, as they satisfy the same Scott sentence. As M is Galois saturated, there
is a set F = {Fα :α < ω1} such that each Fα is an automorphism of M mapping M0 setwise to Mα. For
each pair α, β < ω1, let Fα,β denote Fβ ◦ F−1

α .
Let τ+ be the expansion of our vocabulary τ ′ to the τ ′ of Theorem 2.5 (i.e., add the symbols En, fn

(n ∈ ω), and a binary relation ordering the domain of M in order type ω1; alternately, using Theorem 2.20
we could skip this step). Fix a regular cardinal θ large enough so that M ′, τ+, M and F are elements of
H(θ) (to apply the methods of [5], we need θ to be larger than 22

ℵ1 ).
Let ⟨Xα : α < ω1⟩ be a ⊆-increasing continuous chain of countable elementary submodels of H(θ)

such that M ′, τ+,M and F are elements of X0, and such that for each α < ω1 there is a countable ordinal
β ∈ Xα+1 −Xα. For each α < ω1, let Pα be the transitive collapse of Xα, and let ρα : Xα → Pα be the
corresponding collapsing map. Then ρα(ω1) = ωPα

1 is the ordinal Xα ∩ ω1.
The following is a paraphrase of Theorem 2.1 of [10] (Hutchinson built on work of Keisler and Morley

[14]; Enayat provides a useful source on this work in [7]). It can be proved via iterated ultrapowers as in [5].
Section 4 of [10] describes the fragment of ZFC needed for Fact 3.20; this fragment is easily seen to follow
from the theory ZFC◦ of [5].

6We just note that there is no need here for the Boney result, discussed in footnote 3 [6], although it could have been applied directly.
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Fact 3.20. Let B be a countable model of ZFC and c a regular cardinal in B. Then there is a countable
elementary extension C of B such that each a such that B |= a ∈ c is fixed (i.e. has no new elements in C)
but c is enlarged and there is a least new element of C.

Construct a family {P ′
α : α < ω1} of uncountable models of set theory so that, for each α < ω1, there is

an elementary extension of Pα to P ′
α (with corresponding elementary embedding χα : Pα → P ′

α) such that

1. the critical point of χα is ωPα
1 , so ωPα

1 is an initial segment of ωP ′
α

1 ;

2. ωP ′
α

1 is ill-founded;

3. in V , there is a continuous increasing ω1-sequence ⟨tαγ : γ < ω1⟩ consisting of elements of ωP ′
α

1 .

Item 3 above implies in particular that each ωP ′
α

1 is uncountable. Each P ′
α can be realized as the union of

a increasing elementary chain of models ⟨Pα
γ : γ < ω1⟩, where Pα

0 = Pα,

P ′
α =

∪
γ<ω1

Pα
γ

for limit α, and each Pα
γ+1 can be obtained by applying Fact 3.20 to Pα

γ . Then each tαγ (the c of Fact 3.20)

can be taken to be ω
Pα

γ

1 .
Recall that M is the union of the continuous ⊆-increasing chain ⟨Mα : α < ω1⟩. It follows then for

each α < ω1, that MωPα
1

= ρα(M) ⊂ Pα, and that MωPα
1

has cardinality ℵ1 in Pα. For each α < ω1,
let Nα = χα(MωPα

1
) and let N ′

α = χα(ρα(M
′)). Then each N ′

α is an expansion of Nα via the given
enumeration of M0 by the constants ci, and it has cardinality ℵ1 in P ′

α.
In the argument for Theorem 2.5 replace the appeal to Lopez-Escobar (Theorem 5.3.8 of [1]) with the

observation that the induced ordering on N ′
α is not well-founded by construction. The rest of the argument

for Theorem 2.5 (or Theorem 2.20) shows that, in V , each N ′
α is small for Lω1,ω(τ

′). Nevertheless, by the
elementarity of χα ◦ ρα, each P ′

α thinks that N ′
α is not Lω1,ω(τ

′)-small.

Since M is a sequence indexed by ω1 in V (or in Xα), χα(ρα(M)) is a sequence indexed by ωP ′
α

1 in P ′
α.

