Borel equivalence relations and symmetric models

Assaf Shani

CMU, Harvard

Special session on choiceless set theory and related areas Denver, January 2020

1/8

Definition

Let *E* be an equivalence relation on *X*. A **complete classification** of *E* is a map $c: X \longrightarrow I$ such that for any $x, y \in X$, *xEy* iff c(x) = c(y). The elements of *I* are called **complete invariants**.

Definition

Let *E* be an equivalence relation on *X*. A **complete classification** of *E* is a map $c: X \longrightarrow I$ such that for any $x, y \in X$, *xEy* iff c(x) = c(y). The elements of *I* are called **complete invariants**.

► The first Friedman-Stanley jump, =⁺ on ℝ^ω, is defined by the complete classification

$$\langle x_0, x_1, x_2, \ldots \rangle \mapsto \{ x_i; i \in \omega \}.$$

Definition

Let *E* be an equivalence relation on *X*. A **complete classification** of *E* is a map $c: X \longrightarrow I$ such that for any $x, y \in X$, *xEy* iff c(x) = c(y). The elements of *I* are called **complete invariants**.

► The first Friedman-Stanley jump, =⁺ on ℝ^ω, is defined by the complete classification

$$\langle x_0, x_1, x_2, \ldots \rangle \mapsto \{ x_i; i \in \omega \}.$$

► The second Friedman-Stanley jump, =⁺⁺ on ℝ^{ω²}, is defined by the complete classification

$$\langle x_{i,j} \mid i,j < \omega \rangle \mapsto \{\{x_{i,j}; j \in \omega\}; i \in \omega\}.$$

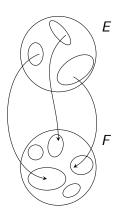
An equivalence relation E on a Polish space X is **analytic (Borel)** if $E \subseteq X \times X$ is analytic (Borel).

An equivalence relation E on a Polish space X is **analytic (Borel)** if $E \subseteq X \times X$ is analytic (Borel).

Definition

Let E and F be Borel equivalence relations on Polish spaces X and Y respectively.

▶ A Borel map $f: X \to Y$ is a **homomorphism** from *E* to *F*, $(f: E \to_B F)$, if for $x, x' \in X$, $x E x' \implies f(x) F f(x')$.



3/8

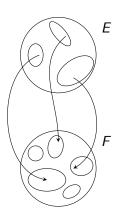
イロト イポト イヨト イヨト

An equivalence relation E on a Polish space X is **analytic (Borel)** if $E \subseteq X \times X$ is analytic (Borel).

Definition

Let E and F be Borel equivalence relations on Polish spaces X and Y respectively.

- ▶ A Borel map $f: X \to Y$ is a **homomorphism** from *E* to *F*, $(f: E \to_B F)$, if for $x, x' \in X$, $x E x' \implies f(x) F f(x')$.
- ▶ A Borel map $f: X \to Y$ is a reduction of *E* to *F* if for any $x, x' \in X$, $x E x' \iff f(x) F f(x')$.

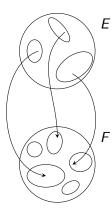


An equivalence relation E on a Polish space X is **analytic (Borel)** if $E \subseteq X \times X$ is analytic (Borel).

Definition

Let E and F be Borel equivalence relations on Polish spaces X and Y respectively.

- ▶ A Borel map $f: X \to Y$ is a **homomorphism** from *E* to *F*, $(f: E \to_B F)$, if for $x, x' \in X$, $x E x' \implies f(x) F f(x')$.
- A Borel map $f: X \to Y$ is a reduction of E to F if for any $x, x' \in X$, $x E x' \iff f(x) F f(x')$.
- ▶ *E* is Borel reducible to *F*, denoted $E \leq_B F$, if there is a Borel reduction of *E* to *F*.



イロト 不得 とくき とくきとう き

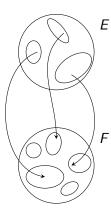
3/8

An equivalence relation E on a Polish space X is **analytic (Borel)** if $E \subseteq X \times X$ is analytic (Borel).

Definition

Let E and F be Borel equivalence relations on Polish spaces X and Y respectively.

