
Borel equivalence relations and symmetric models

Assaf Shani

CMU, Harvard

Special session on choiceless set theory and related areas
Denver, January 2020

1 / 8



Friedman-Stanley jumps

Definition
Let E be an equivalence relation on X . A complete classification
of E is a map c : X −→ I such that for any x , y ∈ X , xEy iff
c(x) = c(y). The elements of I are called complete invariants.

I The first Friedman-Stanley jump, =+ on Rω, is defined by the
complete classification

〈x0, x1, x2, ...〉 7→ {xi ; i ∈ ω} .

I The second Friedman-Stanley jump, =++ on Rω2
, is defined

by the complete classification

〈xi ,j | i , j < ω〉 7→ {{xi ,j ; j ∈ ω} ; i ∈ ω} .
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Borel homomorphisms and reductions

E

F

An equivalence relation E on a Polish space X is
analytic (Borel) if E ⊆ X × X is analytic (Borel).

Definition
Let E and F be Borel equivalence
relations on Polish spaces X and Y respectively.

I A Borel map f : X → Y is a homomorphism
from E to F , (f : E →B F ), if for x , x ′ ∈ X ,
x E x ′ =⇒ f (x) F f (x ′).

I A Borel map f : X → Y is a reduction
of E to F if for any x , x ′ ∈ X ,
x E x ′ ⇐⇒ f (x) F f (x ′).

I E is Borel reducible to F , denoted E ≤B F ,
if there is a Borel reduction of E to F .

I E and F are Borel bireducible, (E ∼B F ),
if E ≤B F and F ≤B E .
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The first Friedman-Stanley jump

Theorem (Kanovei-Sabok-Zapletal 2013)

1. If C ⊆ Rω is comeager then =+� C is Borel bireducible to =+.

2. Let E be an analytic equivalence relation. Then either
I =+ is Borel reducible to E , or
I any Borel homomorphism from =+ to E maps a comeager

subset of Rω into a single E -class.
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A different presentation of =++

Consider the equivalence relation F on Rω × (2ω)ω defined by the
complete classification

(x , z) 7→ {{x(j); z(i)(j) = 1} ; i < ω} = A(x ,z).

...
...

...
...

x(3) 1 0 1 . . .
x(2) 1 1 0 . . .
x(1) 0 1 1 . . .
x(0) 0 1 0 . . .

7→

...
...

...
x(3) − x(3) . . .
x(2) x(2) − . . .
− x(1) x(1) . . .
− x(0) − . . .

Then F ∼B=++.
Define u : Rω × (2ω)ω → Rω by u(x , z) = x , u : F →B=+.
We work in the comeager subset of Rω × (2ω)ω where
∀j∃i(z(i)(j) = 1). So u maps A(x ,z) to its union

⋃
A(x ,z).
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The second Friedman-Stanley jump

F on Rω × (2ω)ω defined by the complete classification
(x , z) 7→ {{x(j); z(i)(j) = 1} ; i < ω}. u(x , z) = x .

x(3) 1 0 1 . . .
x(2) 1 1 0 . . .
x(1) 0 1 1 . . .
x(0) 0 1 0 . . .

7→

x(3) − x(3) . . .
x(2) x(2) − . . .
− x(1) x(1) . . .
− x(0) − . . .

F ∼B =++

=+

u

E

∀f

∃h

Theorem (S.)

1. F � C ∼B=++ for comeager C ⊆ Rω × (2ω)ω.

2. for any analytic equivalence relation E either
I F is Borel reducible to E , or
I every homomorphism f from F to E factors through u on a

comeager set.
(∃h : =+→B E s.t. (h ◦ u) E f , on a comeager set.)
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Borel equivalence relations and symmetric models

Theorem (S.)

Suppose F and E are Borel equivalence relations on X and Y
respectively and x 7→ Ax and y 7→ By are classifications by
countable structures of F and E respectively.
Let x ∈ X be a Cohen generic real and let A = Ax .
There is a one-to-one correspondence between

I (partial) Borel homomorphisms f : X → Y from F to E
(defined on a comeager set);

I sets B ∈ V (A) such that B is an invariant for E and B is
definable in V (A) from A and parameters in V alone.

Remark
The proof uses tools from Zapletal “Idealized Forcing” (2008) and
Kanovei-Sabok-Zapletal “Canonical Ramsey theory on Polish
Spaces” (2013).
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A model of Monro (1973)

Let (x , z) ∈ Rω × (2ω)ω be Cohen generic.
Let A1 = {x(i); i ∈ ω}, the =+-invariant of x , and
A2 = {{x(j); z(i)(j) = 1} ; i < ω}, the F -invariant of (x , z).

V (A1) is “the basic Cohen model”. V (A2) was studied by Monro.

Proposition

Suppose B ∈ V (A2) is a set of reals which is definable from A2.
Then B ∈ V (A1) and is definable from A1 alone.

Why homomorphisms F →B=+ factor through u:

I A Borel homomorphism f from F to =+ corresponds to a set
of reals B definable from A2.

I Since B ∈ V (A1) is definable from A1, it corresponds to a
homomorphism h from =+ to =+.

I Also A1 ∈ V (A2) is the set of reals corresponding to the union
homomorphism u.

I We conclude that f factors as h ◦ u.
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