So, in P ′
α, for each element t of its ω1, there is a t-th element of the sequence, which we denote by Mα

t .
Furthermore, in P ′

α, χα(ρα(F )) is a set {Fα
t : t ∈ ω

P ′
α

1 } consisting of automorphisms of Nα, such that each
Fα
t ∈ P ′

α is an automorphism of Nα sending M0 setwise to Mα
t . Each Fα

t is then an automorphism of Nα

in V also.
Since each N ′

α is small, each Nα is as well. Since we are assuming that there are only countably
many models in K of cardinality ℵ1, there exists an uncountable set S ⊆ ω1 such that Nα0 and Nα1 are
isomorphic (in V ) for all α0, α1 in S. Fix for a moment a pair of elements α0, α1 of S and an isomorphism
π : Nα0 → Nα1 . Applying item 3 above and the continuity (in the sense of P ′

αj
, for j = 0, 1) of the

sequences ⟨Mα0
t : t ∈ ω

P ′
α0

1 ⟩ and ⟨Mα1
t : t ∈ ω

P ′
α1

1 ⟩, there must be s0 ∈ ω
P ′

α0
1 and s1 ∈ ω

P ′
α1

1 such that π
maps Mα0

t0 setwise to Mα1
t1 . To see this, start with γ0 = 0 and, for each n ∈ ω, let γn+1 be large enough so

that
π[Mα0

t
α0
γn

] ⊆Mα1

t
α1
γn+1

and
π−1[Mα1

t
α1
γn

] ⊆Mα0

t
α0
γn+1

.
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Then let s0 = tα0
supn∈ω γn

and let s1 = tα1
supn∈ω γn

. By the continuity in item 3, the sj’s are in the respective
P ′
αj

, for j ∈ {0, 1}. So, for each j, by the continuity in P ′
αj

of Mαj

t ,

Mαj
sj =

∪
n<ω

M
αj

t
αj
γn

.

Then (Fα1
s1 )−1 ◦ π ◦ Fα0

s0 is an isomorphism of Nα0 and Nα1 fixing M0 setwise, though not necessarily
pointwise.

Finally, we show that for eachα0 < ω1 such an isomorphism is impossible for sufficiently largeα1 < ω1.
Each model P ′

α thinks that N ′
α is small for every countable fragment of Lω1,ω(τ

′) but not Lω1,ω(τ
′)-

small. Thus, from the point of view of P ′
α, there is no ordinal t such that ϕa,t(x) ≡ ϕa,t+1(x) (in the terms

of the Scott construction) for all finite tuples a of N ′
α. For each well-founded ordinal γ of P ′

α (this includes
the members of ωP ′

α
1 = ω1 ∩Xα, by item 1 above), and each finite tuple a of N ′

α, P ′
α sees the same formula

ϕa,γ(x) that the true universe V does, which means that the Scott sentence for N ′
α has rank at least ω1 ∩Xα

(and slightly more than this, in fact, in the approach from [5])7.
Now choose α0, α1 ∈ S such that ω1∩Xα1 is greater than the Scott rank (in V) ofN ′

α0
. Since permuting

the constants ci in terms of their enumeration of M0 has no effect on the rank of the Scott sentence for N ′
α1

,
there cannot be then an isomorphism of Nα0 and Nα1 fixing M0 setwise, since this would imply that N ′

α0

and N ′
α1

have the same Scott rank (Indeed, their Scott sentences would differ only by a permutation of the
ci’s). Thus we have a contradiction in case 2a.

We have ruled out cases 1) and 2a) and are left with case 2b). Again, Lemma 3.17 gives the second
conclusion of the theorem. 3.18

Remark 3.21. Note that argument ruling out case 2a) uses the set theoretic argument to find ℵ1 τ
′-small

models in ℵ1 with distinct τ ′-Scott rank. By the automorphism argument, this contradicts the assumption
that there are only ℵ0 τ -models in ℵ1.

We return to the slightly more complicated situation where joint embedding is not assumed.

Corollary 3.22. Suppose K is an AEC satisfying the hypotheses of Theorem 3.18 except the joint embedding
property. Then K is the union of a countable family of sub-AEC Ki, which each satisfy Theorem 3.18.

Proof. Since there are only countably many models in ℵ1, the equivalence relation of common extension
has at most countably many classes. Each satisfies the hypothesis and therefore the conclusion of Theo-
rem 3.18 3.22

4 Absoluteness of Categoricity
In this section we show that ℵ1-categoricity is absolute for an ℵ0-presented almost Galois ω-stable AEC
with an uncountable model that satisfies amalgamation for countable models. While we rely on Theorem
6.1 of [5], there are two key differences in the argument here; we do not assume any form of joint embedding
and we give a different proof than in [5] that such a class is Galois ω-stable using Lemma 3.18

Remark 4.1. Suppose that k = (K,≺k) is an analytically presented AEC, and that M ∈ K is countable.
Then there exists an uncountable N ∈ K with M ≺k N if and only if there exists a countable ω-model

7Alternatively, Lemma 2.21 implies that the Scott rank of N ′
α is exactly the well-founded part of ωP ′

α
1
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P of ZFC◦ (containing a real parameter for K) such that M ∈ P and P thinks there exists an uncountable
N ∈ K with M ≺ N . This follows from the same argument as for Theorem 2.1 of [5] (one direction
consists of taking the transitive collapse of a countable elementary submodel; the other consists of building
an iterated generic elementary embedding of length ω1). Note that the latter clause is Σ1

1 in the given
parameter for K, and therefore absolute.