- ▶ A Borel map $f: X \to Y$ is a **homomorphism** from *E* to *F*, $(f: E \to_B F)$, if for $x, x' \in X$, $x E x' \implies f(x) F f(x')$.
- A Borel map $f: X \to Y$ is a reduction of E to F if for any $x, x' \in X$, $x E x' \iff f(x) F f(x')$.
- ► E is Borel reducible to F, denoted E ≤_B F, if there is a Borel reduction of E to F.
- ► *E* and *F* are **Borel bireducible**, $(E \sim_B F)$, if $E \leq_B F$ and $F \leq_B E$.



3/8

Theorem (Kanovei-Sabok-Zapletal 2013)

1. If $C \subseteq \mathbb{R}^{\omega}$ is comeager then $=^+ \upharpoonright C$ is Borel bireducible to $=^+$.

Theorem (Kanovei-Sabok-Zapletal 2013)

- 1. If $C \subseteq \mathbb{R}^{\omega}$ is comeager then $=^+ \upharpoonright C$ is Borel bireducible to $=^+$.
- 2. Let E be an analytic equivalence relation. Then either
 - $=^+$ is Borel reducible to *E*, or

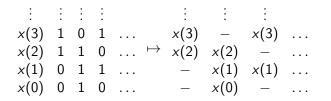
Theorem (Kanovei-Sabok-Zapletal 2013)

- 1. If $C \subseteq \mathbb{R}^{\omega}$ is comeager then $=^+ \upharpoonright C$ is Borel bireducible to $=^+$.
- 2. Let E be an analytic equivalence relation. Then either
 - $=^+$ is Borel reducible to *E*, or
 - Any Borel homomorphism from =⁺ to E maps a comeager subset of ℝ^ω into a single E-class.

Consider the equivalence relation F on $\mathbb{R}^{\omega} \times (2^{\omega})^{\omega}$ defined by the complete classification

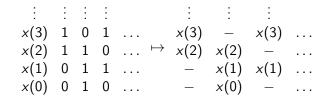
Consider the equivalence relation F on $\mathbb{R}^{\omega} \times (2^{\omega})^{\omega}$ defined by the complete classification

$$(x, z) \mapsto \{\{x(j); z(i)(j) = 1\}; i < \omega\} = A_{(x,z)}.$$



Consider the equivalence relation F on $\mathbb{R}^{\omega} \times (2^{\omega})^{\omega}$ defined by the complete classification

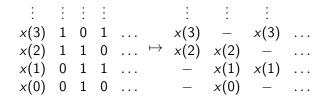
$$(x, z) \mapsto \{\{x(j); z(i)(j) = 1\}; i < \omega\} = A_{(x,z)}.$$



Then $F \sim_B = ^{++}$.

Consider the equivalence relation F on $\mathbb{R}^{\omega} \times (2^{\omega})^{\omega}$ defined by the complete classification

$$(x, z) \mapsto \{\{x(j); z(i)(j) = 1\}; i < \omega\} = A_{(x,z)}.$$



Then $F \sim_B =^{++}$. Define $u: \mathbb{R}^{\omega} \times (2^{\omega})^{\omega} \to \mathbb{R}^{\omega}$ by u(x, z) = x, $u: F \to_B =^+$. We work in the comeager subset of $\mathbb{R}^{\omega} \times (2^{\omega})^{\omega}$ where $\forall j \exists i(z(i)(j) = 1)$. So u maps $A_{(x,z)}$ to its union $\bigcup A_{(x,z)}$.

F on $\mathbb{R}^{\omega} \times (2^{\omega})^{\omega}$ defined by the complete classification $(x, z) \mapsto \{\{x(j); z(i)(j) = 1\}; i < \omega\}.$ u(x, z) = x.

F on $\mathbb{R}^{\omega} \times (2^{\omega})^{\omega}$ defined by the complete classification $(x, z) \mapsto \{\{x(j); z(i)(j) = 1\}; i < \omega\}.$ u(x, z) = x.

Theorem (S.)

1. $F \upharpoonright C \sim_B =^{++}$ for comeager $C \subseteq \mathbb{R}^{\omega} \times (2^{\omega})^{\omega}$.

 $F \sim_B =^{++}$

F on $\mathbb{R}^{\omega} \times (2^{\omega})^{\omega}$ defined by the complete classification $(x, z) \mapsto \{\{x(j); z(i)(j) = 1\}; i < \omega\}.$ u(x, z) = x.

x(3)	1	0	1		x(3)		x(3)	
x(2)	1	1	0	 	x(2)	x(2)		
x(1)	0	1	1	 \mapsto		x(1)	x(1)	
x(0)	0	1	0			x(0)		

Theorem (S.)