Similarly, the statement that K is almost Galois ω-stable is Π1
1 in a real coding K (this is Theorem 6.6.

of [5]), and therefore absolute. Amalgamation of countable models for such a K is easily seen to be Π1
2 in

a code for K. In this section we apply Theorem 3.18 to prove the following theorem.8

Theorem 4.2. Suppose that K is an ℵ0-presented almost Galois ω-stable AEC with Löwenheim-Skolem
number ℵ0, satisfying amalgamation for countable models and having an uncountable model. The assertion
that K is ℵ1-categorical is then absolute, as it is equivalent to a statement of the form ϕ1 ∧ ϕ2, where ϕ1
and ϕ2 are Π1

2 and Σ1
2, respectively, in a code for K.

We rely on the following fact from [5].

Fact 4.3. Suppose that k = (K,≺k) is an ℵ0-presented AEC. The following assertion is equivalent to a
Σ1

2 statement in a parameter for k: There exist M ∈ Kℵ0 and N ∈ Kℵ1 such that

1. M ≺k N ;

2. the set of Galois types over M realized in N is countable;

3. some Galois type over M is not realized in N .

Proof of Theorem 4.2. Let K ′ be the result of removing from K all countable models lacking uncount-
able ≺k-extensions in K. Then k′ = (K ′,≺k) is an AEC : the first part of Lemma 3.4 guarantees closure
under increasing ≺k chains, and the remaining clauses are clear. By Remark 4.1 k′ is still ℵ0-presented,
with the same real parameter as k. The first part of Lemma 3.4 implies that k′ satisfies amalgamation for
countable models. Thus, two points which realize the same Galois type for k realize the same Galois type
for k′, and k′ is almost Galois ω-stable. It suffices then to prove the theorem for K ′.

Let ϕ1 be the conjunction of the following statements.

1. Joint embedding holds for K ′
ℵ0

.

2. There do not exist N ≺k M with N countable and M uncountable (N,M ∈ K and hence in K ′),
such that only countably many Galois types over N are realized in M , and some Galois type over N
is not realized in M .

Clause (1) is easily seen to be Π1
2 in a code for k, and Clause (2) is as well, by Fact 4.3. If k is Galois

ω-stable, then clause (2) is equivalent to the assertion that every element of Kℵ1
is Galois saturated. We

will show that k (and k′) are Galois ω-stable in both directions of the proof below.
Let ϕ2 be the conjunction of the following statements.

3. All uncountable models in K (equivalently, K ′) satisfy the same Scott sentence in Lω1,ω.

8In [5], it is shown using the methods of that paper that for an almost Galois ω-stable ℵ0-presented AEC k satisfying amalgamation,
ℵ1-categoricity is equivalent to a Π1

2 statement in a code for k. The proof of that result was found after the result given here.
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4. There exist a countable N ∈ K ′ and a countable fragment L1 of the expanded language where
constants are added for each member of N such that for every M ∈ K ′ with N ≺k M and N ≺∞,ω

M , M is L1-atomic.

Clause (3) is equivalent to a Σ1
2 statement in parameter for k, by Lemma 2.22. Clause (4) is easily seen

to be Σ1
2 in a parameter for k.

Suppose now that K (and thus K ′) is ℵ1-categorical. Then clause (1) clearly holds for k′.
Corollary 2.8 implies that all uncountable models of any ℵ1-categorical ℵ0-presented AEC satisfy the

same Scott sentence in Lω1,ω, giving clause (3). Theorem 3.7 implies that there is a Galois saturated model
of cardinality in K ′

ℵ1
(which is unique since we have JEP and amalgamation in K ′). But then a fortiori, the

same model is the unique Galois-ω-saturated model of K. (Note however, that it may not be universal for
models Kℵ0 .)

By the first part of Lemma 3.18, we have clause (4) for all countable N ∈ K ′. The second part of
Lemma 3.18 implies Galois ω-stability for K ′. Now the ℵ1-categoricity of K (hence K ′) and the Galois
ω-stability of K ′ imply clause (2).

For the other direction, since K and K ′ have the same uncountable models, it suffices to show that K ′

is ℵ1-categorical. From clause (1) and the first part of Theorem 3.7, we get that K ′ has a unique small
uncountable Galois saturated model. Applying Lemma 3.17 to K ′, clause (4) implies that K ′ is Galois
ω-stable. Then clause (2) implies that the Galois saturated model is the only model in K ′ (a fortiori K) of
cardinality ℵ1. 4.2
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