1. $F \upharpoonright C \sim_B =^{++}$ for comeager $C \subseteq \mathbb{R}^{\omega} \times (2^{\omega})^{\omega}$.

2. for any analytic equivalence relation E either $=^+$

► F is Borel reducible to E, or

 $F \sim_B =^{++}$

П

F on $\mathbb{R}^{\omega} \times (2^{\omega})^{\omega}$ defined by the complete classification $(x, z) \mapsto \{\{x(j); z(i)(j) = 1\}; i < \omega\}. u(x, z) = x.$

x(3)	1	0	1		x(3)		x(3)	
x(2)	1	1	0	 	x(2)	x(2)	_	
x(1)	0	1	1	 \mapsto		x(1)	x(1)	
x(0)	0	1	0			x(0)		

Theorem (S.)

Theorem (S.) 1. $F \upharpoonright C \sim_B = ^{++}$ for comeager $C \subseteq \mathbb{R}^{\omega} \times (2^{\omega})^{\omega}$. $F \sim_B = ^{++}$ $\downarrow u \qquad \forall f$ $\exists h \qquad \forall f$

2. for any analytic equivalence relation E either $=^{+}$

- ► F is Borel reducible to E. or
- every homomorphism f from F to E factors through u on a comeager set.

 $(\exists h: =^+ \rightarrow_B E \text{ s.t. } (h \circ u) E f, \text{ on a comeager set.})$

Borel equivalence relations and symmetric models

Suppose F and E are Borel equivalence relations on X and Y respectively and $x \mapsto A_x$ and $y \mapsto B_y$ are classifications by countable structures of F and E respectively.

Suppose *F* and *E* are Borel equivalence relations on *X* and *Y* respectively and $x \mapsto A_x$ and $y \mapsto B_y$ are classifications by countable structures of *F* and *E* respectively. Let $x \in X$ be a Cohen generic real and let $A = A_x$.

Suppose *F* and *E* are Borel equivalence relations on *X* and *Y* respectively and $x \mapsto A_x$ and $y \mapsto B_y$ are classifications by countable structures of *F* and *E* respectively. Let $x \in X$ be a Cohen generic real and let $A = A_x$. There is a one-to-one correspondence between

- ▶ (partial) Borel homomorphisms f: X → Y from F to E (defined on a comeager set);
- ► sets B ∈ V(A) such that B is an invariant for E and B is definable in V(A) from A and parameters in V alone.

Suppose *F* and *E* are Borel equivalence relations on *X* and *Y* respectively and $x \mapsto A_x$ and $y \mapsto B_y$ are classifications by countable structures of *F* and *E* respectively. Let $x \in X$ be a Cohen generic real and let $A = A_x$. There is a one-to-one correspondence between

- ▶ (partial) Borel homomorphisms f: X → Y from F to E (defined on a comeager set);
- ► sets B ∈ V(A) such that B is an invariant for E and B is definable in V(A) from A and parameters in V alone.

Remark

The proof uses tools from Zapletal "Idealized Forcing" (2008) and Kanovei-Sabok-Zapletal "Canonical Ramsey theory on Polish Spaces" (2013).

Let $(x, z) \in \mathbb{R}^{\omega} \times (2^{\omega})^{\omega}$ be Cohen generic. Let $A^1 = \{x(i); i \in \omega\}$, the =⁺-invariant of x, and $A^2 = \{\{x(j); z(i)(j) = 1\}; i < \omega\}$, the F-invariant of (x, z).

Let $(x, z) \in \mathbb{R}^{\omega} \times (2^{\omega})^{\omega}$ be Cohen generic. Let $A^1 = \{x(i); i \in \omega\}$, the =⁺-invariant of x, and $A^2 = \{\{x(j); z(i)(j) = 1\}; i < \omega\}$, the *F*-invariant of (x, z). $V(A^1)$ is "the basic Cohen model". $V(A^2)$ was studied by Monro.

Let $(x, z) \in \mathbb{R}^{\omega} \times (2^{\omega})^{\omega}$ be Cohen generic. Let $A^1 = \{x(i); i \in \omega\}$, the =⁺-invariant of x, and $A^2 = \{\{x(j); z(i)(j) = 1\}; i < \omega\}$, the *F*-invariant of (x, z). $V(A^1)$ is "the basic Cohen model". $V(A^2)$ was studied by Monro.

Proposition

Suppose $B \in V(A^2)$ is a set of reals which is definable from A^2 . Then $B \in V(A^1)$ and is definable from A^1 alone.

Let $(x, z) \in \mathbb{R}^{\omega} \times (2^{\omega})^{\omega}$ be Cohen generic. Let $A^1 = \{x(i); i \in \omega\}$, the =⁺-invariant of x, and $A^2 = \{\{x(j); z(i)(j) = 1\}; i < \omega\}$, the *F*-invariant of (x, z). $V(A^1)$ is "the basic Cohen model". $V(A^2)$ was studied by Monro.

Proposition

Suppose $B \in V(A^2)$ is a set of reals which is definable from A^2 . Then $B \in V(A^1)$ and is definable from A^1 alone.

Let $(x, z) \in \mathbb{R}^{\omega} \times (2^{\omega})^{\omega}$ be Cohen generic. Let $A^1 = \{x(i); i \in \omega\}$, the =⁺-invariant of x, and $A^2 = \{\{x(j); z(i)(j) = 1\}; i < \omega\}$, the *F*-invariant of (x, z). $V(A^1)$ is "the basic Cohen model". $V(A^2)$ was studied by Monro. Proposition

Suppose $B \in V(A^2)$ is a set of reals which is definable from A^2 . Then $B \in V(A^1)$ and is definable from A^1 alone.

Why homomorphisms $F \rightarrow_B =^+$ factor through u:

A Borel homomorphism *f* from *F* to =⁺ corresponds to a set of reals *B* definable from *A*².

Let $(x, z) \in \mathbb{R}^{\omega} \times (2^{\omega})^{\omega}$ be Cohen generic. Let $A^1 = \{x(i); i \in \omega\}$, the =⁺-invariant of x, and $A^2 = \{\{x(j); z(i)(j) = 1\}; i < \omega\}$, the *F*-invariant of (x, z). $V(A^1)$ is "the basic Cohen model". $V(A^2)$ was studied by Monro. Proposition

Suppose $B \in V(A^2)$ is a set of reals which is definable from A^2 . Then $B \in V(A^1)$ and is definable from A^1 alone.

- A Borel homomorphism f from F to =⁺ corresponds to a set of reals B definable from A².
- Since B ∈ V(A¹) is definable from A¹, it corresponds to a homomorphism h from =⁺ to =⁺.

Let $(x, z) \in \mathbb{R}^{\omega} \times (2^{\omega})^{\omega}$ be Cohen generic. Let $A^1 = \{x(i); i \in \omega\}$, the =⁺-invariant of x, and $A^2 = \{\{x(j); z(i)(j) = 1\}; i < \omega\}$, the *F*-invariant of (x, z). $V(A^1)$ is "the basic Cohen model". $V(A^2)$ was studied by Monro. Proposition

Suppose $B \in V(A^2)$ is a set of reals which is definable from A^2 . Then $B \in V(A^1)$ and is definable from A^1 alone.

- A Borel homomorphism *f* from *F* to =⁺ corresponds to a set of reals *B* definable from *A*².
- Since B ∈ V(A¹) is definable from A¹, it corresponds to a homomorphism h from =⁺ to =⁺.
- ► Also A¹ ∈ V(A²) is the set of reals corresponding to the union homomorphism u.

Let $(x, z) \in \mathbb{R}^{\omega} \times (2^{\omega})^{\omega}$ be Cohen generic. Let $A^1 = \{x(i); i \in \omega\}$, the =⁺-invariant of x, and $A^2 = \{\{x(j); z(i)(j) = 1\}; i < \omega\}$, the *F*-invariant of (x, z). $V(A^1)$ is "the basic Cohen model". $V(A^2)$ was studied by Monro. Proposition

Suppose $B \in V(A^2)$ is a set of reals which is definable from A^2 . Then $B \in V(A^1)$ and is definable from A^1 alone.

- A Borel homomorphism f from F to =⁺ corresponds to a set of reals B definable from A².
- Since B ∈ V(A¹) is definable from A¹, it corresponds to a homomorphism h from =⁺ to =⁺.
- ► Also A¹ ∈ V(A²) is the set of reals corresponding to the union homomorphism u.